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� Preface

Assignment problems is introduced in class as we go, so we have the
special environment homework for these in this note.

I included a special chapter in the appendix (see Appendix A)
that records and provides insights into what drove the direction(s)
of certain proofs. This is an attempt to resolve the problem of proofs
being overly obscure with its motivations. Contents presented in this
appendix are typically like rough work, and so are typically much
longer than the presented proof.

I also made an appendix for some of the common themes and tricks
(see Appendix B) that are seen repeatedly in this topic I think it is
invaluable that they are noted down, because the ideas that these
commonalities carry forward.





1 � Lecture 1 Sep 04th, 2019

1.1 Motivation for the Study of Measures

Recall Riemann integration.

� Definition (Riemann Integration)

Let f : [a, b] → R be a bounded function. We call

P � {a � x0 < x1 < . . . < xn � b} ⊆ [a, b]

a partition of [a, b], and

∆xi � xi − xi−1

as the length of the ith interval for i � 1, . . . , n.

|
xi−1

|
xi

Mi

mi

Figure 1.1: Idea of Riemann integration

Let
Mi � sup{ f (x) : x ∈ [xi−1, xi]}

be the supremum of f on the ith interval, and

mi � inf{ f (x) : x ∈ [xi−1, xi]}

be the infimum of f on the ith interval. We define the Riemann upper
sum as

U( f , P) �
∑

i

Mi∆xi ,

and the Riemann lower sum as

L( f , P) �
∑

i

mi∆xi .
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We define the Riemann upper integral as∫ b

a
f dx � inf

P
U( f , P)

and the Riemann lower integral as∫ b

a
f dx � sup L( f , P).

We say that f is Riemann integrable if∫ b

a
f dx �

∫ b

a
f dx,

and we write the integral of f as∫ b

a
f dx �

∫ b

a
f dx �

∫ b

a
f dx.

As hyped up as one does earlier in university about Riemann inte-
gration, there are functions that are not Riemann integrable!

Example 1.1.1

Consider a function f : [0, 1] → R given by

f (x) �


1 x ∈ Q

0 x < Q

.

Then ∫ b

a
f dx � 1 and

∫ b

a
f dx � 0.

Thus f is not Riemann integrable. �

� Note 1.1.1 (Shortcomings of the Riemann integral)

1. We cannot characterize functions that are Riemann integrable, i.e. we
do not have a list of characteristics that we can check against to see if a
function is Riemann integrable.
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This remained an open problem in the earlier 1920s.

2. The Riemann integral behaves badly when it comes to pointwise limits
of functions. The next example shall illustrate this.

3. The Riemann integral is awkward when f is unbounded. In particular,
we used to hack our way around by looking at whether the Riemann
integral converges to some value the function approaches the unbounded
point, and then “conclude” that the integral is the limit of that conver-
gence.

4. Recall that the Fundamental Theorem of Calculus states that

d
dx

∫ x

a
f (t) dt � f (x).

We know that this works for Riemann integrals. By the first shortcom-
ing, the problem here is that we do not fully know what are the functions
that the Fundamental Theorem is true for.

5. In PMATH450, we saw that Fourier developed the Fourier series, which
is an extremely useful tool in solving Differential Equations using
sines and cosines. However, the convergence of the Fourier series re-
mains largely unexplained by Fourier, and we have but developed some
roundabout ways of showing some convergence.

6. Consider the set R if Riemann integrable functions on the interval
[a, b]. The set R has a natural metric:

d( f , g) �
∫ b

a

�� f − g
�� dx.

However, the metric space (R, d) is not complete. This means many of
our favorite results in PMATH351 are not usable!

7. There are many functions that seem like they should have an integral,
but turned out that they did not under Riemann integration.

Example 1.1.2 (Pointwise Limits of Riemann Integrable Functions is
not necessarily Riemann Integrable)
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Let Q � {xn}n∈N. Then consider a sequence of functions

fn(x) �


1 x ∈ {x1, . . . , xn}

0 x < {x1, . . . , xn}
.

It is rather clear that ∫ b

a
f dx �

∫ b

a
f dx � 0.

However, the pointwise limit of the fn ’s, and that is

lim
n→∞

fn(x) � f (x) �


1 x ∈ Q

0 x < Q

,

is, as mentioned in the last example, not Riemann integrable. �

To address the shortcomings of the Riemann integral, Henri Lebesgue
developed the Lebesgue integral, of which we have seen in PMATH450.

Instead of dividing the x-axis, Lebesgue decided to divide the y-
axis first.

If the range of a function f is [c, d], where c, d can be infinite, then
we partition the interval such that

P � {c � y0 < y1 < . . . < yn � d},

and we define
Ei � {x : f (x) ∈ [yi−1, yi]}.

Then if Ai is the area of the “rectangle” for the ith interval of [c, d], we
have

yi−1 · `(Ei) ≤ Ai ≤ yi · `(Ei),

where `(Ei) is the Lebesgue measure of the set Ei . Then if we let
∫ b

a f

denote the Lebesgue integral of f , we would expect

n∑
i�1

yi−1 · `(Ei) ≤
∫ b

a
f ≤

n∑
i�1

yi · `(Ei).

However, to truly understand what this means, we need to understand
what the Lebesgue measure is.
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Furthermore, recall that in PMATH450, we saw that not all sets, in
R for example, are measurable, and for ‘good’ reasons, there always
exists non-measurable sets.

1.2 Algebras and σ-Algebra of Sets
For this course, we shall use the conven-
tion that

• the ‘ambient’ space X is always
non-empty;

• P(X), the power set of X, has non-
trivial elements; and

• we denote AC � {x ∈ X : x < A} for
A ⊆ X.

� Definition 1 (Algebra of Sets)

Given X, a non-empty collection of subsets of X, i.e. ∅ , A ⊆ P(X), is
called an algebra of sets of X provided that:

1. A1, . . . , An ∈ A �⇒ ⋃n
i�1 Ai ∈ A; and

2. A ∈ A �⇒ AC ∈ A.

� Proposition 1 (Properties of Algebra of Sets)

If A is an algebra of sets of X, then

3. ∅, X ∈ A;

4. A, B ∈ A �⇒ A \ B � {x ∈ X | x ∈ A ∧ x < B} ∈ A ; and

5. A1, . . . , An ∈ A �⇒ ⋂n
i�1 Ai ∈ A.

� Proof

3. A , ∅ �⇒ ∃A ∈ A �⇒ AC ∈ A �⇒ A ∪ AC � X ∈ A �⇒
∅ � XC ∈ A.

4. A, B ∈ A �⇒ AC ∈ A �⇒ AC ∪ B ∈ A �⇒ A \ B �

(AC ∪ B)C ∈ A.

5. (De Morgan’s Law) Notice that (A1 ∩A2 ∩ . . .∩An)C � AC
1 ∪AC

2 ∪
. . .AC

n ∈ A since AC
i ∈ A. Thus the complement

A1 ∩ A2 ∩ . . . ∩ An ∈ A. �
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� Definition 2 (σ-Algebra of Sets)

Given X and ∅ , A ⊆ P(X), we say that A is a σ-algebra of sets of X if
it is an algebra of sets and

∀An ∈ A, n ∈ N,
⋃
n∈N

An ∈ A.

Example 1.2.1

1. P(X) is a σ-algebra.

2. Consider X as an infinite set. We say that a set A is cofinite if AC is
finite. Let

A B {A ∈ P(X) | A is finite or cofinite }.

Then A is an algebra of sets:

• finite union of finite sets remains finite;

• finite union of finite and cofinite sets remains cofinite; and

• complement of finite sets are the cofinite sets and vice versa.

However, A is not a σ-algebra: consider An � {2n} ⊆ X � N, which
we then realize that⋃

n∈N

An � set of all even numbers ,

but the set of all even numbers is clearly not finite, and its comple-
ment, which is the set of all odd numbers, is not finite.

3. Consider X as an uncountable set. We say that a set A is co-countable
if AC is countable. 1 The set 1 Recall that a set A is said to be count-

able if there is a one-to-one correspon-
dence between elements of A and the
natural numbers.A B {A ⊆ X | A is countable or co-countable }

is a σ-algebra:

• countable union of countable sets is countable;
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• countable union of countable and co-countable sets is co-countable;
and

• complement of countable sets are co-countable and vice versa.
�





2 � Lecture 2 Sep 06th 2019

2.1 Algebra and σ-algebra of Sets (Continued)

We’ve seen some examples of σ-algebras. Let’s now look at some other
important properties of σ-algebras.

� Proposition 2 (Closure of σ-algebras under Countable Intersec-
tion)

Let X be a set, A a σ-algebra on X. If An ∈ A for each n ∈ N, then⋂
n An ∈ A.

This follows rather similarly to � Proposition 1 where we used De
Morgan’s Law.

� Proof

We observe that

An ∈ A �⇒ AC
n ∈ A

�⇒
⋃

n

AC
n ∈ A

�⇒
⋂

n

An �

(⋃
n

AC
n

) C

∈ A. �
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Let Aα ⊆ P(X), where α is from some index set. We denote⋂
α

Aα � {A ⊆ X : A ∈ Aα, ∀α}.

� Proposition 3 (Existence of the ‘Smallest’ σ-algebra on a Set)

Let X be a set and {Aα}α as a collection of σ-algebras on X. Then
⋂
α Aα

is a σ-algebra.

� Proof

A ∈
⋂
α

Aα �⇒ ∀α, A ∈ Aα

�⇒ ∀α, AC ∈ Aα

�⇒ AC ∈
⋂
α

Aα

and

∀n ∈ N, An ∈
⋂
α

Aα �⇒ ∀n ∈ N, ∀α, An ∈ Aα

�⇒ ∀α,
⋃

n

An ∈ Aα

�⇒
⋃

n

An ∈
⋂
α

Aα. �

Due to the above proposition, the following definition is well-
defined.

� Definition 3 (Generator of a σ-algebra)

Let X be a set, and ξ ⊆ P(X) has some non-trivial set(s). Consider all
σ-algebras Aα with the property that ξ ⊆ Aα. Then we say that

⋂
α Aα
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is the σ-algebra generated by ξ, and we denote this generated σ-algebra as

M(ξ) �
⋂
α

Aα.

Remark 2.1.1

1. It is clear from the definition that if A is a σ-algebra on X and ξ ⊆ A,
thenM(ξ) ⊆ A.

2. We often say thatM(ξ) is the “smallest σ-algebra containing ξ”. �

The following is an example of such a σ-algebra.

� Definition 4 (Borel σ-algebra)

Let X be a metric space (or topological space). The σ-algebra generated by
the open subsets of X is called the Borel σ-algebra, of which we denote
by B(X).

Remark 2.1.2 (Some sets in B(X))

Given an arbitrary metric space (or topological space) X. It is often hard to
firmly grasp what kind of sets are in the Borel σ-algebra B(X). The following
are some examples that are in B(X).

1. Let {On}n∈N denote a countable collection of open sets. By � Proposi-
tion 2,

⋂
n On ∈ B(X). We call these countable union of open sets as Gδ

sets.

2. Let {Fn}n∈N denote a countable collection of closed sets. By � Proposi-
tion 2,

⋃
n Fn ∈ B(X). We call these countable intersection of closed sets

as Fσ sets.

3. Let {Hn} be a countable collection of Gδ sets. Then
⋃

n Hn ∈ B(X).
These are called the Gδσ sets.

4. Let {Kn} be a countable collection of Fσ sets. Then
⋂

n Kn ∈ B(X). These
are called the Fσδ sets.
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We can continue constructing the Gδσ... and Fσδ... similarly, and all these sets
belong to the Borel σ-algebra B(X). �

� Proposition 4 (Other Formulations of the Borel σ-algebra (aka
Proposition 1.2))

The following collection of sets are all equal:

1. B1 � B(R);

2. B2 � σ-algebra generated by open intervals (e.g. (a, b));

3. B3 � σ-algebra generated by closed intervals (e.g. [a, b]);

4. B4 � σ-algebra generated by half-open intervals (e.g. (a, b]);

5. B5 � σ-algebra generated by (−∞, a) and (b,∞); and

6. B6 � σ-algebra generated by (−∞, a] and [b,∞).

As commented before, it is often hard knowing that is in a Borel
σ-algebra, and what is not, despite knowing what its generator is.
However, when talking about containments, this is a fairly straight-
forward discussion thanks to its closure under countable unions and
� Proposition 2. We simply need to talk about the generators.

� Proof

B2 ⊆ B1 Given an arbitrary generator (a, b) in B2, we know that
(a, b) is an open set, and clearly (a, b) ⊆ R. Thus (a, b) ∈ B1, so
B2 ⊆ B1.

B3 ⊆ B2 Given an arbitrary generator [a, b] of B2, we have

[a, b] �
⋂

n

(
a − 1

n
, b +

1
n

)
∈ B2.

Thus B3 ⊆ B2.
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B4 ⊆ B3 Given an arbitrary generator (a, b] of B4,

(a, b] �
⋃

n

[
a +

1
n

, b
]
∈ B3.

Thus B4 ⊆ B3.

B5 ⊆ B4 Given an arbitrary generator (−∞, a) for B5,

(−∞, a) �
⋃

n

(
−∞, a − 1

n

)
∈ B4.

On the other hand, for (b,∞) in B5,

(b,∞) �
⋃

n

(b, n) ∈ B4.

B6 ⊆ B5 We have that

(−∞, a] �
⋂

n

(
−∞, a +

1
n

)
∈ B5

and
[b,∞) �

⋂
n

(
b − 1

n
,∞

)
∈ B5.

B1 ⊆ B6 Let c < d ∈ R. Notice that

(−∞, d] ∩ [c,∞) � [c, d] ∈ B6.

Furthermore,

(c, d) �
⋃

n

[
c +

1
n

, d − 1
n

]
∈ B6.

Recall that given an open set O ⊆ R, we have

O �

⋃
{(c, d) ⊆ O : c, d ∈ Q},

which shows that O is a countable union of open sets (with rational
endpoints). It follows that O ∈ B6 and so B1 ⊆ B6. �

Exercise 2.1.1

Show that B(R2) is generated by open rectangles (a, b) × (c, d).
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� Definition 5 (Infinitely Often)

Given En ⊆ X for n ∈ N, we say that x ∈ En infinitely often (i.o.) if

{n : x ∈ En}

is an infinite set. We typically let

A B {x ∈ X : x ∈ En i.o. }

be the set of x’s that are in the En ’s infinitely often.

� Definition 6 (Almost always)

Given En ⊆ X for n ∈ N, we say that x ∈ En almost always (a.a.) if

{n : x < En}

is a finite set. We typically let

B B {x ∈ X : x ∈ En a.a. }

be the set of x’s that are in the En ’s almost always.

� Homework (Homework 1)

Let X be a set, A a σ-algebra on X, and En ∈ A for n ∈ N. Prove that

A B {x ∈ X : x ∈ En i.o. }

and
B B {x ∈ X : x ∈ En a.a. }

are both in A.

� Definition 7 (Characteristic Function)
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Let E ⊆ X. We call the function

χE(x) �


1 x ∈ E

0 x < E

the characteristic function of E.

� Homework (Homework 2 – A review on limsup and liminf)

Let En ⊆ X for n ∈ N, and

A B {x ∈ X : x ∈ En i.o. }

B B {x ∈ X : x ∈ En a.a. }.

Show that

χA(x) � lim sup
n

χEn (x)

χB(x) � lim inf
n

χEn (x).

Remark 2.1.3

Due to the above result, some people write

A � lim sup En

B � lim inf En . �

2.2 Measures

� Definition 8 (Measure)

Let X be a set and A a σ-algebra of subsets of X. A function µ : A →
[0,∞] is called a measure on A provided that:

1. µ(∅) � 0; and
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2. if En ∈ A for each n ∈ N, and {En} is disjoint, we have

µ

(⋃
n

En

)
�

∑
n

µ(En).
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3.1 Measures (Continued)

� Definition 9 (Measure Space)

Let X be a set,M a σ-algebra of subsets of X and µ : M→ [0,∞]. We call
the 3-tuple (X,M, µ) a measure space.

Remark 3.1.1

If µ(X) � 1, we also call (X,M, µ) a probability space, and µ is called a
probability measure. �

Example 3.1.1

1. (Counting Measure) Let X be a set andM � P(X). For E ∈ M,
define

µ(E) �

|E | E is finite

∞ otherwise
.

We verify that µ is indeed a measure:

(a) We have that µ(∅) � |∅| � 0.

(b) Let {En}∞n�1 ⊆ M be a pairwise disjoint set. Notice that if any of
the sets are infinite, say EN0 is infinite, then

µ(EN0) � ∞ �
��EN0

�� .
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Since
⋃∞

n�1 En is infinite in this case, we have

µ

( ∞⋃
n�1

En

)
� ∞ �

����� ∞⋃
n�1

En

����� .
On the other hand, if all the sets are finite, then since the En ’s are
disjoint, we have

µ

( ∞⋃
n�1

En

)
�

����� ∞⋃
n�1

En

����� � ∞∑
n�1

|En | �
∞∑

n�1
µ(En).

We call µ a counting measure.

2. Let X be an uncountable set. Recall that in Example 1.2.1, we
showed that

M B {A ⊆ X | A is countable or co-countable }

is a σ-algebra. There are many measures that we can define on this
σ-algebra. For instance,

ν(E) �


0 E is countable

1 E is uncountable
,

and

δ(E) �


0 E is countable

∞ E is uncountable
.

Verifying that both ν and δ are indeed measures shall be left to the
reader as a straightforward exercise.

3. Let’s make a non-example. Let X be an infinite set, andM � P(X).
Define

µ(E) �


0 E is finite

∞ E is infinite
.

Consider X � N and a sequence of sets with singletons,

En � {2n + 1}, for n ∈ N.
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Clearly,
∞⋃

n�1
En � set of all odd numbers ,

and clearly

µ

( ∞⋃
n�1

En

)
� ∞.

However, notice that

µ(En) � 0 for each n ∈ N.

Since each of the En ’s are pairwise disjoint, we should have

∞ � µ

( ∞⋃
n�1

En

)
�

∞∑
n�1

µ(En) � 0,

which is impossible. Thus µ is not a measure. �

Remark 3.1.2 (Finite additivity)

Given a finite set of pairwise disjoint sets {En}N
n�1 ⊆ M for some σ-algebra

M of some set X. By the definition of a σ-algebra, we may set En � ∅ for
n > N . Then

µ

(
N⋃

n�1
En

)
� µ

( ∞⋃
n�1

En

)
�

∞∑
n�1

µ(En) �
N∑

n�1
µ(En).

We call this the finite additivity of a measure. �

� Definition 10 (Finitivity, σ-finitivity, and Semi-finitivity of a
Measure)

Let (X,M, µ) be a measure space.

1. We say that µ is finite if µ(E) < ∞ for every E ∈ M.

2. If X �
⋃∞

n�1 Xn with Xn ∈ M, we say that µ is σ-finite if

µ(Xn) < ∞ for every n ∈ N.

3. We say that µ is semi-finite if for every E ∈ M with µ(E) � ∞,
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∃F ⊆ E ∈ M such that
0 < µ(F) < ∞.

Exercise 3.1.1

1. Show that the counting measure is finite iff the ambient space X is a finite
set.

2. Show that δ in Example 3.1.1 is neither finite, σ-finite, nor semi-finite.

�Theorem 5 (Properties of a Measure)

Let (X,M, µ) be a measure space. Then

1. (Monotonicity) If E ⊆ F and E, F ∈ M, then µ(E) ≤ µ(F).

2. (Subadditivity) If {En}∞n�1 ⊆ M, then

µ

(⋃
n

En

)
≤

∑
n

µ(En).

3. (Continuity from below) If {En}∞n�1 ⊆ M is an increasing sequence
of sets, i.e.

E1 ⊆ E2 ⊆ . . . ⊆ En ⊆ . . . ,

then

µ

( ∞⋃
n�1

En

)
� lim

n→∞
µ(En).

4. (Continuity from above) If {En}∞n�1 ⊆ M is a decreasing sequence of
sets, i.e.

E1 ⊇ E2 ⊇ . . . ⊇ En ⊇ . . . ,

and ∃n0 ∈ N such that µ(En0) < ∞, then

µ

( ∞⋂
n�1

En

)
� lim

n→∞
µ(En).

Remark 3.1.3 (A comment on the condition for the 4th statement)
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It may seem that the extra condition of a finite measure seem extravagant.
However, it is necessary, as demonstrated below.

Consider X � N, with µ as the counting measure. Then, consider the
sequence of sets

E1 � {1, 2, 3, . . .},

E2 � {2, 3, 4, . . .},

E3 � {3, 4, 5, . . .},
...

En � {n, n + 1, n + 2, . . .},
...

Then
⋂∞

n�1 En � ∅, which then µ
(⋂∞

n�1 En
)
� 0. However,

µ(En) � ∞ for each n ∈ N. �

� Homework (Homework 3)

Let (X,M, µ) be a measure space. Let {En}∞n�1 ⊆ M, and

A B {x ∈ X | x ∈ En i.o. }.

Prove that
∑∞

n�1 µ(En) < ∞ implies that µ(A) � 0.
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4.1 Measures (Continued 2)

We shall now prove �Theorem 5.

� Proof

1. Notice that
F � (F ∩ E) ∪ (F \ E),

and F ∩ E and F \ E are disjoint. Thus

µ(F) � µ(F ∩ E)+ µ(F \ E) � µ(E)+ µ(F \ E).

Since µ(F \ E) ≥ 0, we have

µ(F) ≥ µ(E).

2. Consider a sequence of sets defined as such: 1 1 � This is a common technique in mea-
sure theory. We will see this repeatedly
so in this course.

F1 � E1

F2 � E2 \ E1

...

Fn � En \
n−1⋃
j�1

E j .

First, note that Fn ⊆ En for each n ∈ N. So by the last part, we
have

µ(Fn) ≤ µ(En) for each n ∈ N.
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Secondly,
∞⋃

n�1
Fn �

∞⋃
n�1

En .

Also, {Fn}∞n�1 is a pairwise disjoint collection of sets. It follows
that

µ

( ∞⋃
n�1

En

)
� µ

( ∞⋃
n�1

Fn

)
�

∞∑
n�1

µ(Fn) ≤
∞∑

n�1
µ(En).

3. Consider a sequence of sets defined as such:

F1 � E1

F2 � E2 \ E1

F3 � E3 \ E2

...

Fn � En \ En−1.

We see that

• ⋃∞
n�1 Fn �

⋃∞
n�1 En ;

• ⋃N
n�1 Fn �

⋃N
n�1 En � EN ; and

• {Fn}n is a collection pairwise disjoint sets.

Thus we have

µ

( ∞⋃
n�1

En

)
� µ

( ∞⋃
n�1

Fn

)
�

∞∑
n�1

µ(Fn)

� lim
N→∞

N∑
n�1

µ(Fn) � lim
N→∞

µ

(
N⋃

n�1
Fn

)
� lim

N→∞
µ(EN ).

4. First, it is important that we notice that

∞⋂
n�1

En �

∞⋂
n�m

En

for any m ∈ N, since {En}n is a decreasing sequence of sets.

Suppose n0 ∈ N is such that µ(En0) < ∞. Consider a sequence of
sets defined as follows: for n0 ≤ j ∈ N, we let F j � En0 \ E j . Then
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we have
∅ � Fn0 ⊆ Fn0+1 ⊆ . . . ⊆ Fn0+k ⊆ . . . ,

i.e. {Fn}∞n�n0 is an increasing sequence of sets. By the last part, we
have

µ

( ∞⋃
n�n0

Fn

)
� lim

n→∞
µ(Fn0+n) � lim

n→∞
µ(En0 \ En0+n)

� µ(En0) − lim
n→∞

µ(En0+n)

� µ(En0) − lim
n→∞

µ(En).

Furthermore, we observe that

∞⋃
n�1

Fn � En0 \
∞⋂

n�n0

En .

Thus

µ

( ∞⋃
n�n0

Fn

)
� µ

(
En0 \

∞⋂
n�n0

En

)
� µ(En0) − µ

( ∞⋂
n�n0

En

)
� µ(En0) − µ

( ∞⋂
n�1

En

)
.

It follows that indeed

µ

( ∞⋂
n�1

En

)
� lim

n→∞
µ(En). �

Exercise 4.1.1

Let (X,M, µ) be a measure space. Show that

1. µ is finite iff µ(X) < ∞.

2. µ is σ-finite implies that µ is semi-finite.

� Solution

1. This is rather simple.

( �⇒ ) µ is finite implies that each E ∈ M has a finite measure. In
particular, X ∈ M, and so µ(X) < ∞.
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( ⇐� ) ∀E ∈ M, E ⊆ X, thus by the first item in �Theorem 5, we
have µ(E) ≤ µ(X) < ∞. Thus µ is finite.

2. µ being σ-finite means that if X �
⋃∞

n�1 Xn where Xn ∈ M, then
µ(Xn) < ∞ for each n. Let E ∈ M such that µ(E) � ∞. If we take

En � Xn ∩ E,

then µ(En) < ∞ for each n ∈ N. Then, taking a union of any
finite number of these En ’s will give us a subset of E with a finite
measure. Hence, µ is indeed semi-finite. ◎

� Definition 11 (Null Set of a Measure)

Let (X,M, µ) be a measure space. The set

N B {N ∈ M : µ(N) � 0}

is called the µ-null set, or the null set of the measure µ.

Remark 4.1.1

1. If N j ∈ N , then
⋃∞

n�1 N j ∈ N . 2 2 Requires elab

2. If N ∈ N , and E ∈ M and E ⊆ N , then E ∈ N .

It is important to note there that the highlighted condition is required,
since not all subsets of N are measurable.

3. N is not a σ-algebra. If we picked an X such that µ(X) , 0, then ∅ ∈ N
but X < N . �

� Definition 12 (Complete Measure Space)

Let (X,M, µ) be a measure space. We say that the space is complete if
N ∈ N and E ⊆ N , then E ∈ M. In this case, we also say that µ is a
complete measure onM.
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Remark 4.1.2

By the first item in �Theorem 5, we have that if µ(E) � 0, and so E ∈ N as
well. �

�Theorem 6 (Extending the Measurable Sets)

Let (X,M, µ) be a measure space and

N B {N ∈ M | µ(N) � 0}.

Consider
M B {E ∪ F | E ∈ M, F ⊆ N ∈ N}.

ThenM is a σ-algebra which containsM. Furthermore, if we define µ :

M→ [0,∞] as
µ(E ∪ F) � µ(E),

then µ is a well-defined measure onM.

Moreover, if ν : M → [0,∞] is any measure such that ν(E) � µ(E) for
all E ∈ M, then ν � µ.
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� Proof (Extending the Measurable Sets)

M is a σ-algebra Since ∅ ∈ M and ∅ ⊆ N for any N ∈ N , it is clear
that ∅ ∈ M.

Now, for E ∪ F ∈ M, if we suppose F ⊆ N ∈ N , then

(E ∪ F)C
� (E ∪ N)C ∪ (N \ E ∪ F) ∈ M

since E ∪ N ∈ M and N \ (E ∪ F) ∈ N .

Let {En ∪ Fn}∞n�1 ⊆ M. Then we observe that

∞⋃
n�1

(En ∪ Fn) �
∞⋃

n�1
En︸︷︷︸

∈M

∪
∞⋃

n�1
Fn︸︷︷︸

∈N

∈ M.

Well-definedness of µ Let E1 ∪ F1 � E2 ∪ F2 ∈ M. Suppose F1 ⊆
N1, F2 ⊆ N2 ∈ N . WTS

µ(E1) � µ(E1 ∪ F1) � µ(E2 ∪ F2) � µ(E2)

Notice that
E1 ⊆ E1 ∪ F1 � E2 ∪ F2 ⊆ E2 ∪ N2,

and
E2 ⊆ E2 ∪ F2 � E1 ∪ F1 ⊆ E1 ∪ N1.
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By �Theorem 5, in particular, by subadditivity, we have that

µ(E1) ≤ µ(E2 ∪ N2) ≤ µ(E2)+ 0 � µ(E2)

and
µ(E2) ≤ µ(E1 ∪ N1) ≤ µ(E1)+ 0 � µ(E1).

It follows that µ(E1) � µ(E2), as required.

µ is a measure

1. Since ∅ ∈ M and ∅ ∈ N , µ is defined for ∅, and

µ(∅) � µ(∅) � 0.

2. Let {En ∪ Fn}∞n�1 ⊆ M be a pairwise disjoint collection. We
observe that

µ

( ∞⋃
n�1

(En ∪ Fn)
)
� µ

( ∞⋃
n�1

En ∪
∞⋃

n�1
Fn

)
� µ

( ∞⋃
n�1

En

)
�

∞∑
n�1

µ(En),

and

∞∑
n�1

µ(En ∪ Fn) �
∞∑

n�1
µ(En).

Hence

µ

( ∞⋃
n�1

(En ∪ Fn)
)
�

∞∑
n�1

µ(En ∪ Fn).

ν � µ Let E ∪ F ∈ M. Suppose F ⊆ N ∈ M By monotonicity,

µ(E ∪ F) � µ(E) � ν(E) ≤ ν(E ∪ F).

By subadditivity,

ν(E∪F) ≤ ν(E)+ ν(F) ≤ µ(E)+ ν(N) ≤ µ(E∪F)+µ(N) � µ(E∪F)+0.
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Thus, indeed,
ν(E ∪ F) � µ(E ∪ F). �

5.2 The Outer Measure

In this section, we will show that one way we can construct a measure
is by using an outer measure.

� Definition 13 (Outer Measure)

Given a set X, a function

µ∗ : P(X) �⇒ [0,∞]

is called an outer measure if

1. µ∗(∅) � 0;

2. (monotonicity) if E ⊆ F, then µ∗(E) ≤ µ∗(F); and

3. (countable subadditivity) if {An}n ⊆ P(X), then

µ∗

( ∞⋃
n�1

An

)
≤

∞∑
n�1

µ∗(An).

Coming from PMATH450, we have seen an example of an outer
measure.

� Proposition 7 (Lebesgue’s Outer Measure)

Given E ⊆ R, consider

µ∗(E) B inf

{ ∞∑
n�1

(bn − an) : E ⊆
∞⋃

n�1
(an , bn)

}
.

µ∗ is Lebesgue’s outer measure.
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� Proof

1. It is clear that µ∗(∅) � ∅, since we can pick all (an , bn) � ∅.

2. Suppose A ⊆ B ⊆ R. It is clear that any collection of intervals
whose union contain B will contain A, but there are such collec-
tions for A that do not contain B. This means that

µ∗(A) ≤ µ∗(B)

by the property of the infimum.

3. Let E �
⋃∞

i�1 Ei . WTS µ∗(E) ≤ ∑∞
i�1 µ

∗(Ei).

Now if µ∗(Ei) � ∞ for any i, then the inequality is trivially true.
Thus, wma µ∗(Ei) < ∞ for all i.

1 Let ε > 0. By the definition of the infimum, for each i, we 1 This is also a common trick in measure
theory.

can pick a countable sequence {(a i
n , b i

n)}∞n�1 ⊆ P(X) such that
E1 ⊆ ⋃∞

n�1(a i
n , b i

n) and

∞∑
n�1

(b i
n − a i

n) ≤ µ∗(Ei)+
ε

2i .

Then

E �

∞⋃
i�1

Ei �

∞⋃
i�1

∞⋃
n�1

(a i
n , b i

n).

And so it follows that

µ∗(E) ≤
∞∑

i�1

∞∑
n�1

(b i
n − a i

n)

≤
∞∑

i�1
µ∗(Ei)+

∞∑
i�1

ε

2i

�

∞∑
i�1

µ∗(Ei)+ ε.

Since ε was arbitrary, it follows that

µ∗(E) ≤
∞∑

i�1
µ∗(Ei). �

Exercise 5.2.1
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Show that had we defined Lebesgue’s outer measure with closed intervals, i.e.

µ̃∗(E) B inf

{ ∞∑
n�1

(bn − an) : E ⊆
∞⋃

n�1
[an , bn]

}
,

µ̃∗ is still an outer measure.

In fact, we can do so for half-open intervals.

Example 5.2.1 (Lebesgue-Stieltjes Outer Measure)

Let F : R → R be an increasing function that is continuous from the
right. Let

µ∗(E) B inf

{ ∞∑
n�1

(F(bn) − F(an)) : E ⊆
∞⋃

n�1
(an , bn]

}
.

Then µ∗ is an outer measure. �

Remark 5.2.1

Again, we could have defined the above outer measure using open or closed
intervals. �

Example 5.2.2 (Lebesgue’s Outer Measure on R2)

Let E ⊆ R2, and

µ∗(E) B inf

{ ∞∑
n�1

A(Rn) : E ⊆
∞⋃

n�1
Rn

}
,

where A is the ‘area’ function, and Rn � (an , bn) × (cn , dn) are open
rectangles. Then µ∗ is an outer measure. �

Remark 5.2.2

1. Again, we can define the above outer measure using closed rectangles, or
half-open rectangles.

2. We can continue defining an outer measure for R3 using cubes, for R4

using hypercubes, and so on. �

We want to now show that given an outer measure, we can always
construct a measure. This is known as Carathéodory’s Theorem.
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This requires the following definition:

� Definition 14 (µ∗-measurability)

A set A ⊆ X is said to be µ∗-measurable if ∀E ⊆ X,

µ∗(E) � µ∗(E ∩ A)+ µ∗(E ∩ AC).

Remark 5.2.3

1. By subadditivity, we always have

µ∗(E) ≤ µ∗(E ∩ A)+ µ∗(E ∩ AC),

since E � (E ∩ A) ∪ (E ∩ AC).

2. Note that E ∩ AC � E \ A. In a sense, A is said to be µ∗-measurable if it
can slice any subset of X such that we have additivity of the sliced parts.
We may also say that A is a ‘universal slicer’. �

�Theorem 8 (Carathéodory’s Theorem)

If µ∗ is an outer measure on a set X, let

M B {A ⊆ X : A is µ∗-measureable}.

ThenM is a σ-algebra, and we set

µ : M→ [0,∞]

such that
µ(A) � µ∗(A).

Then µ is a complete measure onM.
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6.1 The Outer Measure (Continued)

� Homework (Homework 4)

LetM be an algebra of sets on X, and whenever {An}n∈N ⊆ M is a
disjoint collection of sets, then

⋃
n An ∈ M. ThenM is a σ-algebra.

� Homework (Homework 5)

Recall that Lebesgue’s Outer Measure on R is defined as

µ∗(E) B inf

{ ∞∑
n�1

(bn − an) : E ⊆
∞⋃

n�1
(an , bn)

}
.

Prove that we can equivalently define

µ∗(E) B inf

{ ∞∑
n�1

(bn − an) : E ⊆
∞⋃

n�1
(an , bn]

}
.

Similarly, Lebesgue’s Outer Measure on R2 is defined as

µ∗
2(E) � inf

{ ∞∑
n�1

(bn − an)(dn − cn) : E ⊆
∞⋃

n�1
(an , bn) × (cn , dn)

}
.

Prove that we can equivalently define

µ∗
2(E) � inf

{ ∞∑
n�1

(bn − an)(dn − cn) : E ⊆
∞⋃

n�1
(an , bn] × (cn , dn]

}
.
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� Definition 15 (Metric Outer Measure)

Let (X, d) be a metric space, and A, B ⊆ X, and

d(A, B) � inf
{

d(x, y) : x ∈ A, y ∈ B
}

.

An outer measure, µ∗, on X is called a metric outer measure if whenever
d(A, B) > 0, then

µ∗(A ∪ B) � µ∗(A)+ µ∗(B).

� Homework (Homework 6)

Prove that Lebesgue’s Outer Measure on R is a metric outer measure.

� Proof (Carathéodory’s Theorem)

M is a σ-algebra
∅ ∈ M Given any E ⊆ X, we observe that

µ∗(E ∩ ∅)+ µ∗(E ∩ ∅C) � µ∗(∅)+ µ∗(E ∩ X)

� 0+ µ∗(E) � µ∗(E).

A ∈ M �⇒ AC ∈ M Observe that given any E ⊆ X,

µ∗(E ∩ AC)+ µ∗(E ∩ (AC)C) � µ∗(E ∩ AC)+ µ∗(E ∩ A) � µ∗(E).

Thus AC ∈ M.

1 To show thatM is closed under countable unions, we break the 1 For a deep dive, see Appendix A.1.

work into several steps.

A, B ∈ M �⇒ A ∪ B ∈ M Since A ∈ M, we have

µ∗(E) � µ∗(E ∩ A)+ µ∗(E ∩ AC).
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Since B ∈ M,

µ∗(E) � µ∗(E ∩ A)+ µ∗(E ∩ AC)

� µ∗(E ∩ A ∩ B)+ µ∗(E ∩ A ∩ BC)

+ µ∗(E ∩ AC ∩ B)+ µ∗(E ∩ AC ∩ BC)

� µ∗(E ∩ A ∩ B)+ µ∗(E ∩ A ∩ BC)

+ µ∗(E ∩ AC ∩ B)+ µ∗(E ∩ (A ∪ B)C)

Notice that

E ∩ (A ∪ B) � [E ∩ A ∩ B] ·∪[E ∩ AC ∩ B] ·∪[E ∩ A ∩ BC].

Thus

µ∗(E) � µ∗(E ∩ A)+ µ∗(E ∩ AC)

� µ∗(E ∩ A ∩ B)+ µ∗(E ∩ A ∩ BC)

+ µ∗(E ∩ AC ∩ B)+ µ∗(E ∩ (A ∪ B)C)

≥ µ∗(E ∩ (A ∪ B))+ µ∗(E ∩ (A ∪ B)C).

Thus A ∪ B ∈ M.

Consequently, by induction, we have that ∀{An}n ⊆ M,

N⋃
n�1

An ∈ M

for all N ∈ N.

NowM is an algebra of sets. By Homework 4, it suffices for us to
prove the following to show thatM is a σ-algebra of sets.

∀{An}n ⊆ M disjoint, �⇒ Ï
n An ∈ M Let BN �

ÏN
n�1 An . We first

require the following lemma:

∀E ⊆ X, µ∗(E ∩ BN ) � ∑N
n�1 µ

∗(E ∩ An) Notice that for any n ∈ N,
An ∈ M, and so

µ∗(E ∩ BN ) � µ∗(E ∩ BN ∩ An)+ µ∗(E ∩ BN ∩ AC
n )

� µ∗(E ∩ An)+ µ∗(E ∩ BN−1).

The desired result follows by induction. a
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Let B �
Ï∞

n�1 An . Then

µ∗(E ∩ B) ≤
∞∑

n�1
µ∗(E ∩ An)

by subadditivity.

Now BN ⊆ B for each N ∈ N. This implies that BC
N ⊇ BC , and so

by monotonicity,
µ∗(E ∩ BC

N ) ≥ µ∗(E ∩ BC).

Thus, for every N ∈ N,

µ∗(E) � µ∗(E ∩ BN )+ µ∗(E ∩ BC
N )

≥
N∑

n�1
µ∗(E ∩ An)+ µ∗(E ∩ BC).

It follows that

µ∗(E) ≥
∞∑

n�1
µ∗(E ∩ An)+ µ∗(E ∩ BC)

≥ µ∗(E ∩ B)+ µ∗(E ∩ BC).

With Homework 4,M is a σ-algebra.

µ is a measure

• µ(∅) � µ∗(∅) � 0.

• Let {An}n ⊆ M be a disjoint collection of sets, and B �
Ï∞

n�1 An .
Then by a similar argument as the end of the last ‘part’,

µ(B) � µ∗(B)

≥
∞∑

n�1
µ∗(B ∩ An)+ µ∗(B ∩ BC)

�

∞∑
n�1

µ∗(B ∩ An)+ 0

�

∞∑
n�1

µ∗(An) �
∞∑

n�1
µ(An).
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Thus

µ(B) � µ
( ∞×

n�1
An

)
�

∞∑
n�1

µ(An).

µ is complete Let A ∈ N and B ⊆ A. By monotonicity, µ(B) �

µ∗(B) ≤ µ∗(A) � 0. Then

µ∗(E ∩ B)+ µ∗(E ∩ BC) � 0+ µ∗(E ∩ BC) ≤ µ∗(E)

by monotonicity. Thus B ∈ M. Thus µ is complete. �

We would like to make sure that

1. there are many sets that are measurable; and

2. the notion of a measure covers our notion of length.

We shall see this with the Metric Outer Measure, and that the mea-
surable sets is at least the Borel set.

6.2 The Lebesgue-Stieltjes Outer Measure

The Lebesgue-Stieltjes outer measure is motivated by probability
theory. The idea is that we consider the measure space (Ω,M, P),
where Ω is the sample space set,M is a σ-algebra on Ω, and P is the
probability measure, i.e. P(Ω) � 1.

We then define a random variable, which is a function X : Ω→ R.
The cumulative distribution function (cdf) is defined as

FX(t) B P({ω : X(ω) ≤ t}),

and it has these properties:

1. FX is increasing; and

2. FX is right-continuous.

Example 6.2.1

Let Ω � {H, T}, and define the probability measure as

P({H}) � 1
2
� P({T}).
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We can define
X(T) � 0 and X(H) � 1. 1

1

1
2

Figure 6.1: Simple example of a cdf

Then
P({ω : X(ω) � 1}) � P({H}) � 1

2

and
P({ω : X(ω) � 0}) � P({T}) � 1

2
.

In the context of probability, we often see the shorthand

P(X � t) � P({ω : X(ω) � t}). �

� Definition 16 (Lebesgue-Stieltjes Outer Measure)

Let F : R → R be an increasing function that is continuous from the
right. Let

µ∗(E) B inf

{ ∞∑
n�1

(F(bn) − F(an)) : E ⊆
∞⋃

n�1
(an , bn]

}
.

Then µ∗ is an outer measure.

Exercise 6.2.1

We mentioned that the above is indeed an outer measure in Example 5.2.1.
Prove this.
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7.1 The Lebesgue-Stieltjes Outer Measure (Continued)

�Theorem 9 (Carathéodory’s Second Theorem)

Let (X, d) be a metric space, and µ∗ a Metric Outer Measure. Then every
Borel set is µ∗-measurable.

� Proof

By Carathéodory’s Theorem,

M � {A ⊆ X : A is µ∗-measurable}

is a σ-algebra. Then our statement says that B(X) ⊆ M. Thus, it
suffices for us to show that if U ∈ B(X), i.e. if U ⊆ X is open, then
U ∈ M. In particular, WTS ∀E ⊆ X,

µ∗(E) � µ∗(E ∩ U)+ µ∗(E ∩ UC).

Again, by subadditivity,

E � (E ∩ U) ∪ (E ∩ UC) �⇒ µ(E) ≤ µ∗(E ∩ U)+ µ∗(E ∩ UC).

Thus it suffices for us to show that

µ∗(E) ≥ µ∗(E ∩ U)+ µ(E ∩ UC).

Now if µ∗(E) � ∞, this is trivially true. WMA µ∗(E) < ∞.
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1 Consider {Ak}k ⊆ P(X) such that 1 We look at points that get increasingly
closer to the edge of the set E ∩ U, or
in other words, increasingly closer to
E ∩ UC .Ak B

{
x ∈ E ∩ U : d(x, E ∩ UC) ≥ 1

k

}
⊆ E ∩ U.

It is clear that A1 ⊆ A2 ⊆ A3 ⊆ . . ., i.e. {Ak}k is an increasing
sequence of sets. Also,

⋃
k Ak � E ∩ U.

For each k ∈ N, notice that Ak ∪ (E ∩ UC) ⊆ E. Thus by subaddi-
tivity and additivity over disjoint sets, for every k, we have

µ∗(E) ≥ µ∗(Ak ∪ (E ∩ UC)) � µ∗(Ak)+ µ∗(E ∩ UC).

Since {Ak}k is an increasing sequence of sets, it follows that

µ∗(E) ≥ lim
k→∞

µ∗(Ak)+ µ∗(E ∩ UC).

Claim: limk→∞ µ∗(Ak) � µ∗(E ∩ U) Since Ak ⊆ E ∩ U, by subadditiv-
ity,

µ∗(Ak) ≤ µ∗(E ∩ U).

It remains to prove the other inequality.

2 Let D1 � A1, D2 � A2 \ A1, . . .Dn � An \ An−1. Then, notice that 2 This part here requires an escape from
where we already are. If your head is in
the muddle, stop reading, go out, walk,
and then come back.

Here, we ask ourselves: so what if we
look at how much the Ak ’s change as k
increases?

E ∩ U �

⋃
n

Dn � A1 ∪ D2 ∪ D3 ∪ . . .

� A2 ∪ D3 ∪ D4 ∪ . . .

� An ∪ Dn+1 ∪ Dn+2 ∪ . . . ,

since {An} is an increasing sequence of sets. Now for x ∈ Dn , we
have that x ∈ An but x < An−1. 3 In particular, we have 3 We see that the Dn ’s form some kind of

a ring-like partitioning of E ∪ U.
1
n

≤ d(x, E ∩ UC) < 1
n − 1

.

4 Let m ≥ n + 2. Consider y ∈ Dm , x ∈ Dn and z ∈ E ∩ UC . Then 4 Let’s look at putting every odd Dn ’s
together, and see how far apart are they.
Directly looking at Dn ’s altogether is
difficult because then their boundaries
get muddled together.

we know by the triangle inequality that

1
n

≤ d(x, z) ≤ d(x, y)+ d(y, z).
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We may then pick z0 ∈ E ∩ UC such that

d(y, z0) <
1

m − 1
.

Then
1
n

≤ d(x, z0) < d(x, y)+ 1
m − 1

,

and so
1
n
− 1

m − 1
< d(x, y).

Notice that

1
n
− 1

m − 1
≥ 1

n
− 1

n + 2− 1
�

1
n
− 1

n − 1
.

Therefore, ∀x ∈ Dn and y ∈ Dm , we have

1
n
− 1

n − 1
< d(x, y).

In other words,
d(Dn , Dm) > 0

as long as m ≥ n + 2.

Since µ∗ is a Metric Outer Measure, it follows that

µ∗

( ⋃
n odd

Dn

)
�

∑
n odd

µ∗(Dn).

Since D1 ∪ D3 ∪ . . . ⊆ E ∩ U, by subadditivity,

µ∗(D1 ∪ D3 ∪ . . .) ≤ µ∗(E ∩ U) < ∞.

In particular, ∑
n odd

µ∗(Dn) < ∞.

Similarly, we can show that

µ∗

( ⋃
n even

Dn

)
�

∑
n even

µ∗(Dn) < ∞.

Putting the two together, we have

µ∗

(⋃
n

Dn

)
�

∑
n

µ∗(Dn) < ∞.



62 Lecture 7 Sep 18th 2019 The Lebesgue-Stieltjes Outer Measure (Continued)

Finally, since E ∩ U � An ∪ Dn+1 ∪ Dn+2 ∪ . . ., by subadditivity,

µ∗(E ∩ U) ≤ µ∗(An)+ µ∗

(⋃
m>n

Dm

)
� µ∗(An)+

∞∑
m�n+1

µ∗(Dm).

Since
∑

n µ
∗(Dn) < ∞, the tail

∞∑
m�n+1

µ∗(Dm) → 0

as n → ∞. Therefore,

µ∗(E ∩ U) ≤ lim
n→∞

µ∗(An)+ lim
n→∞

∞∑
m�n+1

µ∗(Dm)

� lim
n→∞

µ∗(An),

as required. �

� Proposition 10 (Lebesgue-Stieltjes Outer Measure on Half-
open Intervals)

Let µ∗
F be the Lebesgue-Stieltjes Outer Measure. Then for a < b ∈ R, we

have
µ∗

F((a, b]) � F(b) − F(a).

� Proof

First, notice that (a, b] ⊆ (a, b], and so

µ∗
F((a, b]) ≤ F(b) − F(a)

by definition.

Let ε > 0. Pick a covering (a, b] ⊆ ⋃
n(an , bn] such that∑

n

(F(bn) − F(an)) ≤ µ∗
F((a, b])+ ε.
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By right-continuity of F, we may pick b′n > bn such that

F(b′n) < F(bn)+
ε
2n .

Notice that ∑
n

F(b′n) − F(an) ≤
∑

n

(F(bn)+
ε
2n − F(an))

� ε +
∑

n

(F(bn) − F(an))

≤ µ∗
F((a, b])+ 2ε.

Similarly, we can pick a′ > a such that F(a′) < F(a)+ ε. Then

[a, b] ⊆ (a, b] ⊆
⋃

n

(an , bn] ⊆
⋃

n

(an , b′n).

By compactness, there exists a finite subcover, i.e. ∃N ∈ N such that

[a′, b] ⊆
N⋃

k�1

(ank , b′nk
). �

The proof shall be completed in the next lecture.
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8.1 The Lebesgue-Stieltjes Outer Measure (Continued 2)

� Proof (Lebesgue-Stieltjes Outer Measure on Half-open Inter-
vals continued)

Continuing from before, let us first reorder the finite number of
intervals such that b′n1 ≥ b′n2 ≥ . . ..

Figure 8.1 illustrates what sets do we throw away (labelled T),
what we shall keep (labelled K), and what is impossible (labelled I).

|
a′

|
bank b′nk

K

ank−1 b′nk−1

T

removed since it does not intersect [a′, b]

ank+1 b′nk+1

I

impossible since there are no bni between bnk+1 and bnk

ank+1 b′nk+1

K

anN b′nN

K

aN < a′ for a similar reason b′n1 > b

Figure 8.1: An arbitrary representation
of the finite cover.

Most importantly, we observe that

ank−1 < b′nk
.

Therefore,

∞∑
k�1

F(b′nk
) − F(ank ) ≥

N∑
k�1

F(b′nk
) − F(ank )
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� F(b′1)

>0︷            ︸︸            ︷
−F(a1)+ F(b′2)

>0︷            ︸︸            ︷
−F(a2)+ F(b′3)

+

>0︷       ︸︸       ︷
. . . + F(b′N ) −F(aN )

≥ F(b′1) − F(aN ) ≥ F(b) − F(a′).

It follows that

µ∗
F((a, b])+ 2ε ≥ F(b) − F(a′) ≥ F(b) − (F(a)+ ε),

and so
F(b) − F(a) ≤ µ∗

F((a, b])+ 3ε.

Since ε > 0 is arbitrary, our proof is complete. �

Remark 8.1.1

� Proposition 10 means that the Lebesgue-Stieltjes outer measure falls back
nicely onto our usual notion of length when it comes to intervals. �

� Proposition 11 (The Lebesgue-Stieltjes Outer Measure is a
Metric Outer Measure)

µ∗
F is a Metric Outer Measure.

� Proof

Let δ > 0. For each interval (a, b] ⊆ R such that b − a > δ, we may
break it up so that

(a, b] � (x1, x2] ∪ (x2, x3] ∪ . . . ∪ (xN−1, xN ],

where xi − xi−1 < δ, and x1 � a, xN � b. Notice that

F(b) − F(a) � F(xN ) − F(xN−1)+ F(xN−1) − . . . + Fx2 − F(x1).
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Therefore, given δ > 0, by the definition of µ∗
F , we have that ∀E ⊆ R,

µ∗
F(E) � inf

{ ∞∑
i�1

F(bi) − F(ai) : E ⊆
∞⋃

i�1
(ai , bi], bi − ai < δ

}
.

Now let A, B ⊆ R such that d(A, B) > 2δ > 0. Given any ε > 0, we
can pick a cover A ∪ B ⊆ ⋃

i(ai , bi] with bi − ai < δ such that∑
i

F(bi) − F(aI) ≤ µ∗
F(A ∪ B)+ ε.

Since d(A, B) > 2δ and bi − ai < δ for each i, the following are the
only possible scenarios: for each i,

• A ∩ (ai , bi] � ∅ and B ∩ (ai , bi] � ∅, in which case we choose an
even finer covering of A ∪ B to remove (ai , bi];

• A ∩ (ai , bi] , ∅ and B ∩ (ai , bi] � ∅; and

• A ∩ (ai , bi] � ∅ and B ∩ (ai , bi] , ∅.

We may thus consider the following subsets of indices:

{ik}k∈N � {ik : A ∩ (aik , bik ] , ∅, B ∩ (aik , bik ] � ∅} ⊆ {i}i∈N

{ jl}l∈N � { jl : A ∩ (a jl , b jl ] � ∅, B ∩ (a jl , b jl ] , ∅} ⊆ {i}i∈N.

In particular, we have

A ⊆
∞⋃

k�1

(aik , bik ] and B ⊆
∞⋃

l�1

(a jl , b jl ].

Then by � Proposition 10,

µ∗
F(A) ≤

∞∑
k�1

F(bik ) − F(aik )

µ∗
F(B) ≤

∞∑
l�1

F(b jl ) − F(a jl ).

It follows that

µ∗
F(A)+ µ∗

F(B) ≤
∞∑

k�1

F(bik ) − F(aik )+
∞∑

l�1

F(b jl ) − F(a jl )



68 Lecture 8 Sep 20th 2019 The Lebesgue-Stieltjes Outer Measure (Continued 2)

�

∞∑
i�1

F(bi) − F(ai) ≤ µ∗
F(A ∪ B)+ ε.

Since ε was arbitrary, we have

µ∗
F(A)+ µ∗

F(B) ≤ µ∗
F(A ∪ B)

as required. �

�Theorem 12 (Lebesgue-Stieltjes Theorem by Carathéodory)

Let F : R → R be an increasing function that is right continuous. Let
µ∗

F be the corresponding outer measure. Then the collectionMF of µ∗
F-

measurable sets contains B(R) and µF : MF → [0,∞] is a Complete
Measure Space with

µF((a, b]) � F(b) − F(a).

� Proof

This is a direct result of Carathéodory’s Second Theorem, � Propo-
sition 10, and � Proposition 11. �

Example 8.1.1

When F(x) � x, µF is simply Lebesgue’s measure. �

Example 8.1.2 (Dirac delta measure of a point)

Fix x0 ∈ R. Let

F(x) �


0 x < x0

1 x ≥ x0

.

Notice that

∀b > x0 µF((x0, b]) � F(b) − F(x0) � 1− 1 � 0,
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which then
µF((x0,∞]) � 0.

Also

∀a < x0 µF

( (
a, x0 −

1
n

] )
� F

(
x0 −

1
n

)
− F(a) � 0− 0 � 0,

which then since

(a, x0) �
∞⋃

n�1

(
a, x0 −

1
n

]
,

we have
µF((a, x0)) � 0,

which since this holds for all a < x0,

µF((−∞, x0)) � 0.

However, for a < x0,

µF((a, x0]) � F(x0) − F(a) � 1− 0 � 1.

Furthermore, since

{x0} �
∞⋂

n�1

(
x0 −

1
n

, x0

]
,

by continuity from above,

µF({x0}) � lim
n→∞

µF

(
x0 −

1
n

, x0

]
� 1. �

With the above example in mind, recall the Cantor set

C �

∞⋂
n�1

Cn ,

where Cn � Cn−1 \ Pn , where P is the middle 1/3 of each of the
remaining intervals, with C0 � [0, 1].

We have that the Lebesgue measure of each Cn is

µ(C1) �
1
3

µ(C2) � µ(C1) −
2
9
� 1− 1

3
− 2

9

https://tex.japorized.ink/PMATH450/classnotes.pdf#chapter.5
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µ(C3) �
1
3
− 2

9
− 4

27
...

µ(Cn) � 1− 1
3
− 2

9
− . . . − 2n−1

3n .

Then

µ(C) � 1−
∞∑

n�1

2n−1

3n � 1− 1
3

∞∑
n�1

(
2
3

) n−1

� 1− 1
3
· 1

1− 2
3
� 0.

Cantor Function With the Cantor set, we may construct the famous/in-
famous Cantor function. The Cantor function, which we shall label F,
is defined such that F is

• 1
2 on

( 1
3 , 2

3
)
,

• 1
4 on

( 1
9 , 2

9
)
,

• 3
4 on

( 7
9 , 8

9
)
,

and so on, on each of the removed intervals. We also let F(0) � 0 and
F(1) � 1. Then F is increasing and continuous. Furthermore, F′ � 0 on
all the removed intervals.
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9.1 The Lebesgue-Stieltjes Outer Measure (Continued 3)

Continuing with the Cantor set, we notice that F′(x) � 0 for all x < C.
In particular, the derivative of F exists almost everywhere.

Now for intervals that we have “thrown away”, by Example 8.1.2,
the measure of each of these intervals is 0. However,

µF[0, 1] � F(1) − F(0) � 1.

Since [0, 1] � C ·∪CC , we have that

1 � µF[0, 1] � µF(C)+ µF(CC) � µF(C)+ 0,

and so
µF(C) � 1.

Remark 9.1.1

On Rk , we can define a k-dimensional Lebesgue outer measure µ∗
F by cover-

ing sets with “boxes” such as

Rk � (a1, b1) × . . . × (ak , bk),

where
Vol(Rk) � (b1 − a1) . . . (bk − ak).

Thus

µ∗
k(E) B inf

{∑
Vol(Rk) : E ⊆

⋃
k

Rk

}
.

Exercise 9.1.1
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Show that µ∗
k(E) for each k ≥ 2 is a metric outer measure.

Applying Carathéodory’s theorems, we get the k-dimensional measure, and
we know that B(Rk) are all measurable. �

�Theorem 13 (A Measure Constructed By Another Measure)

Let µ : B(R) → [0,∞] be a measure with

∀a, b ∈ R µ((a, b]) < ∞.

Define

F(x) B


µ((0, x]) x > 0

0 x � 0

−µ((x, 0]) x < 0

.

Then F is increasing and right-continuous. Furthermore, µ(A) � µF(A)
for all A ∈ B(R).

� Proof

F is increasing
0 ≤ x < y

Notice that (0, x] ⊆ (0, y]. Thus by subadditivity,

F(x) � µ(0, x] ≤ µ(0, y] � F(y).

x < y ≤ 0
Observe that

(x, 0] ⊇ (y, 0],

and so subadditivity dictates that

µ(x, 0] ≥ µ(y, 0].

Thus
F(x) � −µ(x, 0] ≤ −µ(y, 0] � F(y).
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F is right-continuous
0 ≤ x

Consider a sequence xn ↘ x. 1 Then notice that 1 We write xn ↘ x to mean that {xn}n
is a sequence such that x < xn and
limn→∞ xn � x.

(0, x] �
∞⋂

n�1
(0, xn],

and
(0, xn] ⊇ (0, xn+1],

i.e. {(0, xn]}n is a decreasing sequence of sets. Furthermore, we note
that

µ(0, xn] < ∞

by assumption. Thus, by continuity from above,

F(x) � µ(0, x] � lim
n→∞

µ(0, xn] � lim
n→∞

F(xn).

x < 0
Consider a sequence xn ↘ x. Then, notice that

(x, 0] �
⋃

n

(xn , 0],

and
(xn , 0] ⊆ (xn+1, 0],

I.e. {(xn , 0]}n is an increasing sequence of sets. By continuity from
below,

F(x) � −µ(x, 0] � lim
n→∞

−µ(xn , 0] � lim
n→∞

F(xn).

∀A ∈ B(R) µ(A) � µF(A) Consider the set

A B {A ∈ B(R) : µ(A) � µF(A)} ⊆ B(R).

Now if A is a σ-algebra and contains intervals, then B(R) ⊆ A,
which means B(R) � A, which is equivalent to what we want.

A contains intervals

• Let 0 ≤ a < b ∈ R. Notice that

µ(0, a]+ µ(a, b] � µ(0, b],
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since
(0, a] ·∪(a, b] � (0, b].

Since F(a) � µ(0, a] and F(b) � µ(0, b], it follows that

F(a)+ µ(a, b] � F(b),

and so by � Proposition 10,

µ(a, b] � F(b) − F(a) � µF(a, b].

• Let a < 0 ≤ b ∈ R. Notice that

(a, b] � (a, 0] ·∪(0, b],

and so by � Proposition 10,

µ(a, b] � µ(a, 0]+ µ(0, b] � −F(a)+ F(b) � µF(a, b].

• Let a < b ≤ 0 ∈ R. Notice that

(a, 0] � (a, b] ·∪(b, 0],

and so
µ(a, 0] � µ(a, b]+ µ(b, 0].

By � Proposition 10,

µ(a, b] � µ(a, 0] − µ(b, 0] � −F(a)+ F(b) � µF(a, b].

A is a σ-algebra

• It is clear that
µ(∅) � 0 � µF(∅),

and so ∅ ∈ A.

• Let {An}n ⊆ A be a disjoint collection. Then it is clear that

µ

(⋃
n

An

)
�

∑
n

µ(An) �
∑

n

µF(An) � µF

(⋃
n

An

)
.



PMATH451 — Measure and Integration 75

• Let A ∈ A. Consider an interval (a, b] ⊆ A. Note that

(a, b] � ((a, b] ∩ A) ·∪((a, b] ∩ AC).

So
µ(a, b] � µ((a, b] ∩ A)+ µ((a, b] ∩ AC). (9.1)

Consider an arbitrary covering

(a, b] ∩ A ⊆
⋃

i

(ai , bi].

Then
µ((a, b] ∩ A) ≤

∑
i

µ(ai , bi] �
∑

i

F(bi) − F(ai).

Thus

µ((a, b] ∩ A) ≤ inf

{∑
i

F(bi) − F(ai) : (a, b] ∩ A ⊆
⋃

i

(ai , bi)
}

� µ∗
F((a, b] ∩ A) � µF((a, b] ∩ A).

Similarly, we have

µ((a, b) ∩ AC) ≤ µF((a, b] ∩ AC).

Therefore, going back to Equation (9.1),

µ(a, b] ≤ µF((a, b] ∩ A)+ µF((a, b] ∩ AC)

� µF(a, b] � µ(a, b].

It follows that we must have

µ((a, b] ∩ A) � µF((a, b] ∩ A),

and
µ((a, b] ∩ AC) � µF((a, b] ∩ AC).

In particular, (a, b] ∩ AC ∈ A. Notice that

AC
�

∞×
n�−∞

(n, n + 1] ∩ AC ,

and so since we’ve showed that A is closed under countable
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unions, AC ∈ A.

This concludes the proof. �

9.2 Measurable Functions

We look into so-called measurable functions that shall be our next step
towards the theory of integration.

� Definition 17 (Measurable Space)

Let X , ∅ be a set andM a σ-algebra of subsets of X. We call the pair
(X,M) a measurable space.

� Definition 18 (Measurable Functions)

Let (X,M) and (Y,N) be measurable spaces, and f : X → Y a function.
We say that f is a (M,N)-measurable function, or that f is (M,N)-
measurable, if

∀E ∈ N f −1(E) ∈ M.

Remark 9.2.1

For those who remember contents from real analysis, the definition of a mea-
surable function is similar to the definition of a continuous function on
topological spaces. We shall, in fact, see that their similarity goes beyond than
their definitions. �

� Proposition 14 (Composition of Measurable Functions)

Let (X,M), (Y,N) and (Z,O) be measurable spaces. Suppose

• f : X → Y is (M,N)-measurable; and

• g : Y → Z is (N,O)-measurable.

https://tex.japorized.ink/PMATH351F18/classnotes.pdf#thm.43
https://tex.japorized.ink/PMATH351F18/classnotes.pdf#thm.43
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Then g ◦ f : X → Z is (M,O)-measurable.

� Proof

Let E ∈ O. Then since g−1(E) ∈ N, it follows that

(g ◦ f )−1(E) � f −1(g−1(E)) ∈ M. �

� Proposition 15 (Measurability of a Function Defined on Gener-
ators of the Codomain)

Let (X,M) and (Y,N) be measurable spaces, and let E be the generator of
N. Let f : X → Y. If f −1(E) ∈ M for all E ∈ E, then f is (M,N)-
measurable.

� Proof

Consider
A B {A ∈ N : f −1(A) ∈ M}.

Notice that if A is a σ-algebra, then we must have E ⊆ A, which
then forces A � N.

A is a σ-algebra

• Since E is a σ-algebra, ∅ ∈ E, and so f −1(∅) ∈ M by assumption.
Thus ∅ ∈ A.

• Suppose {An}n ⊆ A a disjoint collection. Notice that since f is a
function, it must be that 2 2 If this is not clear, notice that if some

f −1(An) and f −1(Am) are not disjoint,
then that means An and Am are not
disjoint, or that f is not a function.f −1

(×
n

An

)
�

×
n

f −1(An).
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Since f −1(An) ∈ M andM is a σ-algebra, it follows that

f −1

(×
n

An

)
�

×
n

f −1(An) ∈ M.

Thus
⋃

n An ∈ A.

• Suppose A ∈ A. Notice that f −1(A) ∈ M, and so ( f −1(A))C ∈ M.
We need to show that

f −1(AC) � ( f −1(A))C

But this follows for the same reason as the last point.

It follows that A is a σ-algebra. �

�Corollary 16 (Continuous Functions on Borel Sets are Measur-
able)

Let X and Y be topological spaces, with B(X) and B(Y) as their corre-
sponding Borel sets. Suppose f : X → Y is continuous. Then f is
(B(X),B(Y))-measurable.

� Proof

Let U ∈ B(Y), i.e. U ⊆ Y is an open set. Since f is continuous,
f −1(U) is open in X, i.e. f −1(U) ∈ B(X). Thus f is (B(X),B(Y))-
measurable. Furthermore,

E B {U ⊆ Y : U is open }

generates B(Y). �
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10.1 Measurable Functions (Continued)

� Notation

Let (X,M) be a measurable space. The function f : X → R is said to be
M-measurable, or measurable, when it is (M,B(R))-measurable.

� Proposition 17 (Characteristics ofM-measurable Functions)

Let (X,M) be a measurable space and f : X → R. TFAE:

1. f isM-measurable.

2. ∀a ∈ R f −1((a,∞)) ∈ M.

3. ∀a ∈ R f −1([a,∞)) ∈ M.

4. ∀a ∈ R f −1((−∞, a)) ∈ M.

5. ∀a ∈ R f −1((−∞, a]) ∈ M.

� Proof

We shall only look at (1) ⇐⇒ (2), since the proof for (1) ⇐⇒ (i)
for i � 3, 4, 5 are similar.

(1) �⇒ (2) ∀a ∈ R, since (a,∞) ∈ B(R), it follows byM-measurability



80 Lecture 10 Sep 25th 2019 Measurable Functions (Continued)

of f that
f −1(a,∞) ∈ M.

(2) �⇒ (1) We know that

E B {(a,∞) : a ∈ R}

generates B(R). By assumption ∀E ∈ E, f −1(E) ∈ M. By � Proposi-
tion 15, it follows that f is indeed aM-measurability. �

Remark 10.1.1

When X � R, we say that f : R → R is measurable
⇐⇒ ∀B ∈ B(R) f −1(B) ∈ B(R)
⇐⇒ ∀a ∈ R f −1(a,∞) ∈ B(R).

Let L be the σ-algebra of all Lebesgue measurable sets. f : R → R is said
to be Lebesgue measurable when

∀a ∈ R f −1(a,∞) ∈ L
⇐⇒ ∀B ∈ B(R) f −1(B) ∈ L. �

� Warning

Notice that the last remark can be problematic. Compare what was written
above with � Proposition 14. In particular, notice that for the definition of
a Lebesgue measurable function, instead of requiring f −1(a,∞) ∈ B(R),
we simply required f −1(a,∞) ∈ L. Thus, if we have another function
g : R → R, for f ◦ g to be Lebesgue measurable, we require

( f ◦ g)−1(a,∞) ∈ L.

However, f −1(a,∞) ∈ L, and it is not necessarily true that

g−1( f −1(a,∞)) ∈ L.

There are various examples that show this, typically arising from the Can-
tor Function.
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We go on a little tangent about products of σ-algebras to make our
lives down the road a little easier.

� Definition 19 (Products of σ-algebras)

Let (Y1,N1) and (Y2,N2) be measurable spaces. We define N1 ⊗ N2 to be
the σ-algebra on the Cartesian product Y1 × Y2 as

N1 ⊗N2 B {B1 × B2 : B1 ∈ N1, B2 ∈ N2}.

Remark 10.1.2

We will unofficially call N1 ⊗N2 the tensor product of N1 and N2. �

� Proposition 18 (Tensor Product of B(R)’s)

We have
B(R) ⊗B(R) � B(R2).

� Proof

B(R2) ⊆ B(R) ⊗B(R) Let O ⊆ R2 be open. Then

O � ∪{(r1, s1) × (r2, s2) ⊆ O : r1, r2, s1, s2 ∈ Q},

which means O is a countable union of open sets. Since (r1, s1), (r2, s2) ∈
B(R), it follows that

(r1, s1) × (r2, s2) ∈ B(R) ⊗B(R),

and so O ∈ B(R) ⊗B(R) since B(R) ⊗B(R) is a σ-algebra.

B(R) ⊗B(R) ⊆ B(R2) WTS

∀B1, B2 ∈ B(R) B1 × B2 ∈ B(R2).
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Let
A B {E ⊆ R : E × R ∈ B(R2)}.

If A is a σ-algebra and (a, b) ∈ A for any a < b ∈ R, then B(R) ⊆ A
and we are done.

A is a σ-algebra

• ∅ × R � R ∈ B(R) and so ∅ ∈ A.

• Suppose {En}n ⊆ A is a disjoint collection of sets. Then En × R ∈
B(R2) for each n. Since B(R2) is a σ-algebra, it follows that×

n

(En × R) ∈ B(R2).

Notice that ×
n

(En × R) �
(×

n

En

)
× R.

Therefore
Ï

n En ∈ A.

• Let E ∈ A. Then

EC × R � (E × R)C ∈ B(R2).

Thus EC ∈ A.

∀a, b ∈ R (a, b) × R ∈ A This is indeed true since (a, b) × R is open.

Similarly, we can do the same for

Ã B {F ⊆ R : R × F ∈ B(R2)},

and have B(R) ⊆ Ã.

Let B1, B2 ∈ B(R). So B1 ∈ A and B2 ∈ Ã, and

B1 × R ∈ B(R2) and R × B2 ∈ B(R2).

Therefore
B1 × B2 � (B1 × R) ∩ (R × B2) ∈ B(R2). �

� Proposition 19 (Component-wise Measurability of Functions)
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Let (X,M), (Y1,N1) and (Y2,N2) be measurable functions. Let f1 : X →
Y1 and f2 : X → Y2. Let f : X → (Y1, Y2) such that

f (x) � ( f1(x), f2(x)).

Then f is (M, (N1,N2))-measurable ⇐⇒ f1 is (M,N1)-measurable and
f2 is (M,N2)-measurable.

� Proof

( �⇒ ) Let B1 ∈ N1. WTS f −1
1 (B1) ∈ M. We know B1 × Y2 ∈ N1 ⊗ N2,

and f −1(B1 × Y2) ∈ M since f is (M, (N1,N2))-measurable. Then

x ∈ f −1(B1 × Y2) ⇐⇒ f (x) ∈ B1 × Y2

⇐⇒ ( f1(x), f2(x)) ∈ B1 × Y2

⇐⇒ f1(x) ∈ B1

⇐⇒ x ∈ f −1
1 (B1).

Thus f −1
1 (B1) � f −1(B1 × Y2) ∈ M. Hence f1 is (M,N1)-measurable.

The proof is similar for f2 being (M,N2)-measurable.

( ⇐� ) 1 Let 1 Again, we use the trick of showing
that a cleverly chosen set that has the
property that we want is a σ-algebra.A B {B ⊆ Y1 × Y2 : f −1(B) ∈ M}.

Notice that f is (M, (N1,N2))-measurable iff N1 ⊗N2 ⊆ A.

A is a σ-algebra

• Let B ∈ A. Then f −1(B)C ∈ M. Thus

x ∈ f −1(B)C ⇐⇒ x < f −1(B)

⇐⇒ f (x) < B

⇐⇒ f (x) ∈ BC

⇐⇒ x ∈ f −1(BC).

Thus f −1(BC) � f −1(B)C ∈ M.

• Suppose {Bn}n ⊆ A. Consider {Cn}n ⊆ A where Cn � Bn \⋃n−1
j�1 B j and C1 � B1. Notice that Cn ∈ M for each n. Also, {Cn}n
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is pairwise disjoint. It follows that

f −1

(⋃
n

Bn

)
� f −1

(×
n

Cn

)
�

×
n

f −1(Cn) ∈ M.

This completes the claim.

N1 ⊗N1 ⊆ A WTS ∀B1 ∈ N1 ∀B2 ∈ N2 B1 × B2 ∈ A. We know that
this is true iff

∀B1 ∈ N1 ∀B2 ∈ N2 f −1(B1 × B2) ∈ M.

Notice that

x ∈ f −1
1 (B1) ∧ x ∈ f −1

2 (B2) ⇐⇒ f1(x) ∈ B1 ∧ f2(x) ∈ B2

⇐⇒ ( f1(x), f2(x)) ∈ B1 × B2

⇐⇒ f (x) ∈ B1 × B2

⇐⇒ x ∈ f −1(B1 × B2).

Thus f −1(B1 × B2) � f −1
1 (B1) ∩ f −1

2 (B2) ∈ M. �
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� Homework (Homework 7)

Let F be the cumulative distribution function (cdf) for the flip of a fair
coin. Prove thatMF � P(R). Find and prove a formula for µF(A) for any
A ⊆ R.

� Homework (Homework 8)

Let

Fx0(t) �


0 t < x0

1 x0 ≤ t
.

Let {rn}n be an enumeration of Q. Set

F(x) �
∞∑

n�1

1
2n Frn (x).

Prove

1. F is strictly increasing (I.e. x < y �⇒ F(x) < F(y)) and right
continuous.

2. Find a prove a formula for µ∗
F(A) for any A ∈ MF .

3. ProveMF � P(R).

� Homework (Homework 9)
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Let (X,M) and (Y,N) be measurable spaces. For E ⊆ X × Y, set

Ex B {y ∈ Y : (x, y) ∈ E}.

If E ∈ M ⊗N, prove Ex ∈ N.

11.1 Measurable Functions (Continued 2)

� Definition 20 (Extended Reals)

We define the extended real numbers as

Re B R ∪ {−∞,∞}.

� Note 11.1.1

The Borel set of Re is

B(Re) � {B ⊆ Re : B ∩ R ∈ B(R)}.

� Proposition 20 (Characteristics of (M,B(Re))-measurable
Functions)

Let (X,M) be measurable. Let f : X → Re . TFAE:

1. f is (M,B(Re))-measurable.

2. ∀a ∈ R f −1(a,∞] ∈ M.

3. ∀a ∈ R f −1[a,∞] ∈ M.

4. ∀a ∈ R f −1[−∞, a) ∈ M.

5. ∀a ∈ R f −1[−∞, a] ∈ M.

6. ∀a ∈ R f −1(a,∞) ∈ M and f −1({∞}), f −1({−∞}) ∈ M.
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When any of the above hold, we say that f is measurable to mean that f is
(M,B(Re))-measurable.

� Proof

The proof is similar to that of � Proposition 17. �

� Proposition 21 (Extremas, Supremas and Infimas of Measur-
able Functions)

Let (X,M) be measurable, and { f j : X → Re} j be a sequence of countable
or finite number of functions. If each f j is measurable, then

1. g1(x) � sup j f j(x),

2. g2(x) � inf j f j(x),

3. g3(x) � lim sup j f j(x), and

4. g4(x) � lim inf j f j(x)

are all measurable.

� Proof

We shall prove for (1) and (3), since the proof of (2) and (4) follow
similarly, respectively.

1. Let a ∈ R. Notice that

g1(x) > a ⇐⇒ ∃ j0 f j0(x) > a

⇐⇒ x ∈
∞⋃
j�1

f −1
j (a,∞].

It follows that

g−1
1 (a,∞] �

∞⋃
j�1

f −1
j (a,∞] ∈ M.
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Hence g1 is measurable.

3. Let hk(x) � sup j≥k f j(x). Then {hk}k is a decreasing sequence.
Note that

g3(x) � lim sup
j

f j(x) � lim
k

hk(x) � inf
k

hk(x).

By (1), we know that each hk is measurable. By (2), we know that
infk hk is measurable. Hence, g3 is measurable as desired. �

�Corollary 22 (Min and Max Functions are Measurablee)

Let (X,M) be a measurable space, and f1, f2 : X → Re . Then

max{ f1, f2} and min{ f1, f2}

are both measurable.

� Proof

Note that
max{ f1, f2} � sup{ f1, f2}

and
min{ f1, f2} � inf{ f1, f2}.

The result follows by � Proposition 21. �

�Corollary 23 (Limit points of a Sequence of Measurable Func-
tions forms a Measurable Set)

Let (X,M) be a measurable space. Let { f j : X → R} j . Let

E � {x ∈ X : lim
j

f j(x) exists }.

Then E ∈ M.
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� Proof

First, note that lim j f j(x) exists iff

g3(x) � lim sup
j

f j(x) � lim inf
j

f j(x) � g4(x).

Thus,

E B {x ∈ X : lim
j

f j(x) exists }

� {x ∈ X : g3(x) � g4(x)}

� {x ∈ X : (g3 − g4)(x) � 0}

� (g3 − g4)−1({0}) ∈ M. �

� Definition 21 ( f + and f −)

Let f : X → Re . We define

f +(x) B max{ f (x), 0},

and
f −(x) B max{− f (x), 0}.

Remark 11.1.1

1. We see that f � f + − f −.

2. 1 If f is measurable, then f + and f − are measurable. 1 In what is possibly a statement similar
to � Proposition 19, we can show this.

3.
�� f

�� � f + + f −.

4. f + · f − � 0. �

Recall the Characteristic Function.
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� Proposition 24 (Characteristic Function of Measurable Sets are
Measurable)

Let (X,M) be a measurable set. Suppose A ⊆ X. Then

χA is measurable ⇐⇒ A ∈ M.

� Proof

Notice that

• 1 < a �⇒ χ−1
A (a,∞) � ∅ ∈ M.

• 0 ≤ a ≤ 1 �⇒ χ−1
A (a,∞) � A.

• a < 0 �⇒ χ−1
A (a,∞) � X ∈ M.

Thus, by definition of a measurable function, χA is measurable iff
A ∈ M. �

� Definition 22 (Simple Function)

Let (X,M) be a measurable space. A function f : X → R is called a
simple function if f is measurable and has a finite range.

� Note 11.1.2 (Standard Form of Simple Functions)

Suppose f is simple, say with the range {an}N
n�1 ⊆ R. Since f is measur-

able, we may let

A j B {x : f (x) � a j} � f −1({a j}) ∈ M.

We may then write

f (x) �
N∑

j�1
a jχA j (x), (11.1)

where we note that {A j} is a disjoint partition of X. We call Equa-
tion (11.1) the standard form of f .
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Example 11.1.1

Consider the function f : R → R such that

f � 2χ[0,2] + 3χ[1,3].

The form of f above is not the standard form since [0, 2] ∩ [1, 3] �

[1, 2] , ∅. We may, however, re-express f as

f � 2χ[0,1) + 5χ[1,2] + 3χ(2,3),

which is then a standard form for f . �

�Theorem 25 (Increasing Sequence of Simple Functions Con-
verges an Arbitrary Measurable Function)

Let (X,M) be a measurable space. Let f : X → [0,∞]. Then there exists
simple functions {ϕn}n , such that

0 ≤ ϕ0 ≤ ϕ1 ≤ . . . ≤ f

such that
f (x) � lim

n→∞
ϕn(x).

If f is bounded on E ⊆ X, then ϕn → f uniformly on E.

� Strategy

Let’s consider the bounded case. Let M be the bound on f . We construct ϕ1

by subdividing [0, M] into 2 equal parts, in particular considering

E0 B

{
x : 0 ≤ f (x) ≤ M

2

}
E1 B

{
x :

M
2
< f (x) ≤ M

}
,

and letting
ϕ1 � 0χE0 +

M
2
χE1 ≤ f .

Note that f (x) − ϕ1(x) ≤ M
2 .
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Similarly, we construct ϕ2 by subdividing [0, M] into 4 equal parts

E0 B

{
x : 0 ≤ f (x) ≤ M

4

}
E1 B

{
x :

M
4
< f (x) ≤ M

2

}
E2 B

{
x :

M
2

≤ f (x) < 3M
4

}
E3 B

{
x :

3M
4

≤ f (x) ≤ M
}

,

and letting

ϕ2 � 0χE0 +
M
4
χE1 +

M
2
χE2 +

3M
4
χE3 ≤ f .

Note that f (x) − ϕ2(x) ≤ M
4 and ϕ1 ≤ ϕ2. We can continue doing this for

ϕ3,ϕ4, . . ., and we will show that this gives us what we want.

For the unbounded case, we can use a similar idea but consider

En,k B

{
x :

k
2n ≤ f (x) < k + 1

2n

}
for 0 ≤ k ≤ 22n − 1, and set

E22n B
{

x : f (x) > 2n} .

Then, constructing the ϕn ’s in a manner similar to that in the bounded case,
we can prove the statement.
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12.1 Measurable Functions (Continued 3)

� Proof (Proof for �Theorem 25)

For n ∈ N ∪ {0} and 0 ≤ k ≤ 22n − 1, let

En,k B

{
x :

k
2n ≤ f (x) < k + 1

2n

}
� f −1

[
k
2n , k + 1

2n

)
,

and let
En,22n B {x : f (x) ≥ 2n}.

Then, for each n, we define

ϕn �

22n∑
k�0

k
2n χEn,k ,

which we see that each ϕn is measurable and hence a simple func-
tion. Furthermore, for each n and for all x,

ϕn(x) ≤ f (x).

Note that for x ∈ ⋃22n−1
k�0 En,k , we have�� f (x) − ϕn(x)

�� ≤ 1
2n .

Thus for f (x) , ∞, ϕn(x) → f (x) pointwise. For f (x) � ∞, we must
have x ∈ En,22n , which then ϕn(x) � 2n → ∞ as n → ∞. Thus,
regardless of the value of f (x) for every x, we have ϕn(x) → f (x).

Let ε > 0. Now if f is bounded on some set E, say by f (x) ≤ M
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for all x ∈ E, then as soon as 2N > M for some (large) N � − log2 ε,
we must have that

x ∈
22n−1⋃
k�0

En,k ,

for each n > N . It follows that��ϕn(x) − f (x)
�� ≤ 1

2n <
1

2N � ε.

It follows that ϕn → f uniformly on E. �

12.2 Integration of Non-Negative Functions

� Definition 23 (Integral of a Simple Function)

Let
L+ B { f : X → [0,∞] | f isM-measurable}.

Given ϕ ∈ L+ a simple function, i.e. rangeϕ � {0 ≤ a1 < . . . an}, with
E j B {x : ϕ(x) � a j}, the standard form for ϕ is

ϕ(x) �
n∑

k�1

a jχE j (x).

We define the integral of ϕ as∫
X
ϕ dµ B

n∑
k�1

a jµ(E j),

where we let
0 · (∞) � 0 � (∞) · 0.

If A ∈ M, then we also define∫
A
ϕ dµ B

n∑
k�1

a jµ(E j ∩ A).

� Proposition 26 (Properties of Integrals of Simple Functions)
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Let ϕ,ψ ∈ L+ be simple functions. Then

1. if c ≥ 0, then
∫

X cϕ dµ � c
∫

C ϕ dµ.

2.
∫

X(ϕ + ψ) dµ �
∫

X ϕ dµ +
∫

X ψ dµ.

3. 0 ≤ ϕ ≤ ψ �⇒
∫

X ϕ dµ ≤
∫

X ψ dµ.

4. Fixing ϕ, let

ν(A) �
∫

A
ϕ dµ.

Then ν is a measure onM.

� Proof

1. If c � 0, then ∫
X

0 · ϕ dµ � 0 � 0
∫

X
ϕ dµ.

If c > 0, then for ϕ �
∑

a jχE j ,

cϕ �

∑
ca jχE j ,

which is also a standard form. 1 Thus 1 It is rather important that we note that
this realization that cϕ is a standard
form is important, since it allows us to
then use � Definition 23.

∫
X

cϕ dµ �

∑
ca jχE j � c

∑
a jχE j � c

∫
X
ϕ dµ.

2. Let

ϕ �

n∑
j�0

a jχE j and ψ �

m∑
i�0

biχFi ,

be the standard form for ϕ and ψ respectively. Note that

E1 ·∪E2 ·∪ . . . ·∪En � X and F1 ·∪ F2 ·∪ . . . ·∪ Fm � X.

Thus {E j ∩ Fi}m,n
j�1,i�1 is a pairwise disjoint collection of X, with

n⋃
j�1

m⋃
i�1

E j ∩ Fi � X.

Now on each E j ∩ Fi , we have

ϕ + ψ � a j + bi .
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Thus

ϕ + ψ �

l∑
k�1

ckχGk ,

where
Gk B {x : ϕ(x)+ ψ(x) � ck},

where we note that x ∈ Gk �⇒ x ∈ E j0 ∩ Fi0 for some j0 and i0,
which then

ck � ϕ(x)+ ψ(x) � a j0 + bi0 .

It follows that

Gk B
⋃
j,i
{E j ∩ Fi : a j + bi � ck},

and so
µ(Gk) �

∑
a j+bi�ck

µ(E j ∩ Fi).

Thus ∫
X
(ϕ + ψ) dµ �

l∑
k�1

ckµ(Gk)

�

l∑
k�1

∑
a j+bi�ck

(a j + bi)µ(E j ∩ Fi)

�

n∑
j�1

m∑
i�1

(a j + bi)µ(E j ∩ Fi).

On the other hand,∫
X
ϕ dµ +

∫
X
ψ dµ �

n∑
j�1

a jµ(E j)+
m∑

i�1
biµ(Fi)

�

n∑
j�1

a j

m∑
i�1

µ(E j ∩ Fi)+
m∑

i�1
bi

n∑
j�1

µ(E j ∩ Fi)

�

n∑
j�1

m∑
k�1

(a j + bi)µ(E j ∩ Fi).

Hence ∫
X
(ϕ + ψ) dµ �

∫
X
ϕ dµ +

∫
X
ψ dµ.
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3. Since 0 ≤ ϕ ≤ ψ, the function

γ � ψ − ϕ ≥ 0

is in L+, measurable and clearly simple. In particular, we notice
that

ψ � ϕ + γ.

By (2), it follows that∫
X
ψ dµ �

∫
X
ϕ dµ +

∫
X
γ dµ ≥

∫
X
ϕ dµ.

4. Fix

ϕ �

n∑
j�1

a jχE j .

Then

ν(A) �
∫

A
ϕ dµ �

n∑
j�1

a jµ(E j ∩ A).

Showing that ν is a measure onM

• For A � ∅, we have

ν(∅) �
n∑

j�1
a jµ(E j ∩ ∅) �

n∑
j�1

a jµ(∅) � 0.

• Let A �
ÏN

i�1 Ai . Then

ν(A) �
n∑

j�1
a jµ(E j ∩ A) �

n∑
j�1

a j

[
N∑

i�1
µ(E j ∩ Ai)

]
�

N∑
i�1

n∑
j�1

a jµ(E j ∩ Ai) �
N∑

i�1

∫
Ai

ϕ dµ

�

N∑
i�1

ν(Ai). �

�Corollary 27 (Integral of Simple Functions not in Standard
Form)
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Suppose ϕ ∈ L+ is simple. Suppose we express

ϕ �

n∑
j�1

b jχF j ,

not necessarily in standard form, where b j ≥ 0. Then∫
X
ϕ dµ �

n∑
j�1

b jµ(F j).

� Proof

The proof is similar to that of (2) in � Proposition 26. �
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13.1 Integration

We are now ready to define the integration for an arbitrary measur-
able function.

� Definition 24 (Integral of a Measurable Function)

Let (X,M, µ) be a measure space. Suppose f ∈ L+. We define∫
X

f dµ B sup
{∫

X
ϕ dµ : 0 ≤ ϕ ≤ f , ϕ is simple

}
.

Remark 13.1.1

Notice that for a simple function ϕ, we now have seemingly 2 definitions for
its integral. However, it is not difficult to realize that the 2 definitions agree.
In particular, ϕ itself is one of the simple functions in the set of which we take
the supremum, and in particular ϕ itself is the supremum. �

� Proposition 28 (Properties of the Integral of Measurable Func-
tions)

Let (X,M, µ) be a measure space, and f ∈ L+.

1. If c ≥ 0, then ∫
X

c f dµ � c
∫

X
f dµ.
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2. If g ∈ L+ such that 0 ≤ g ≤ f , then∫
X

g dµ ≤
∫

X
f dµ.

� Proof

1. If c � 0, then ∫
X

0 · f dµ � 0 � 0
∫

X
f dµ.

If c > 0, then∫
X

c f dµ � sup
{∫

X
ϕ dµ : 0 ≤≤ ϕ ≤ c f , ϕ is simple

}
.

But ϕ ≤ c f ⇐⇒ c−1ϕ ≤ f , and ψ B c−1ϕ is simple. In
particular, we can thus have

cψ � ϕ ≤ c f .

Thus ∫
X

c f dµ � sup
{∫

X
ϕ dµ : 0 ≤ ϕ ≤ c f , ϕ is simple

}
� sup

{∫
X

cψ dµ : 0 ≤ cψ ≤ c f , ψ is simple
}

� sup
{

c
∫

X
ψ dµ : 0 ≤ ψ ≤ f , ψ is simple

}
� c sup

{∫
X
ψ dµ : 0 ≤ ψ ≤ f , ψ is simple

}
� c ·

∫
X

f dµ

2. Notice that

{ψ : 0 ≤ ψ ≤ g, ψ is simple } ⊆ {ϕ : 0 ≤ ϕ ≤ f , ϕ is simple }.

Thus∫
X

g dµ � sup
{∫

X
ψ dµ : 0 ≤ ψ ≤ g, ψ is simple

}
≤ sup

{∫
X
ϕ dµ : 0 ≤ ϕ ≤ f , ϕ is simple

}
�

∫
X

f dµ �
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Example 13.1.1

Consider fn � n · χ(
0, 1

n
) . We see that ∀x ∈ R,

lim
n→∞

fn(x) � 0,

i.e. that fn → f ≡ 0 pointwise. However, notice that under the
Lebesgue measure ∫

R

fn dµ � n · 1
n

� 1,

for each n. Thus

lim
n→∞

∫
R

fn dµ � 1 , 0 �

∫
R

lim
n→∞

fn dµ. �

� Warning

The above example shows that the limit of the integral of a sequence of
measurable functions need not be the integral of the limit of the sequence of
measurable functions, i.e. it need not be the case that

lim
n→∞

∫
X

fn dµ �

∫
X

lim
n→∞

fn dµ.

In other words, limits do not behave nicely with our definition of inte-
gration for arbitrary measurable functions.

We shall see that not all hope is loss, and there are indeed some
sequences of functions which have this desirable property.

�Theorem 29 (�Monotone Convergence Theorem (MCT))

Suppose { fn}n ⊆ L+ such that fn ≤ fn+1. Let

f (x) � lim
n→∞

fn(x) � sup
n≥1

fn(x)
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for all x ∈ X. Then∫
X

f dµ � lim
n→∞

∫
X

fn dµ � sup
n≥1

∫
X

fn dµ.

� Proof

By (2) of � Proposition 28, we have that∫
X

fn dµ ≤
∫

X
fn+1 dµ.

Thus we indeed have

lim
n→∞

∫
X

fn dµ � sup
n≥1

∫
X

fn dµ.

It is also easy to see that since fn ≤ f for each n, we have, by the
same reasoning as above∫

X
fn dµ ≤

∫
X

f dµ

for each n, and so
sup
n≥1

∫
X

fn dµ ≤
∫

X
f dµ.

It remains to show that

sup
n≥1

∫
X

fn dµ ≥
∫

X
f dµ.

To do this, fix an α such that 0 < α < 1. Consider a simple
function ϕ such that 0 ≤ ϕ ≤ f . Then ∀x ∈ X, ϕ(x) ≤ f (x). Now let

En B {x : fn(x) ≥ αϕ(x)}.

Notice that not all En � ∅, since ϕ is fixed and limn→∞ fn(x) � f (x)
by assumption. Observe that⋃

n

En � X

and
E1 ⊆ E2 ⊆ . . . .
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Recall that (4) of � Proposition 26 tells us that

ν(E) B
∫

E
αϕ dµ

is a measure, and we know that measures are continuous from
below. It follows that∫

X
αϕ dµ � ν(X) � lim

n→∞
ν(En) � lim

n→∞

∫
En

αϕ dµ.

Now on each En , we know that fn ≥ αϕ. Thus∫
X

fn dµ ≥
∫

En

fn dµ ≥
∫

En

αϕ dµ,

for each n, which then

lim
n→∞

∫
X

fn dµ ≥ lim
n→∞

∫
En

fn dµ �

∫
X
αϕ dµ.

Hence
sup
n≥1

∫
X

fn dµ ≥
∫

X
αϕ dµ

for every simple function ϕ ≤ f . This implies that

sup
n≥1

∫
X

fn dµ ≥ α sup
{∫

X
ϕ dµ : 0 ≤ ϕ ≤ f , ϕ is simple

}
� α

∫
X

f dµ.

Since sup{α : 0 < α < 1} � 1, it follows that

sup
n≥1

∫
X

fn dµ ≥
∫

X
f dµ. �

�Corollary 30 (Addition of Integrals of Measurable Functions)

Let f , g ∈ L+. Then∫
X
( f + g) dµ �

∫
X

f dµ +

∫
X

g dµ.

� Proof
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By �Theorem 25, ∃{ϕn}n , {ψn}n such that

ϕn ↗ f and ψn ↗ g

both pointwise. Clearly then

ϕn + ψn ↗ f + g.

By the MCT, we have∫
X
( f + g) dµ MCT

� sup
n≥1

∫
X
(ϕn + ψn) dµ

� sup
n≥1

(∫
X
ϕn dµ +

∫
X
ψn dµ

)
� sup

n≥1

∫
X
ϕn dµ + sup

n≥1

∫
X
ψn dµ

MCT
�

∫
X

f dµ +

∫
X

g dµ. �

�Corollary 31 (Interchanging Infinite Sums and the Integral
Sign)

Let { fn}n ⊆ L+ and

s(x) �
∞∑

n�1
fn(x).

Then ∫
X

s dµ �

∞∑
n�1

∫
X

fn dµ,

i.e. ∫
X

∞∑
n�1

fn dµ �

∞∑
n�1

∫
X

fn dµ.

� Proof

For each N ∈ N \ {0}, let

sN (x) �
N∑

n�1
fn(x).
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Then since fn ≥ 0, we have that sN ↗ s. By the MCT, we have∫
X

s dµ MCT
� lim

N→∞

∫
X

sN dµ

� lim
N→∞

∫
X

N∑
n�1

fn dµ

� lim
N→∞

N∑
n�1

∫
X

fn dµ

�

∞∑
n�1

∫
X

fn dµ. �

� Definition 25 (Almost Everywhere)

Let (X,M, µ) be a measure space. Let E ∈ M. Let (P) be a property. We
say P holds almost everywhere (a.e.) if the set

B � {x ∈ E : (P) does not hold for x}

has measure zero, i.e. µ(B) � 0.

Example 13.1.2

We say that f � 0 a.e. iff

µ({x : f (x) , 0}) � 0. �

� Proposition 32 (Almost Everywhere Zero Functions have Zero
Integral)

If f ∈ L+, then ∫
X

f dµ � 0 ⇐⇒ f � 0 a.e.

� Proof
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( �⇒ ) Observe that our supposition says that

0 �

∫
X

f dµ � sup
{∫

X
ϕ dµ : 0 ≤ ϕ ≤ f , ϕ is simple

}
.

In particular, this means that ∀ϕ ≤ f simple, we have that
∫

X ϕ dµ �

0. Notice if we write the simple function ϕ as its standard form, i.e.

ϕ �

N∑
n�1

anχEn an ≥ 0,

then

0 �

∫
X
ϕ dµ �

N∑
n�1

anµ(En).

Then if an > 0, we must have µ(En) � 0. On the other hand, if
an � 0, then µ(En) can be anything but it will not contribute to the
sum. In other words,

µ({x : ϕ(x) , 0}) � 0,

and so ϕ � 0 a.e.

Consider ϕn ↗ f pointwise, which we can get from �Theo-
rem 25. By the above argument, for each n, the set

Bn B {x : ϕn(x) , 0}

has measure zero, i.e. µ(Bn) � 0. Let B �
⋃∞

n�1 Bn . Then by subaddi-
tivity,

µ(B) � 0.

For each x < B, we have that ϕn(x) � 0, for every n. Since
ϕn ↗ f , we have that

∀x < B f (x) � 0.

Thus

BC ⊆ {x : f (x) � 0}

�⇒ B ⊇ {x : f (x) , ∅}

�⇒ µ({x : f (x) , 0}) ≤ µ(B) � 0
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�⇒ µ({x : f (x) , 0}) � 0.

( ⇐� ) Since f � 0 a.e., we have

µ({x : f (x) , 0}) � 0.

Let ϕn ↗ f by �Theorem 25. Then ϕn � 0 a.e. Let

ϕn �

∑
j

an, jχEn, j

be the standard form of ϕn for each n. Then if an, j , 0, we must
have µ(En, j) � 0. This implies that∫

X
ϕn dµ �

∑
j

an, jµ(En, j) � 0

for all n . By the MCT, we have∫
X

f dµ � lim
n→∞

∫
X
ϕn dµ � 0. �
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� Homework (Homework 10)

Suppose f : R → R is increasing. Prove that f is B(R)-measurable.

� Homework (Homework 11)

Suppose (X,M, µ) is a measure space, and f ∈ L+. Let {En}n ⊆ M be a
pairwise disjoint set, and E �

⋃
n En . Prove that∫

E
f dµ �

∞∑
n�1

∫
En

f dµ.

� Homework (Homework 12)

Let f : [0, 1] → Re be Lebesgue measurable, f ≥ 0, and
∫
[0,1] f dµ < ∞.

Prove that ∫
[0,1]

xk f (x) dµ→ 0 as k → ∞.

What if
∫
[0,1] f dµ � ∞? Prove that it is still true or give a counter

example.

� Homework (Homework 13)

Suppose F : R → R is increasing and right continuous. Suppose E ∈ M
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with µF(E) < ∞. Given ε > 0, prove that there exists a set

A �

∞⋃
k�1

(ak , bk]

such that
µF((E \ A) ∪ (A \ E)) < ε.

(Note: E4A B (E \ A) ∪ (A \ E) is known as the symmetric difference of
E and A.)

14.1 Integration (Continued)

� Notation

We have used a similar notation earlier on for a sequence of values. We
shall use the same notation for a sequence of functions.

By fn ↗ f a.e., we mean ∃B a set such that µ(B) � 0, such that
∀x < B, we have

f1(x) ≤ f2(x) ≤ . . . ≤ f (x)

and
lim

n→∞
fn(x) � f (x).

�Corollary 33 (Monotone Convergence Theorem (A.E. Ver.))

Let (X,M, µ) be a measure space. Suppose { fn}n ⊆ L+ such that fn ↗ f

a.e. Then
lim

n→∞

∫
X

fn dµ �

∫
X

f dµ.

� Proof

Let B be a set such that µ(B) � 0, such that ∀x < B

f1(x) ≤ f2(x) ≤ . . . ≤ f (x)
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and
lim

n→∞
fn(x) � f (x).

Then we may write
f � f · χBC + f · χB .

By �Corollary 30, we have∫
X

f dµ �

∫
X

f · χBC dµ +

∫
X

f · χB dµ �

∫
X

f · χBC dµ + 0.

Observe that on BC , we have fn · χBC ↗ f · χB . Thus by the
�Monotone Convergence Theorem (MCT)∫

X
f dµ �

∫
X

f · χBC dµ � lim
n→∞

∫
X

fn · χBC dµ.

Finally, observe that∫
X

fn dµ �

∫
X

fn · χBC dµ +

∫
X

fn · χB dµ �

∫
X

fn · χBC dµ + 0.

Thus indeed ∫
X

f dµ � lim
n→∞

fn dµ. �

�Theorem 34 (� Fatou’s Lemma)

Let { fn}n ⊆ L+, and
f (x) � lim inf

n≥1
fn(x)

is measurable. Then∫
X

f dµ �

∫
X

lim inf
n≥1

fn dµ ≤ lim inf
n≥1

∫
X

fn dµ.

� Proof

Let
gk(x) � inf

n≥k
fn(x).
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Then gk ↗ f (x). By �Monotone Convergence Theorem (MCT),∫
X

f dµ � lim
k→∞

∫
X

gk dµ � sup
k≥1

∫
X

gk dµ.

Notice that ∀n ≥ k, by construction, gk ≤ fn . Thus (by � Proposi-
tion 28), ∀n ≥ k, ∫

X
gk dµ ≤

∫
X

fn dµ.

This implies that ∫
X

gk dµ ≤ inf
n≥k

∫
X

fn dµ.

It follows that∫
X

f dµ � sup
k≥1

∫
X

gk dµ ≤ sup
k≥1

inf
n≥k

∫
X

fn dµ � lim inf
n≥1

∫
X

fn dµ. �

Example 14.1.1

Recall our example where

fn � n · χ(
0, 1

n
)

and
lim

n→∞
fn(x) � f (x) � 0.

We see that ∫
X

f dµ � 0 < 1 � lim inf
n≥1

∫
X

fn dµ.

Therefore, we do not always expect an equality to happen vis-a-vis
� Fatou’s Lemma. �

The following propositions have pretentious names, but we will see
why right after looking at them.

� Proposition 35 (Integrable Functions have Value at Infinity
over a Set of Measure Zero)

Let f ∈ L+ and
∫

X f dµ < ∞. Then

µ({x : f (x) � ∞}) � 0.
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� Proof

Let A � {x : f (x) � ∞}. Consider the sequence of simple functions

ϕn � n · χA.

Then when not on A, we have ϕn � 0 ≤ f , and on A, we have
ϕn � n < ∞ � f . Thus ϕn ≤ f . Therefore, ∀n ≥ 1

nµ(A) �
∫

X
ϕn dµ ≤

∫
X

f dµ < ∞.

In particular, ∀n ≥ 1,

µ(A) � 1
n

∫
X

f dµ < ∞.

It follows that
µ(A) � 0. �

� Proposition 36 (Set where the Integrable Function is Strictly
Positive is σ-finite)

Let f ∈ L+ and
∫

X f dµ < ∞. Then {x : f (x) > 0} is σ-finite, 1 i.e. it is 1 This σ-finite has a similar meaning to
the σ-finite we have seen before.expressible as a union of subsets which have finite measure.

� Proof

Let E � {x : f (x) > 0}. Consider En �
{

x : f (x) ≥ 1
n

}
. Then

E �
⋃∞

n�1 En .

For each n ≥ 1, let ϕn �
1
n χEn ≤ f . Then

1
n
µ(En) �

∫
X
ϕn dµ ≤

∫
X

f dµ < ∞.

Hence
µ(En) ≤

1
n

∫
X

f dµ < ∞.

It follows that, indeed, each En has finite measure. �
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14.2 Integration of Real- and Complex-Valued Functions

Let (X,M, µ) be a measure space. Let f : X → Re be measurable.
If we write f � f + − f −, recall that f + and f − are both measurable.
Furthermore,

�� f
�� � f + + f −. We observe that∫

X
f + dµ ≤

∫
X

�� f
�� dµ �

∫
X

f + dµ +

∫
X

f − dµ,

and similarly for f −. Thus∫
X

�� f
�� dµ < ∞ ⇐⇒

∫
X

f + dµ,
∫

X
f − dµ < ∞.

� Definition 26 (Integrable Function)

Let (X,M, µ) be an arbitrary measure space. Let f : X → Re be a
measurable function. We say that f is integrable if∫

X
f + dµ < ∞ and

∫
X

f − dµ < ∞.

Remark 14.2.1

Since f � f + − f −, by �Corollary 30, we have∫
X

f dµ �

∫
X

f + dµ −
∫

X
f − dµ. �

Remark 14.2.2 (On complex functions)

Consider f : X → C ' R2. We know that ∀z � a + ib ∈ C, we may write
z � (a, b) ∈ R2, with

<(z) � a and =(z) � b.

Notice that
|z | �

√
zz �

√
a2 + b2.
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Thus
|a | ≤ |z | and |b | ≤ |z | .

We observe that
|z | � |a + ib | ≤ |a | + |b | � 2 |z | .

Now if we let
f � <( f )+=( f ),

then by a similar line of thought as above,�� f
�� ≤ ��<( f )

��+ ��=( f )
��

� <( f )+ +<( f )− +=( f )+ +=( f )−

≤ 4
�� f

�� .
Then by the same argument that we’ve seen at the beginning of this section,∫

X

�� f
�� dµ

⇐⇒∫
X
<( f )+ dµ,

∫
X
<( f )− dµ,

∫
X
=( f )+ dµ,

∫
X
=( f )− dµ < ∞.

Therefore, we say that f : X → C is integrable if all the above 4 integrals are
finite. In particular, we can set∫

X
f dµ �

∫
X
<( f ) dµ + i

∫
X
=( f ) dµ

�

[∫
X
<( f )+ dµ −

∫
X
<( f )− dµ

]
+ i

[∫
X
=( f )+ dµ −

∫
X
=( f )− dµ

]
.

This shows that it suffices for us to focus on studying real-valued functions
to understand complex-valued functions within our context. �

� Notation

Let (X,M, µ) be a measure space. We write

L1 B { f : X → Re |
∫

X

�� f
�� dµ < ∞},
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and
L1

C
B { f : X → C |

∫
X

�� f
�� dµ < ∞}.

� Proposition 37 (L1 is a Vector Space)

L1 is a vector space. Furthermore, for f , g ∈ L1, we have

1.
∫

X f + g dµ �
∫

X f dµ +
∫

X g dµ.

2. ∀a ∈ R
∫

X a f dµ � a
∫

X f dµ.

Note that this is also true for L1
C

.

� Proof

L1 is a vector space Let f , g ∈ L1. Since
�� f + g

�� ≤ �� f
�� + ��g��, we have

that ∫
X

�� f + g
�� dµ ≤

∫
X

�� f
�� dµ +

∫
X

��g�� dµ < ∞.

Thus f + g ∈ L1.

For any a ∈ R,
��a f

�� � |a |
�� f

��, and so∫
X

��a f
�� dµ � |a |

∫
X

f dµ < ∞.

Thus a f ∈ L1.

Linearity in L1 Let h � h+ − h− � f + g � f + − f − + g+ − g−. Note
f � f + − f − and g � g+ − g−. WTS∫

X
h dµ �

∫
X

f + dµ −
∫

X
f − dµ +

∫
X

g+ dµ −
∫

X
g− dµ.

By rearrangement, we have that

h+
+ f − + g−

� h−
+ f + + g+,

where we rearrange them so that all the functions are now non-
negative. By �Corollary 30, we have 2 2 For sanity, let’s drop the dµ and sub-

script X here. We shall do this when the
context is clear.
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∫
h+

+

∫
f − +

∫
g−

�

∫
h−

+

∫
f + +

∫
g+.

It follows that, indeed,∫
h+ −

∫
h−

�

∫
f + −

∫
f − +

∫
g+ −

∫
g−.

Now for any a ∈ R,

a f � a f + − a f −.

Since ∫
a f �

∫
a f + −

∫
a f −,

and each of the functions on the RHS is non-negative, by � Propo-
sition 28, ∫

a f � a
∫

f + − a
∫

f − � a
∫

f . �

� Proposition 38 (Absolute Value of Integral is Lesser Than
Integral of Absolute Value)

If f ∈ L1, then ����∫
X

f dµ
���� ≤ ∫

X

�� f
�� dµ.

� Proof

Since f � f + − f −, we have����∫ f
���� � ����∫ f + −

∫
f −

���� ≤ ∫
f + +

∫
f − �

∫ �� f
�� . �

� Proposition 39 (Sub-properties of L1 functions)

1. If f ∈ L1, then
{x : f (x) , 0}

is σ-finite.
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2. If f , g ∈ L1, then

∀E ∈ M
∫

E
f dµ �

∫
E

g dµ

⇐⇒
∫

X

�� f − g
�� dµ � 0

⇐⇒ f � g a.e.

Exercise 14.2.1

The proof of (1) in � Proposition 39 is left as an easy exercise of which the
reader may refer to an earlier proof for reference.

We shall prove (2) in the next lecture.
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15.1 Integration of Real- and Complex-Valued Functions (Continued)

� Proof (of (2) in � Proposition 39)

(2) ⇐⇒ (3) We have that∫
X

�� f − g
�� dµ � 0 ⇐⇒

�� f − g
�� � 0 a.e. ⇐⇒ f � g a.e.

(3) �⇒ (1) f � g a.e. means that
∫

E f dµ �
∫

E g dµ for any E ∈ M.

(1) �⇒ (3) Since
∫

E f �
∫

E g for all E ∈ M, in particular, we have
that on

E � {x : f (x) − g(x) > 0} ∈ M,

we have ∫
E
( f − g) dµ � 0.

This means that f � g a.e. on E, i.e.

µ({x ∈ E : f (x) − g(x) > 0}) � 0.

Let E � {x ∈ E : f (x) − g(x) > 0}. Similarly, on

F � {x : f (x) − g(x) < 0} ∈ M,

we have
µ({x ∈ F : g(x) − f (x) > 0}) � 0.
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Let F � {x ∈ F : g(x) − f (x) > 0}. It follows that

µ({x ∈ X : f (x) , g(x)}) ≤ µ(E)+ µ(F ) � 0,

i.e. that f � g a.e. on X. �

�Theorem 40 (� Lebesgue’s Dominated Convergence Theo-
rem)

Let (X,M, µ) be a measure space, { fn}n ⊆ L1 be a sequence of measurable
functions such that fn → f pointwise a.e., where f is also measurable.
Suppose ∃g ∈ L1 such that

∀n ≥ 1
�� fn(x)

�� ≤ g(x) a.e.

Then f ∈ L1 and ∫
X

f dµ � lim
n→∞

∫
X

fn dµ.

� Proof

For each n ≥ 1, we have
�� fn(x)

�� ≤ g(x) a.e.. In particular, fn(x) ≤
g(x) a.e.. Thus f (x) ≤ g(x) a.e. Also, − fn(x) ≤ g(x) a.e. and so
− f (x) ≤ g(x) a.e.. Thus

�� f (x)
�� ≤ g(x) a.e., and so∫

X

�� f
�� dµ ≤

∫
X

g dµ < ∞.

Thus f ∈ L1.

Now, since fn → f pointwise a.e., we also have that g + fn →
g + f pointwise a.e. In particular, by � Fatou’s Lemma,∫

g +

∫
f �

∫
(g + f ) ≤ lim inf

n

∫
(g + fn) �

∫
g + lim inf

n

∫
fn .

Thus ∫
f ≤ lim inf

n

∫
fn .
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Similarly, we have g − fn → g − f pointwise a.e., and so∫
g −

∫
f �

∫
(g − f ) ≤ lim inf

n

∫
(g − fn)

�

∫
g + lim inf

n

(
−

∫
fn

)
�

∫
g − lim sup

n

∫
fn .

Thus ∫
f ≥ lim sup

n

∫
fn .

It follows that

lim sup
n

∫
fn ≤

∫
f ≤ lim inf

n

∫
fn ≤ lim sup

n
fn .

Thus ∫
f � lim sup

n

∫
fn � lim inf

n

∫
fn ,

which implies that the limit exists, and so∫
f � lim

n

∫
fn ,

as desired. �

�Corollary 41 (A Series Convergence Test for Integrable Func-
tions)

Let { fn}n ⊆ L1, and suppose

∞∑
n�1

(∫
X

�� fn
�� dµ

)
< ∞.

Then
∑∞

n�1 fn converges a.e.

If we let f (x) � ∑∞
n�1 fn(x) a.e., then∫

X
f dµ �

∞∑
n�1

∫
X

fn dµ.
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� Proof

Let g(x) � ∑∞
n�1

�� fn(x)
��. 1 For N ≥ 1, let 1 It could be that g(x) � ∞ for some x.

sN (x) �
N∑

n�1

�� fn(x)
�� .

Then sN ↗ g. By the �Monotone Convergence Theorem (MCT),∫
g � lim

N

∫
sN � lim

N

N∑
n�1

∫ �� fn
�� � ∞∑

n�1

∫ �� fn
�� < ∞.

Thus g ∈ L1. By a similar reasoning to � Proposition 35, if we let
N B {x : g(x) � ∞}, then µ(N) � 0. Then for x < N , we have that
g(x) � ∑∞

n�1
�� fn(x)

�� < ∞. Thus
∑∞

n�1 fn(x) converges absolutely on
NC . This implies that

∑∞
n�1 fn(x) converges a.e.

Now set

f (x) �

∑∞

n�1 fn(x) x < N

0 x ∈ N
.

2 Let hN (x) � ∑N
n�1 fn(x) for each N ≥ 1. Then hN → f pointwise 2 We can set f (x) to be anything for

x ∈ N .
a.e.. Observe that |hN | ≤ ∑N

n�1
�� fn

�� ≤ g a.e.. By the � Lebesgue’s
Dominated Convergence Theorem, we have that∫

f � lim
N

∫
hN � lim

N

N∑
n�1

∫
fn �

∞∑
n�1

∫
fn ,

as desired. �

Example 15.1.1

Consider the function

f (x) �


x− 1
2 0 < x < 1

0 otherwise
.

Figure 15.1: Graph of f in Exam-
ple 15.1.1

From PMATH450, since f is bounded on (0, 1), Lebesgue’s integral
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coincides with Riemann’s integral, and so∫
f dµ �

∫ 1

0

1√
x

dx � 2.

Now, let {rn}n be an enumeration of Q. Let

g(x) B
∞∑

n�1

1
2n f (x − rn).

Since g(x) ≥ 0, by the �Monotone Convergence Theorem (MCT),∫
g �

∞∑
n�1

∫
1
2n f (x − rn) �

∞∑
n�1

1
2n · 2 < ∞.

Thus g is integrable. However, g is unbounded on every open inter-
val, and in particular, it is discontinuous at every rational point, with

lim
x→r+n

g(x) � ∞. �

�Theorem 42 (Littlewood’s Second Principle, for a general mea-
sure)

Let (X,M, µ) be a measure space. Let f ∈ L1 and ε > 0. Then there exists
a simple function ϕ ∈ L1 such that∫

X
( f − ϕ) dµ < ε.

If µ � µF is a Lebesgue-Stieltjes measure on R, then there exists a function
g that vanishes outside of a bounded interval such that∫

X

�� f − g
�� dµF < ε.

� Proof

Let f � f + − f −. By �Theorem 25, ∃ϕn ↗ f + and ∃ψn ↗ f −. By
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the �Monotone Convergence Theorem (MCT), we have∫
f + � lim

n

∫
ϕn and

∫
f − � lim

n

∫
ψn .

In particular, we have∫
( f + − ϕn) → 0 and

∫
( f − − ψn) → 0.

This means that

∃N1 ∀n ≥ N1

∫
( f + − ϕn) <

ε
2

∃N2 ∀n ≥ N2

∫
( f − − ψn) <

ε
2

.

Picking N � max{N1, N2}, we have that ∀n ≥ N ,∫ �� f − (ϕ1 − ψn)
�� ≤ ∫ �� f + − ϕn

��+∫ �� f − − ψn
�� < ε.

This completes the first part.

Now suppose µ � µF . By the last part,

ϕ �

N∑
n�1

anχEn

be a simple function such that
∫ �� f − ϕ

�� dµF < ε. By � Home-
work , for each En , let

An �

∞⋃
j�1

(a j , b j],

such that
µF(En4An) <

ε

|an | N
.

3 Consider the simple function 3 This is so that we can get a more well-
understood set, and intervals are quite
well-understood and easy to grasp.

ψ �

∑
n

anχAn .

Then ∫ ��ϕ − ψ
�� dµF ≤

N∑
n�1

|an |
∫

|χEn − χAn | dµF

�

N∑
n�1

|an | µ(En4An) < ε.
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It follows that∫ �� f − ψ
�� dµF ≤

∫ �� f − ϕ
�� dµF +

∫ ��ϕ − ψ
�� dµF < 2ε. �

The details for the rest of this proof shall be left to the reader as
an exercise. Refer to Figure 15.2.

a j b j{

a j b j

δ δ

Figure 15.2: Idea for constructing the
continuous function
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16.1 Riemann Integration VS Lebesgue Integration

We shall take a quick detour into the agreement between Riemann
integration and Lebesgue integration on bounded functions. For fur-
ther details, you may wish to refer to notes on PMATH450. However,
in this section, we shall look at using so-called upper and lower en-
velopes of a function to prove the same result.

� Definition 27 (Step Functions)

A function ϕ : R → R is called a step function if ϕ is simple with
standard form

ϕ �

∑
anχEn ,

where each En is an interval or a singleton.

Recall the � Definition . Given a bounded function f : [a, b] → R,
we shall see that we can equivalently define∫ b

a
f (x) dx � inf

{∫
[a,b]

ϕ dµ : f ≤ ϕ, ϕ step function
}

,

and ∫ b

a
f (x) dx � sup

{∫
[a,b]

ϕ dµ : ϕ ≤ f , ϕ step function
}

.

https://tex.japorized.ink/PMATH450/classnotes.pdf
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We may then say that f is Riemann integrable if∫ b

a
f (x) dx �

∫ b

a
f (x) dx.

We shall call the common value above as the Riemann integral, of
which we shall denote by ∫ b

a
f dx.

� Definition 28 (Upper and Lower Envelopes of a Function)

Let f : [a, b] → R. We define

U f (x) � U(x) � lim
δ↓0

sup��y−x
��≤δ f (y) � max{ f (x), lim sup

y→x
f (y)}

as the upper envelope of f . We define

L f (x) � L(x) � lim
δ↓0

inf��y−x
��≤δ f (y) � min{ f (x), lim inf

y→x
f (y)}

as the lower envelope of f .

� Proposition 43 (Characterization of Continuity with Upper and
Lower Envelopes)

Let f : [a, b] → R. Then U(x) � L(x) iff f is continuous at x.

� Proof

( ⇐� )
f is continuous at x

⇐⇒ f (x) � limy→x f (y)
⇐⇒ lim supy→x f (y) � f (x) � lim infy→x f (y)
�⇒ U(x) � f (x) � L(x).

( �⇒ )
U(x) � L(x)
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⇐⇒ f (x) ≤ U(x) � L(x) ≤ f (x)
⇐⇒

lim sup
y→x

f (y) ≤ U(x) � f (x) � L(x) ≤ lim inf
y→x

f (y) ≤ lim sup
y→x

f (y)

⇐⇒ lim supy→x f (y) � lim infy→x f (y)
⇐⇒ f (x) � limy→x f (y) �

� Proposition 44 (Monotonic Sequence of Step Functions to the
Upper and Lower Envelopes)

Let f : [a, b] → R. Then there exists step functions {ϕn}n such that
ϕn ↗ L, and step functions {ψn}n such that ψn ↘ U. Hence U and L

are measurable.

Exercise 16.1.1

Prove � Proposition 44. Hint: Take a partition of the domain, take refine-
ments, . . . .

�Theorem 45 (Characterization of the Upper and Lower Rie-
mann Integrals of Bounded Functions)

Let (X,M, µ) be a Lebesgue measure space. Let f : [a, b] → R be a
bounded function. Then ∫ b

a
f dx �

∫
[a,b]

U dµ,

and ∫ b

a
f dx �

∫
[a,b]

L dµ.

Exercise 16.1.2

Prove �Theorem 45.
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�Theorem 46 (Agreement of Riemann Integration and Lebesgue
Integration for Bounded Functions)

Let f : [a, b] → R be bounded. Then

1. if f is Riemann integrable, then f is measurable and∫ b

a
f dx �

∫
[a,b]

f dµ.

2. f is Riemann integrable iff

µ({x : f is not continuous at x}) � 0.

� Proof

Will come back to this. �

16.2 Modes of Convergences

� Notation

Consider a sequence of functions { fn}n .

• (Pointwise convergence) We write fn
ptw
→ f if ∀x we have

lim
n

fn(x) � f (x).

• (Almost everywhere pointwise convergence) We write fn
a.e.→ f if

lim
n

fn(x) � f (x)

except for x’s in a set of measure zero.
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• (Uniform convergence) We write fn
unif
→ f if

∀x > 0 ∃N ∈ N ∀x ∀n > N
�� fn(x) − f (x)

�� < ε.

� Definition 29 (L1-convergence)

For fn , f ∈ L1, we say that the fn ’s converge in L1 to f , of which we
denote by

fn
L1

→ f ,

when ∫
X

�� fn − f
�� dµ→ 0.

Example 16.2.1

Consider the Lebesgue measurable space (R,B(R), µ).

1. Let fn �
1
n χ(0,n) for each n, and f ≡ 0. We see that Summary for modes of convergences in

example 1.

fn
ptw
→ 0 fn

a.e.→ 0

fn
unif→ 0 fn 6L

1
→ 0

• fn
ptw
→ 0 (once x > n),

• fn
a.e.→ 0, and

• fn
unif→ 0.

However, ∀n, ∫
X

�� fn − 0
�� dµ �

1
n
· n � 1 → 1.

Thus fn 6L
1

→ 0.

2. Let fn � χ[n,n+1) for each n, and f ≡ 0. We see that Summary for modes of convergences in
example 2.

fn
ptw
→ 0 fn

a.e.→ 0

fn 6unif→ 0 fn 6L
1

→ 0

• fn
ptw
→ 0 (same reason as before), and

• fn
a.e.→ 0.

However, fn 6unif→ 0, since ∀ε > 0 ∀N , ∃x and ∃m > N such that
fm(x) , 0.

Also, for each n, ∫ �� fn − 0
�� dµ � 1 → 1 , 0.



132 Lecture 16 Oct 9th 2019 Modes of Convergences

Thus fn 6L
1

→ 0.

3. Let fn � nχ[
0, 1

n

] for each n, and f ≡ 0. Summary for modes of convergences in
example 3.

fn 6
ptw
→ 0 fn

a.e.→ 0

fn 6unif→ 0 fn 6L
1

→ 0

Then fn 6
ptw
→ 0 since for x � 0, ∀ε > 0, for any N ∈ N, there always

exists n0 > N such that fn0(x) � n0 , 0.

Now notice that the above is only the case for x � 0, and singletons
have measure zero under the Lebesgue measure. Thus fn

a.e.→ 0.

For uniform convergence, by the reason stated for when fn 6
ptw
→ 0,

we know that there is no ‘uniform’ ε > 0 that will give us what is
required for this mode of convergence. Thus fn 6unif→ 0.

For L1-convergence, since for n ≥ 1,∫
[0,1]

fn dµ � n · 1
n

� 1,

we have that ∫
[0,1]

�� fn − 0
�� dµ � 1 → 1 , 0.

Thus fn 6L
1

→ 0.

4. Consider the following sequence of functions of which we have no
nice way to properly express recursively so. Summary for modes of convergences in

example 4.

fn 6
ptw
→ 0 fn 6a.e.→ 0

fn 6unif→ 0 fn
L1
→ 0

f1 � χ[0,1],

f2 � χ[
0, 1

2
] , f3 � χ[ 1

2 ,1
] ,

f4 � χ[
0, 1

4
] , f5 � χ[ 1

4 , 1
2
] , f6 � χ[ 1

2 , 3
4
] , f7 � χ[ 3

4 ,1
] ,

...

(Pointwise convergence) We observe that on any x , 1
2m for any

m ≥ 1, fn(x) → 0. However, on x �
1

2m , for any m ≥ 1, fn(x) � 1.

Thus, it is clear that fn 6
ptw
→ 0.

(Pointwise convergence almost everywhere) 1 1 Requires clarification.
Current belief is that this should

hold, by the reason stated in (Pointwise
convergence), and that µ(Q) � 0.
However, lecture recorded fn 6a.e.→ 0.

(Uniform convergence) We know that there is no ε > 0 such that
fn(x) � 0 for every x by the reason stated in (Pointwise conver-
gence).
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(L1-convergence) We see that indeed∫
[0,1]

fn dµ→ 0,

since the integral of the functions have the form of 1
n , although we

see that the occurrence for each 1
n occurs longer and longer.

Thus fn
L1

→ 0. �

Remark 16.2.1

We see that uniform convergence has no logical relationship with L1-
convergence. �

We introduce a new mode of convergence.

� Definition 30 (Convergence in Measure)

Let (X,M, µ) be a measure space, and fn , f : X → Re be measurable
functions. We say that { fn} converges in measure to f , of which we
denote by

fn
µ
→ f ,

provided that ∀ε > 0, ∃N ∈ N such that ∀n > N

µ({x :
�� fn(x) − f (x)

�� ≥ ε}) < ε,

or equivalently
µ({x :

�� fn(x) − f (x)
�� ≥ ε}) → 0.

Exercise 16.2.1

We look back at the last example. Show that the following are the case with
respect to each of the examples.

1. fn
µ
→ 0

2. fn 6
µ
→ 0

3. fn
µ
→ 0
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4. fn
µ
→ 0
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17.1 Modes of Convergences (Continued)

� Definition 31 (Cauchy in Measure)

Let (X,M, µ) be a measure space, and fn , f : X → Re be measurable
functions. We say that { fn} is Cauchy in measure if ∀ε1, ε2 > 0,
∃N ∈ N such that ∀n, m > N , we have

µ({x :
�� fn(x) − fm(x)

�� ≥ ε1}) < ε2.

� Proposition 47 (L1-convergence implies Convergence in Mea-
sure)

Let (X,M, µ) be a measure space, and fn : X → Re a sequence of

measurable functions. If fn
L1

→ f for some function f , then fn → f in
measure.

� Proof

For any ε > 0 and any n ≥ 1, let

En,ε B {x :
�� fn(x) − f (x)

�� ≥ ε}.
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Then, by assumption, we have that

εµ(En,ε) ≤
∫

En,ε

�� fn − f
�� dµ ≤

∫
X

�� fn − f
�� dµ→ 0.

It follows that indeed

µ(En,ε) → 0 as n → ∞. �

�Theorem 48 (Various results related to convergence in mea-
sure)

Let (X,M, µ) be a measure space, { fn : X → Re}n a sequence of measur-
able functions, and f , g be measurable functions.

1. fn
µ
→ f ∧ fn

µ
→ g �⇒ f � g a.e.

2. { fn}n is Cauchy in measure �⇒ ∃ f : X → Re measurable such that
fn

µ
→ f .

3. fn
µ
→ f in measure �⇒ ∃{ fnk }k ⊆ { fn}n such that fnk

a.e.→ f .

� Proof

1. Suppose fn
µ
→ f and fn

µ
→ g. Let ε > 0. Note that�� f (x) − g(x)

�� ≤ �� f (x) − fn(x)
��+ �� fn(x) − g(x)

�� .
Thus

{x :
�� f (x) − g(x)

�� ≥ ε}

⊆
{

x :
�� f (x) − fn(x)

�� ≥ ε
2

}
∪

{
x :

�� fn(x) − g(x)
�� ≥ ε

2

}
.

By monotonicity,

µ({x :
�� f (x) − g(x)

�� ≥ ε})

≤ µ
({

x :
�� f (x) − fn(x)

�� ≥ ε
2

} )
+ µ

({
x :

�� fn(x) − g(x)
�� ≥ ε

2

} )
.

By our assumption, the terms on the RHS converges to 0 as n →
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∞. It follows that

µ({x :
�� f (x) − g(x)

�� ≥ ε}) � 0

for arbitrary ε > 0.

Now notice that

{x : f (x) , g(x)} ⊆
⋃

n

{
x :

�� f (x) − g(x)
�� > 1

n

}
.

It follows that

µ({x : f (x) , g(x)}) ≤
∑

n

µ

({
x :

�� f (x) − g(x)
�� > 1

n

})
� 0.

Therefore µ({x : f (x) , g(x)}) � 0. Thus f � g a.e.

2. Something’s wrong with the prove given in class. Will confirm.

�

� Homework (Homework 14)

Let (X,M, µ) be a measure space, fn , f : X → Re for n ≥ 1, with fn → f

a.e. Suppose µ(X) < ∞. Furthermore, suppose that there exists an M such
that ∀n ≥ 1,

µ({x :
�� fn(x)

�� ≥ M}) � 0.

1 Prove that 1 We may say that each fn is bounded by
M a.e.

∫
X

f dµ � lim
n

∫
X

fn dµ.

� Homework (Homework 15)

Let (X,M, µ) be a measure space with µ(X) < ∞. Let us say that f ∼ g

when f � g a.e. Let
[ f ] B {g : g ∼ f }.

Let
Y B {[ f ] : f : X → R is measurable }.

Prove that
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1. The function

ρ([ f ], [g]) �
∫

X

�� f − g
��

1+
�� f − g

�� dµ

is a metric on Y.

2. ρ([ fn], [ f ]) → 0 if and only if fn → f in measure.

� Homework (Homework 16 (Generalized Fatou’s Lemma))

Let (X,M, µ) be a measure space, fn , f : X → Re for n ≥ 1, with fn ≥ 0.
If fn → f in measure, then∫

X
f dµ ≤ lim inf

n

∫
X

fn dµ.
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18.1 Modes of Convergences (Continued 2)

�Theorem 49 (Egoroff’s Theorem)

Let (X,M, µ) be a measure space, and µ(X) < ∞. Let fn , f : X → R be
measurable functions. Suppose fn

a.e.→ f . Then given ε > 0, ∃E ∈ M such

that µ(E) < ε with fn
unif
→ f on EC .

� Proof

Suppose fn
a.e.→ f . Let

N B
{

x : fn(x) 6
ptw
→ f (x)

}
be the no-good set. Then X � N ∪ X1, where

X1 B

{
x : fn(x)

ptw
→ f (x)

}
.

Let

En,k B
∞⋃

m�n

{
x ∈ X1 :

�� fm(x) − f (x)
�� ≥ 1

k

}
.

Notice that En,k ⊇ En+1,k and

∞⋂
n�1

En,k � ∅.
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By continuity from above,

lim
n
µ(En,k) � µ(∅) � 0.

Thus we may pick a subsequence nl such that

µ(Enl , l) < ε

2l
.

Let
E �

⋃
l

Enl ,l .

Then by monotonicity and subadditivity of measures,

µ(E) ≤
∑

l

µ(Enl ,l) < ε.

Let ε > 0. Choose L > 0 such that 1
L < ε. Now for any x ∈ EC , we

have
x ∈

⋂
l

EC
nl ,l

.

Note that

EC
nl ,l

�

∞⋂
m�nl

{
x :

�� fm(x) − f (x)
�� ≤ 1

l

}
.

Therefore, for any l > L, for any m ≥ nl , we have�� fm(x) − f (x)
�� ≤ 1

l
<

1
L
< ε.

Therefore, indeed fn
unif→ f on EC . �

18.2 Product Measures

� Note 18.2.1 (Motivation for looking at Product Measures of
σ-finite Measures)

Given measure spaces (X,M, µ) and (Y,N, ν),

1. we want a measure space of the form (X × Y,M ⊗N, λ) where

λ(A × B) � µ(A) · ν(B),
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and

2. to have the measure play nice with integration, in that given a (M ⊗ N)-
measurable function f : X × Y → [0,∞], we want∫

X×Y
f dλ �

∫
Y

[∫
X

f dµ
]

dν

�

∫
X

[∫
Y

f dν
]

dµ.

It turns out that we can always have (1) but not (2). We will not go into
the details of showing for (1) in full detail. However, we can have both
when µ and ν are σ-finite.

� Note 18.2.2 (A sketch of how we can always construct λ)

Given any E ⊆ X × Y, we define the function

λ∗(E) B inf

{∑
n

µ(An) · ν(Bn) : E ⊆
⋃

n

An × Bn , An ∈ M, Bn ∈ N
}

.

Exercise 18.2.1

Prove that λ∗ is an outer measure.

By Carathéodory’s Theorem, the set

L B {A × B ⊆ X × Y : A × B is λ∗-measurable }

is a σ-algebra, and we can thus define λ as a complete measure on L. It
then remains to show thatM ⊗N ⊆ L.

Example 18.2.1 (How (2) fails when one of the measures is not σ-
finite)

Consider X � Y � [0, 1],M � N � B(X) � B(Y), andM is the
Lebesgue measure while ν is the counting measure. We know that ν is
not σ-finite.
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Consider
D � {(t, t) : t ∈ [0, 1]} ⊆ [0, 1] × [0, 1],

which is Borel and hence measurable. Then we can define

λ(D) � λ∗(D) B inf

{ ∞∑
n�1

µ(An) · ν(Bn) : D ⊆
⋃

n

An × Bn

}
.

Note that the components of each element in D iterates through every
real number in [0, 1]. Furthermore, [0, 1] ⊆ ⋃

n Bn , and so we have
ν(Bn) � ∞. We can then show that λ(D) � ∞. Then∫

[0,1]×[0,1]
χD dλ � λ(D) � ∞.

However, we see that∫
[0,1]

∫
[0,1]

χD dµ dν �

∫
[0,1]

0 dν � 0,

since when we fix one value of y, χD(x, y) � 1 only happens at one
point that is x � y. Furthermore, by a similar reasoning, when we fix
x, χD(x, y) � 1 iff x � y and so∫

[0,1]
χD dν � ν({x}) � 1,

when then we see∫
[0,1]

∫
[0,1]

χD dν dµ �

∫
[0,1]

1 dν � 1, �

� Proposition 50 (Component-wise Measurability of Functions
and Sets)

Let (X,M) and (Y,N) be measurable sets.

1. If E ∈ M ⊗N, then

Ex � {y ∈ Y : (x, y) ∈ E} ∈ N,

Ey
� {x ∈ X : (x, y) ∈ E} ∈ M.
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2. If f : X × Y → Re is (M ⊗N)-measurable, then

fx(y) � f (x, y) : Y → Re is N-measurable

f y(x) � f (x, y) : X → Re isM-measurable

� Proof

1. This was Homework 9.

2. Fix a. Let E � (a,∞]. Since f isM ⊗ N-measurable, we have that
f −1(E) ∈ M ⊗N. It follows from part (1) that if we fix x,

f −1
x (E) � {y : f (x, y) ∈ E} � Ex ∈ N.

The result holds similarly for f y(E) ∈ M. �

� Definition 32 (Monotone Classes)

Let X be a non-empty set. ξ ⊆ P(X) is called a monotone class if

1. E j ∈ ξ with E1 ⊆ E2 ⊆ . . . �⇒ ⋃
n En ∈ ξ, and

2. Fn ∈ ξ with F1 ⊇ F2 ⊇ . . . �⇒ ⋂
n Fn ∈ ξ.

� Note 18.2.3

1. Notice that every σ-algebra is a monotone class.

2. P(X) is a monotone class.

3. If ξα ⊆ P(X) are monotone classes, then⋂
α

ξα � {E ⊆ X : E ∈ ξα, ∀α}

is also a monotone class.
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4. Given any collection of subsets of X, there exists a smallest monotone
class that contains them, and we call this the monotone class generated
by those subsets.

�Theorem 51 (Monotone Class Theorem)

Let X a non-empty set, and A ⊆ P(X) an algebra of sets. Then the σ-
algebra generated by A is equal to the monotone class generated by A.

We require the following lemma.

� Lemma 52 (Lemma for Monotone Class Theorem)

Suppose A is an algebra of sets on X. Then A is a σ-algebra iff ∀{E j} ⊆
A with E1 ⊆ E2 ⊆ . . ., then

⋃
j E j ∈ A.

� Proof

( �⇒ ) Follows simply by definition of a σ-algebra.

( ⇐� ) Let {Ai}i ⊆ A. Consider

E1 � A1, E2 � A1 ∪ A2, . . . .

Then by assumption, ⋃
i

Ai �
⋃

i

Ei ∈ A

since E1 ⊆ E2 ⊆ . . .. Thus A is indeed a σ-algebra. �
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19.1 Product Measures (Continued)

� Proof (Proof for Monotone Class Theorem)

Let ζ be the monotone class generated by A andM be the σ-algebra
generated by A. We want to show that ζ �M.

Note that since every σ-algebra is a monotone class, we must
have ζ ⊆ M. Thus it remains to show thatM ⊆ ζ. To that end, it
suffices for us to show that ζ is a σ-algebra, sinceM is the “smallest”
σ-algebra generated by A.

1 Let E ∈ ζ. Set 1 The proof gets really slippery from
hereon.

ζE B {F ∈ ζ : F \ E, E \ F, E ∩ F ∈ ζ}.

We want to show that ζE � ζ.

It is clear that E ∈ ζE. Furthermore, ∅ ∈ ζE since E � E \ ∅ ∈ ζ.
Note that F ∈ ζE ⇐⇒ E ∈ ζF .

Claim: ζE is a monotone class Suppose F j ∈ ζE with F1 ⊆ F2 ⊆ . . ..
Let F �

⋃
j F j . For each j, we know that

F j \ E, E \ F j , E ∩ F j ∈ ζ.

Thus since ζ is a monotone class, and

F1 \ E ⊆ F2 \ E ⊆ . . . ,
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we have
F \ E �

⋃
j

(F j \ E) ∈ ζ.

Since
E \ F1 ⊇ E \ F2 ⊇ . . . ,

we also have

E \ F � E \
⋃

j

F j � E ∩ ©«
⋂

j

FC
j
ª®¬ �

⋂
j

E \ F j ∈ ζ.

Finally,
E ∩ F1 ⊆ E ∩ F2 ⊆ . . . ,

so
E ∩

⋃
j

F j ∈ ζ.

Therefore, F ∈ ζE. Similarly, given F1 ⊇ F2 ⊇ . . ., we can show that⋂
j F j ∈ ζE. This proves the claim. a

ζA � ζ for any A ∈ A It is clear that ζA ⊆ ζ simply by definition.

It remains to show that ζ ⊆ ζA. To that end, we simply need to
look at elements from the generator A. Let E ∈ A ⊆ ζ. Since A
is an algebra of sets, and A ∈ A, we have that E \ A, A \ E, and
A ∩ E ∈ A ⊆ ζ. Thus E ∈ ζA, and furthermore, A ⊆ ζA. This proves
the claim. a

ζE � ζ for any E ∈ ζ We know that for any A ∈ A, E ∈ ζA ⇐⇒ A ∈
ζE. Thus A ⊆ ζE. By the last claim, we know that ζE � ζ for any
E ∈ ζ. a

We now know that ∀E, F ∈ ζ,

F ∈ ζE �> E \ F, F \ E, E ∩ F ∈ ζ.

Thus, for any E ∈ ζ, letting F � X, we have that

F \ E � EC , E \ F � ∅, E ∩ F � E ∈ ζ.

In particular, ∅, EC ∈ ζ.
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Now ∀E, , F ∈ ζ, we have EC , FC ∈ ζ, and so EC ∩ FC ∈ ζ. Thus

E ∪ F � (EC ∩ FC)C ∈ ζ.

By induction, ζ is closed under finite unions, and by De Morgan’s
Laws, closed under finite intersections. Thus ζ is an algebra of sets
and a monotone class.

By Lemma 52, we have that ζ is a σ-algebra. It follows thatM ⊆
ζ, and our proof is done. �

�Theorem 53 (Existence of Product Measures for σ-finite Mea-
sure Spaces)

Let (X,M, µ) and (Y,N, ν) be σ-finite measure spaces. Let E ∈ M ⊗ N.
Then

1. x 7→ ν(Ex) isM-measurable and y 7→ µ(Ey) is N-measurable;

2. we have ∫
X
ν(Ex) dµ �

∫
Y
µ(Ey) dν;

3. if we set (µ × ν)(E) �
∫

X ν(Ex) dµ, then µ × ν is a measure onM ⊗ N
and

(µ × ν)(A × B) � µ(A) · ν(B).

� Note 19.1.1
It is often useful to think of A × B as a
rectangle.

� Proof

Case: µ(X), ν(Y) < ∞ Let

ζ B {E ∈ M ⊗N : (1) and (2) are true }.

Let A be the algebra generated by {A × B : A ∈ M, B ∈ N}.

2 F ∈ A �⇒ F �
Ïn

i�1(Ai × Bi), where Ai ∈ M, Bi ∈ N Note that for 2 We want to show that we may write
each element of A as a disjoint union of
rectangles, each of which has compo-
nents inM and N.

any F ∈ A, we may write F � A × B for some A ∈ M and B ∈ N. As
stated, note that A is an algebra.
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If F � (A × B)C , then we may write

(A × B)C
� (AC × Y) ·∪(A × BC)

(see Figure 19.1).
A × B

AC
× Y

A × BC

Figure 19.1: Idea of partitioning (A ×
B)C .

If F � (A1 × B1) ∪ (A2 × B2), then we may partition F such that

(A1 × B1) ∪ (A2 × B2)

� (A1 ∩ A2) × (B1 ∩ B2) ·∪(A1 \ A2) × B1 ·∪(A2 \ A1) × B2

(see Figure 19.2).

(A1 ∩ A2) × (B1 ∩ B2)

(A1 \ A2) × B1

(A2 \ A1) × B2

Figure 19.2: Idea of partitioning (A1 ×
B1) × (A2 × B2).

By extending on the above inductively, we can prove that we may
write

F �

n×
i�1

(Ai × Bi)

for any F ∈ A, with Ai ∈ M and B ∈ N. a

Require clarification before proceeding, cause I have no idea
why we even did anything. �
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20.1 Product Measures (Continued 2)

�Theorem 54 (Fubini-Tonelli Theorem)

Let (X,M, µ) and (Y,N, ν) be σ-finite measure spaces.

1. (Tonelli) If f : X × Y → Re with f ≥ 0 is aM ⊗ N-measurable
function, then

g(x) �
∫

Y
fx dν isM-measurable,

and
h(x) �

∫
X

f y dµ is N-measurable.

Furthermore,∫
X

∫
Y

fx dν dµ �

∫
Y

∫
X

f y dν �

∫
X×Y

f d(µ × ν).

2. (Fubini) If f : X × Y → Re ∈ L1(X × Y) is (M ⊗N)-measurable, then

fx ∈ L1(Y) for a.e. x and f y ∈ L1(X) for a.e. y,

and ∫
X

∫
Y

fx dν dµ �

∫
Y

∫
X

f y dµ dν �

∫
X×Y

f d(µ × ν).

Let us first consider several relevant examples.
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Example 20.1.1

Consider X � Y � R and µ � ν is the Lebesgue measure. Consider the
function

f � χ{x0}×R + χR×{y0},

for some x0, y0 ∈ R. We see that f � 0 a.e., and so f ∈ L1(R × R).
However,

fx0(y) � 1 ∀y �⇒ fx0 < L1(R).

Similarly,
f y0(x) � 1 ∀x �⇒ f y0 < L1(R).

Tonelli’s statement says that such points x0 and y0, in their respective
spaces, can only happen on a set of measure zero. �

Example 20.1.2 (Failure of Fubini’s Theorem when f < L
1
(X × Y))

Consider the function

f (x, y) �


1 x ≤ y ≤ x + 1

−1 x − 1 ≤ y < x

0 otherwise

.

Note that the graph of f is illustrated in Figure 20.1.

1

-1

1

1

Figure 20.1: Values of f (x, y) in Exam-
ple 20.1.2

Notice that when x ≥ 1 (to the right of the red dashed vertical line),
we have ∫

R

fx dy � 0.

When x < 0, we have ∫
R

fx dy � 0.

When x � 0, we have ∫
R

fx dy � 1.

Finally, when x ∈ (0, 1), we have

0 <
∫

R

fx dy < 1.

This holds rather similarly for y for f y (using the blue dashed hori-
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zontal line for reference), except for the fact that

−1 <
∫

R

f y dx < 0

for when y ∈ (0, 1), and ∫
R

f 0 dx � −1

for when y � 0.

In particular, one may see that∫
R

∫
R

fx dy dx �
1
2

.

However, ∫
R

∫
R

f y dx dy � −1
2

. �

� Proof (Tonelli)

Case 1: Characteristic Functions Suppose f � χE where E ∈ M ⊗ N.
Fixing x, we have

fx(y) � χE(x, y) �


1 (x, y) ∈ E

0 (x, y) < E
� χEx (y).

Thus fx � χEx and similarly f y � χEy . Then by �Theorem 53, we
have that∫

X

∫
Y
χEx dν dµ �

∫
Y

∫
X
χEy dν �

∫
X×Y

χE d(µ × ν).

Case 2: Simple Functions This is simply extending on Case 1 by
linearity of integration, since simple functions are expressible as
finite sums.

Case 3: (M ⊗N)-measurable Functions Since f ≥ 0, we may construct
ϕn ↗ f by way of �Theorem 25. The result follows from the
�Monotone Convergence Theorem (MCT). �
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21.1 Product Measures (Continued 3)

� Note 21.1.1 (Measure zero with respect to a certain measure)

Given a measure µ, we shall say that a set A is a µ-null set if µ(A) � 0,
i.e. A has measure zero with respect to µ.

� Proof (Fubini)

Notice that since
�� f

�� � f + + f − while f � f + − f −, we noted that
f ∈ L1(X × Y) ⇐⇒

�� f
�� ∈ L1(X × Y). In particular, f +, f − ≥ 0

by construction. We notice that we can use Tonelli’s theorem if we
fulfill the rest of its conditions.

Recall that∫
X×Y

f d(µ × ν) �
∫

X×Y
f + d(µ × ν) −

∫
X×Y

f − d(µ × ν).

Let

g+(x) �
∫

Y
f +(x, y) dν and g−(x) �

∫
Y

f −(x, y) dν.

Then by Tonelli’s theorem,∫
X×Y

f + d(µ × ν) �
∫

X
g+(x) dµ

and ∫
X×Y

f − d(µ × ν) �
∫

X
g−(x) dµ.
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Consider
N+ B {x : g+(x) � ∞}.

Then since g+ isM-measurable, we have that µ(N+) � 0. Similarly,
the set N− B {x : g−(x) � ∞} is a µ-null set. It follows that
N � N+ ∪ N− is also µ-null.

For x < N , let g(x) � g+(x) − g−(x), which then

g(x) �
∫

Y
f (x, y) dν.

By Tonelli’s theorem, we know that∫
X\N

g+ dµ �

∫
X×Y

f + d(µ × ν) �
∫
(X\N)×Y

f + d(µ × ν),

and ∫
X\N

g− dµ �

∫
X×Y

f − d(µ × ν) �
∫
(X\N)×Y

f − d(µ × ν).

Thus∫
X×Y

f d(µ × ν) �
∫
(X\N)×Y

f + d(µ × ν) −
∫
(X\N)×Y

f − d(µ × ν)

�

∫
X\N

g+ dµ −
∫

X\N
g− dµ

�

∫
X\N

(g+ − g−) dµ

�

∫
X\N

[∫
Y
( f +(x, y) − f −(x, y)) dν

]
dµ

�

∫
X\N

[∫
Y

f (x, y) dν
]

dµ

�

∫
X

[∫
Y

f (x, y) dν
]

dµ.

The other iteration follows if we instead constructed

h+(x) �
∫

X
f +(x, y) dµ and h−(x) �

∫
X

f −(x, y) dµ

in place of g+ and g−, and follow through the proof similarly. �

Remark 21.1.1
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Given σ-finite measure spaces (X,M, µ) and (Y,N, ν), we now know that we
can get the measure µ × ν onM ⊗N.

We can, in fact, complete this measure, by making use of �Theorem 6. In
particular, we let

�M ⊗N B {E∪F : E ∈ M ⊗N, F ⊆ B, B ∈ M ⊗N, such that µ× ν(B) � 0}.

and let �µ × ν(E ·∪ F) � µ × ν(E)

for all F’s as described in �M ⊗N. �

Example 21.1.1

It is important to note that even if µ and ν are both complete, µ × ν is
almost never complete.

Consider A ∈ M with µ(A) � 0, and N , P(Y), where µ � ν is the
Lebesgue measure. If E ∈ P(Y) \N, then A × E < M ⊗ N. However,
A × E ⊆ A × Y and µ × ν(A × Y) � 0. �

The following is a corollary for �Theorem 54, stated as a theorem.

�Theorem 55 (Fubini-Tonelli Theorem for Complete Measures)

Let (X,M, µ) and (Y,N, ν) be complete, σ-finite measure spaces. Let (X ×
Y,O, λ) be the completion of (X × Y,M ⊗ N, µ × ν). Let f : X × Y → Re

be (M ⊗ N)-measurable. Then fx is N-measurable for a.e. x and f y is
M-measurable for a.e. y. Furthermore,∫

X

∫
Y

fx dν dµ �

∫
Y

∫
X

f y dµ dν �

∫
X×Y

f d(µ × ν).

Example 21.1.2

Need clarification

Consider X � Y � R, and µ the Lebesgue measure. LetO � �B(R).
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Consider the measure spaces

(R2, B(R) ⊗B(R), µ × µ) and (R2, O ⊗O, µ × µ). �

� Homework (Homework 17)

Show that the conclusion of Egoroff’s Theorem can fail to hold when
(X,M, µ) is σ-finite.

� Homework (Homework 18)

Let f , fn : R → R, each fn continuous and

f (x) � lim
n

fn(x) ∀x.

Prove that ∀ε > 0, ∃E ⊆ R measurable, with µ(E) < ε such that f is
continuous on EC .

� Homework (Homework 19)

Let (X,M, µ) and (Y,N, ν) be σ-finite measure spaces. Let E ∈ M ⊗ N
with µ × ν(E) � 1. Prove that for t > 0

µ({x : ν(Ex) ≥ t}) ≤ 1
t
.

� Homework (Homework 20)

Let (X,M, µ) be a measure space, and fn , gn , f , g : X → R be measurable
functions. If fn → f in measure, gn → g in measure, prove that fn +

gn → f + g in measure.

� Homework (Homework 21)
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Consider the measure space (N,P(N), µ), where µ is the counting mea-
sure.

1. Let f : N → [0,∞), with f (n) � an . Prove that∫
N

f dµ �

∞∑
n�1

an .

2. Let f : N → R, with f (n) � an . Prove that f ∈ L1(N,P(N), µ) ⇐⇒∑∞
n�1 an converges absolutely and that in this case∫

N

f dµ �

∞∑
n�1

an .

� Homework (Homework 22)

Let g : N × N → R with

g(n, m) � an,m .

For each finite subset F ⊆ N × N, set

SF �

∑
(n,m)∈F

an,m .

We say that limF SF exists and is equal to L provided that ∀ε > 0, ∃F0 a
finite set such that ∀F ⊇ F0 where F is finite, we have |L − SF | < ε.

Prove or disprove: g ∈ L1(N × N,P(N) ⊗ P(N), µ × µ) ⇐⇒
limF SF exists. And, in this case∫

N×N

g d(µ × µ) � lim
F

SF .

(You may use P(N) ⊗ P(N) � P(N × N).)
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21.2 Signed Measures

Consider a function f < 0. We know that we can seek the integral of f

with respect to a given measure µ, i.e.∫
X

f dµ.

Considering the way we define such an integral, we may very well
have

∫
X f dµ < 0. On the other hand, we know that we can define a

function
ν(E) �

∫
E

f dµ.

Had f be non-negative, ν would be a measure. We want to allow
ν, where f < 0, to also be considered a ‘measure’. This leads us to
consider the following notion.

� Definition 33 (Signed Measure)

Let (X,M) be a measurable space. We say that ν : X → Re is a signed
measure if

1. ν(∅) � 0;

2. ν can take on all values in Re , but not both ∞ and −∞; and

3. E �
Ï∞

n�1 En �⇒ ν(E) �
∑∞

n�1 ν(En), where
∑
ν(En) converges

absolutely when ν(E) , ±∞, and properly diverges to ∞ if ν(E) � ∞
(i.e. ∀c > 0, ∃N ∈ N, ∀n ≥ N ,

∑n
j�1 ν(E j) > c).

Remark 21.2.1

The second condition where ν cannot simultaneously have −∞ and ∞ in
its domain is considered so that we do not have to deal with the controver-
sial case of ∞−∞, while still allowing for ∞ to be a possible value in our
measurement. �

Example 21.2.1

1. Consider f ∈ L1(X,M, µ) where µ is a (regular) measure. Note
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f � f + − f −. Define

ν(E) �
∫

E
f dµ �

∫
E

f + dµ −
∫

E
f − dµ � µ+(E) − µ−(E),

where µ+ and µ− are ordinary measures, while ν is a signed mea-
sure.

2. Let µ1, µ2 be 2 measures on the measurable space (X,M). Wlog,
suppose µ1(X) < ∞. Then

ν(E) � µ1(E) − µ2(E)

is a signed measure.

3. Suppose ∫
X

f + dµ < ∞ and
∫

X
f − dµ < ∞.

Then
ν(E) �

∫
E

f dµ

is a signed measure. �

� Note 21.2.1

Note that every measure is a signed measure. For emphasis, we shall also
refer to our old definition of measures as the ordinary/regular/positive
measure.

Notice that in the case of R, we may write

E � (E ∩ R+) ·∪(E ∩ R−),

where, for now, R+ � R \ (−∞, 0) and R− � R \ [0,∞). Then we may
define

ν(E) �
∫

E∩R+

f dµ +

∫
E∩R−

f dµ

�

∫
E∩R+

f + dµ −
∫

E∩R−
f − dµ

� µ+(E ∩ R+) − µ−(E ∩ R−).
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This motivates us to make the following definition.

� Definition 34 (ν-positive and ν-negative)

Let (X,M) be a measurable space, and ν a signed measure. We say that
E ∈ M is ν-positive if ∀F ∈ M such that F ⊆ E, we have ν(F) ≥ 0.
We say that E ∈ M is ν-negative if ∀F ∈ M such that F ⊆ E, we have
ν(F) ≤ 0.

Remark 21.2.2

It is important to note that the notion of ν-positivity and ν-negativity is not
mutually exclusive, i.e. saying that a set A is “not ν-positive” does not mean
that A is ν-negative, and vice versa. �
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22.1 Hahn Decomposition

�Theorem 56 (Hahn Decomposition Theorem)

Let ν be a signed measure on a measurable space (X,M). Then ∃P ∈ M
that is ν-positive and N ∈ M that is ν-negative such that X � P ·∪ N .
Furthermore, if X � P′ ·∪ N′ for some other P′ that is ν-positive and N′

that is ν-negative, then P4P′ and N4N′ are ν-null.

� Note 22.1.1
Recall that P4P′ is called the symmetric
difference of P and P′, and it is defined as

P4P′
� (P \ P′) ∪ (P′ \ P).

� Homework (Homework 23)

Let ν be a signed measure. Let

E1 ⊆ E2 ⊆ . . . , and E �

⋃
n

En .

Then
ν(E) � lim

n
ν(En).

If F1 ⊇ F2 ⊇ . . . and F �
⋂

n Fn , and ν(F1) , ±∞, then

ν(F) � lim
n
ν(Fn).

� Lemma 57 (Lemma for Hahn Decomposition)

Suppose ν is a signed measure. Then
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1. P is ν-(∗) and Q ⊆ P �⇒ Q is ν-(∗); and

2. Pn are ν-(∗), then
⋃

n Pn is ν-(∗),

where ν-(∗) stands for ν-positive, ν-negative, and ν-null.

� Proof (Lemma 57 for ν-positive case)

1. For any R ∈ M such that R ⊆ Q ⊆ P, it follows that µ(R) ≥ 0 since
P is ν-positive. Thus Q is ν-positive.

2. Let A ∈ M such that A ⊆ ⋃
n Pn . Notice that A �

⋃
n(Pn ∩ A).

In particular, Pn ∩ A ⊆ Pn . Since Pn is ν-positive, we know
ν(Pn ∩ A) ≥ 0. Let

A1 � A ∩ P1, A2 � (A ∩ (P1 ∪ P2)) \ A1, . . . .

In general

An �

[
A ∩

(
n⋃

i�1
Pi

) ] ∖
An−1.

It is then clear that A �
Ï

n An . Thus ν(A) � ∑∞
n�1 An . Further-

more, since each An ⊆ Pn , it follows that ν(An) ≥ 0, and so
ν(A) ≥ 0. �

� Proof (Proof for Hahn Decomposition Theorem)

Let E ∈ M such that ν(E) , ∞. Let

M B sup{ν(E) : E is ν-positive }.

Note that set {ν(E) : E is ν-positive } is non-empty since ∅ is ν-
positive, and so M is a valid value. We may then let Pn ∈ M such
that

lim
n
ν(Pn) � M.

Let P �
⋃

n Pn . By Lemma 57, we know that P is ν-positive. Fur-
thermore, ν(P) ≤ M.

Now notice that P � Pn ·∪(P \ Pn), and P \ Pn ⊆ P and so by
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Lemma 57 we have ν(P \ Pn) ≥ 0. It follows that

ν(P) � ν(Pn)+ ν(P \ Pn) ≥ ν(Pn)

for each n. Therefore

M � sup ν(Pn) � lim
n
ν(Pn) ≤ ν(P).

Hence ν(P) � M.

Let N � X \ P so that X � P ·∪ N . WTS N is ν-negative. Firstly,
consider A ⊆ N and A is ν-positive. In particular, we must then
have that A ·∪P is ν-positive. This means that

M ≥ ν(A ·∪P) � ν(A)+ ν(P) � ν(A)+ M, (22.1)

which means that ν(A) � 0. Furthermore, ∀B ∈ M such that B ⊆ A,
by the same reasoning as in Equation (22.1), we have that ν(B) � 0.
It follows that ∀A ⊆ N that is ν-positive, A is ν-null.

Suppose to the contrary that N is not ν-positive. This means that
∀A ⊆ N , ν(A) > 0. However, we showed that ν(A) � 0. So A cannot
be ν-positive. This implies that ∃B0 ∈ M with B0 ⊆ A, we have
ν(B0) > 0.

Let C � A \ B0, so that A � B0 ·∪C. Then

0 < ν(A) � ν(B0)+ ν(C),

and in particular
ν(A) < ν(C).

Inductively, let us perform the following. Due to our above argu-
ment about B0, we may let

n1 � min
{

n : B ⊆ N , ν(B) > 1
n

}
.

Let A1 ⊆ N such that ν(A1) > 1
n1

. By the above argument about C,
we know that ∃C ⊆ A1 such that ν(C) > ν(A1). Let

n2 � min
{

n : C ⊆ A1, ν(C) > 1
n
+ ν(A1)

}
.
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Then set A2 ⊆ A1 such that

ν(A2) > ν(A1)+
1
n2

>
1
n1

+
1
n2

.

We continue inductively so that we construct as a decreasing se-
quence

. . . ⊆ Ak+1 ⊆ Ak ⊆ . . .

of sets, such that

ν(Ak+1) > ν(Ak)+
1

nk+1
>

1
n1

+ . . . +
1
nk

+
1

nk+1
.

Let A �
⋂

k Ak . Notice that since ν(A1) is finite, by continuity from
above,

ν(A) � lim
k
ν(Ak) ≥

∞∑
k�1

1
nk

.

Need clarification �
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23.1 Hahn Decomposition (Continued)

� Definition 35 (Hahn Decomposition)

Let ν be a signed measure, and X � P ·∪ N , where P is ν-positive and N is
ν-negative. We call P ·∪ N the Hahn decomposition of ν.

Remark 23.1.1

Given a Hahn decomposition, consider E ⊆ X. Then we may define ν1(E) �
ν(E ∩ P) such that ν1 is a positive measure, and ν2(E) � −ν(E ∩ N) such
that ν2 is a positive measure. Then

ν(E) � ν1(E) − ν2(E). �

� Definition 36 (Mutually Singular)

Let (X,M) be a measurable space, with signed measures µ and ν. The
measures µ and ν are said to be mutually singular, of which we denote by
µ⊥ν, when

X � E ·∪ F E, F ∈ M

such that E is µ-null and F is ν-null.

Example 23.1.1
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From our remark above, we see that N is ν1-null while P is ν2-null.
Thus ν1⊥ν2. �

�Theorem 58 (Jordan Decomposition Theorem)

Let (X,M) be a measurable space with a signed measure ν. Then ∃!ν+, ν−

positive measures such that

ν � ν+ − ν− and ν+⊥ν−.

� Proof

(Existence) The proof for existence is exactly what we showed in the
last remark. Let X � P ·∪ N by the Hahn Decomposition Theorem
with ν1(E) � ν(E ∩ P) and ν2 � −ν(E ∩ N), so that

ν � ν1 − ν2 and ν1⊥ν2.

(Uniqueness) Suppose ν(E) � µ1(E) − µ2(E) for some positive
measures µ1, µ2 such that µ1⊥µ2, so that

X � E ·∪ F

with F being µ1-null and E being µ2-null.

Let A ⊆ E. Then notice that

ν(A) � µ1(A) − µ2(A) � µ1(A) ≥ 0.

Thus E is ν-positive. Similarly, F is ν-negative. Hence X � E ·∪ F is
indeed another Hahn Decomposition on ν. By the Hahn Decompo-
sition Theorem, we have that

P4E, N4F are ν-null.

Let A ∈ M. Since E and F are disjoint,

µ1(A) � µ1(A ∩ E)+ µ1(A ∩ F) � µ1(A ∩ E).
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Note that
A ∩ E � (A ∩ E ∩ P) ·∪(A ∩ (E \ P)).

Then

µ1(A ∩ E) � ν(A ∩ E)

� ν(A ∩ E ∩ P)+ ν(A ∩ (E \ P))

� ν(A ∩ E ∩ P) � ν1(A ∩ E),

where ν(A ∩ (E \ P)) � 0 since P4E is ν-null. Thus

µ1(A) � µ1(A ∩ E) � ν1(A ∩ E).

Also, notice that

A ∩ P � (A ∩ P ∩ E) ·∪(A ∩ (P \ E)),

and so

ν1(A) � ν(A ∩ P)

� ν(A ∩ P ∩ E)+ ν(A ∩ (P \ E))

� ν(A ∩ E ∩ P) � ν1(A ∩ E) � µ1(A),

since P \ E ⊆ P4E which is ν-null. Thus µ1 � ν1. Similarly, we can
show that µ2 � ν2. �

� Definition 37 (Positive and Negative Variation of a Signed
Measure)

Let (X,M) be a measurable space and ν a signed measure of the space. By
the Jordan Decomposition Theorem, we may write ν � ν+ − ν− such that
ν+⊥ν−. We call ν+ the positive variation of ν and ν− the negative
variation of ν.

� Definition 38 (Total Variation of a Signed Measure)
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By the same assumption as the above, we call

|ν | � ν+ + ν−

the total variation of ν.

� Warning

Consider the measure
ν(E) �

∫
E

f dµ,

where µ is any positive measure, E ⊆ X � P ·∪ N . Suppose f + � 0 on N

and f − � 0 on P, where f � f + − f −. It is easy to see that

ν+(E) �
∫

E
f + dµ

ν−(E) �
∫

E
f − dµ.

Then the total variation is expressible as

|ν | (E) �
∫

E

�� f
�� dµ.

However, recall that

|ν(E)| �
����∫

E
f dµ

���� ≤ ∫
E

�� f
�� � |ν | (E).

Thus, we may have
|ν(E)| < |ν | (E).

23.2 Radon-Nikodym Theorem and the Lebesgue Decomposition The-
orem

� Definition 39 (Absolutely Continuous Measure)

Let (X,M) be a measurable space. Let ν be a signed measure and µ a
positive measure. We say that ν is absolutely continuous with respect
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to µ, of which we denote ν � µ, provided that

µ(E) � 0 �⇒ ν(E) � 0

for all E ⊆ X.

� Lemma 59 (Equivalent Definitions of a Absolutely Continuous
Measure)

Let (X,M) be a measurable space, ν a signed measure and µ a positive
measure. TFAE:

1. ν � µ;

2. ν+ � µ and ν− � µ; and

3. |ν | � µ.

� Proof

(1) �⇒ (2) Write ν � ν+ − ν− by the Jordan Decomposition The-
orem. Then for any E ∈ M such that µ(E) � 0, since ν(E) � 0, we
have

ν+(E) − ν−(E) � 0 and so ν+(E) � ν−(E).

Now, note that µ(E) � 0 �⇒ µ(E ∩ P) � 0 by subadditivity. It
thus follows from assumption that ν+(E) � ν(E ∩ P) � 0 by the
assumption that ν � µ.

(2) �⇒ (3) Since |ν | � ν+ + ν−, it follows that for any E ∈ M such
that µ(E) � 0, we have ν+(E) � 0 � ν−(E), and so

|ν | (E) � ν+(E)+ ν−(E) � 0.

(3) �⇒ (1) Notice that for any E ∈ M, we have |ν(E)| ≤ |ν | (E), as
noted in the last warning. Therefore, ∀E ∈ M such that µ(E) � 0, it
follows that

|ν(E)| ≤ |ν | (E) � 0,
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and so it must be that ν(E) � 0. �

�Theorem 60 (Alternative Definition for Absolute Continuity of
Measures)

Let ν be a finite signed measure, and µ a positive measure. Then ν �
µ ⇐⇒

∀ε > 0 ∃δ > 0 µ(E) < δ �⇒ |ν(E)| < ε.

� Proof

�⇒ Suppose that the ε-δ condition fails. Let ε0 > 0 be the ε that
fails. Consider δn �

1
2n . Then there exists Pn ∈ M such that

µ(Pn) < δn ∧ |ν(Pn)| ≥ ε0.

Let Fk �
⋃∞

n�k Pn and F �
⋂∞

k�1 Fk . By subadditivity, for any k,

µ(Fk) ≤
∞∑

n�k

µ(Pn) <
∞∑

n�k

1
2n �

1
2k−1

It follows from continuity from above that

µ(F) � lim
k
µ(Fk) � 0.

However,
ν(Fk) ≥ ν(Pk) ≥ ε0

and ν is finite, ν(F1) < ∞, and so continuity from below indicates
that

ν(F) � lim
k
ν(Fk) ≥ ε0.

Thus ν 3 µ. ( ⇐� ) Suppose that the ε-δ condition is true. In
particular, we may consider a sequence εn �

1
n > 0 so that ∃δn > 0

such that
µ(E) < δn �⇒ |ν(E)| < 1

n

for any E ∈ M. Then in particular, if E ∈ M such that µ(E) � 0,
then µ(E) < δn for any n, and so |ν(E)| < 1

n for any n. Therefore
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ν(E) � 0. �





24 � Lecture 24 Nov 6th 2019

24.1 Radon-Nikodym Theorem and the Lebesgue Decomposition The-
orem (Continued)

�Corollary 61 (On a special signed measure)

Let f ∈ L1(µ). Then ∀ε > 0, ∃δ > 0 such that if µ(E) < δ, then���∫E f dµ
��� < ε.

� Proof

Let ν(E) �
∫

E f dµ. We know that ν is a finite signed measure.
Notice that µ(E) � 0 means that ν(E) �

∫
E f dµ � 0. Hence ν � µ.

Therefore, by �Theorem 60, the statement holds. �

� Lemma 62 (Relationship Between Two Finite Positive Mea-
sure)

Let µ and ν be finite positive measures on the measurable space (X,M).
Then either µ⊥ν, or 1 ∃ε > 0 and ∃E ∈ M with µ(E) > 0 such that 1 This is an exclusive or statement.

∀F ⊆ E, we have
ν(F) ≥ εµ(F),

i.e. ν − εµ is a positive measure on (E,ME).
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� Proof

For each n ≥ 1, consider the signed measure ν − 1
n µ, which is

finite. By the Hahn Decomposition Theorem, let Pn and Nn be such
that X � Pn

⋃
Nn with Pn being

(
ν − 1

n µ
)
-positive, and Nn being(

ν − 1
n µ

)
-negative.

Let P �
⋃

n Pn and N �
⋂

Nn . Then X � P
⋃

N . Since N ⊆ Nn

for all n, we have that (
ν − 1

n
µ

)
(N) ≤ 0 ∀n.

Thus
0 ≤ ν(N) ≤ 1

n
µ(N) ∀n.

Hence ν(N) � 0, i.e. N is ν-null.

Now if µ(P) � 0, then µ⊥ν and we are done. WMA µ(P) , 0.
Since P �

⋃
n Pn , we know that ∃n0 such that µ(Pn0) , 0. However,

Pn0 is
(
ν − 1

n µ
)
-positive, i.e.

∀A ⊆ Pn0 ν(A) − 1
n
µ(A) ≥ 0.

Then in this case, we simply need to pick ε �
1

n0
, and our job is

done. �

�Theorem 63 (The Lebesgue Decomposition Theorem and The
Radon-Nikodym Theorem)

Let (X,M) be a measurable space, and µ and ν be σ-finite positive mea-
sures. Then, there exists positive measures λ and ρ such that µ⊥λ, ρ � µ

and ν � ρ + λ (Lebesgue Decomposition). Moreover, ∃ f : X → [0,∞]
that isM-measurable such that

ρ(E) �
∫

E
f dµ

(Radon-Nikodym).

This is a constructive proof. It tells us
exactly how to create λ and ρ.
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� Proof

Case 1: µ and ν are both finite Let

F B
{

f : X → [0,∞] | f isM-measurable,
∫

E
f dµ ≤ ν(E) ∀E ∈ M

}
.

Note that F , ∅ since 0 ∈ F .

F is closed under max function Let f , h ∈ F and g � max{ f , h}. Let

A B {x : g(x) � f (x)}.

Then for x ∈ AC , we have g(x) � h(x). Note that g isM-measurable.
WTS g ∈ F . Observe that∫

E
g dµ �

∫
E∩A

g dµ +

∫
E∩AC

g dµ

�

∫
E∩A

f dµ +

∫
E∩AC

h dµ

≤ ν(E ∩ A)+ ν(E ∩ AC) � ν(E).

Hence indeed g ∈ F . a

F contains limits of its sequences Let

a B sup
{∫

X
f dµ : f ∈ F

}
.

Let { fn} ⊆ F be a sequence of functions such that∫
X

fn dµ→ a.

Let g1 � f1, g2 � max{ f1, f2}, . . . , gn � maxn{ f1, . . . , fn}, . . .. Let
f � limn gn . Then gn ↗ f . By the last claim, note that each gn ∈ F .
WTS f ∈ F .

Let E ∈ M. By the �Monotone Convergence Theorem (MCT),∫
E

f dµ � lim
n

∫
E

gn dµ

≤ lim
n
ν(E) � ν(E).
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It follows that f ∈ F and in particular∫
X

f dµ � a. a

Let ρ(E) �
∫

E f dµ. Then it is clear that ρ � µ. Let λ(E) �

ν(E) − ρ(E) ≥ 0. Then λ is a positive measure. Furthermore, we
have that ν � λ + ρ.

µ⊥λ Suppose not. Then by Lemma 62, we know ∃ε > 0 and ∃E ∈ M
with µ(E) > 0 such that ∀F ⊆ E, λ(F) ≥ εµ(F). Then, ∀A ∈ M, we
have

λ(A) ≥ λ(A ∩ E) ≥ εµ(A ∩ E).

However,

λ(A) � ν(A) −
∫

A
f dµ ≥ εµ(A ∩ E) � ε

∫
A
χE dµ.

This means that
ν(A) ≥

∫
A
( f − εχE) dµ.

Hence f − εχE ∈ F . Thus

a �

∫
X

f dµ ≤
∫

X
( f + εχE) dµ ≤ a.

Notice that
∫

X( f + εχE) dµ � a + εµ(E), and so

a ≤ a + εµ(E) ≤ a.

Thus we must have εµ(E) � 0, but that is impossible since ε > 0 and
µ(E) > 0, a contradiction. Hence we must have µ⊥λ.

Case 2: ν and µ are both σ-finite 2 Since µ is σ-finite, wma X �
Ï

i Ai 2 We shall strict the finite pieces together
and then try paying attention to some of
the technical details.such that µ(Ai) < ∞. Since ν is σ-finite, wma X �

Ï
i Bi such that

ν(Bi) < ∞. Then we may let X �
Ï

i, j(Ai ∩ B j), and

Mi, j B {E ∩ Ai ∩ B j : E ∈ M}

would be a σ-algebra of subsets of X.

Let us define

µi, j(Y) � µ(Y) ∀Y ∈ Mi, j and νi, j(Y) � ν(Y) ∀Y ∈ Mi, j .
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It is clear that all of µi, j and νi, j are finite. By Case 1, ∃λi, j , ρi, j mea-
sures and ∃ fi, j : Ai ∩ B j → Re such that

λi, j⊥µ, ρi, j(Y) �
∫

Y
fi, j dµi, j and νi, j � λi, j + ρi, j .

Therefore Ai ∩ B j � Wi j ·∪Zi j such that

λi, j(Zi j) � 0 and µi, j(Wi j) � 0.

Define f : X → R by f (x) � fi, j(x) when x ∈ Ai ∩ B j . Notice that

f −1(a,∞] �
⋃
i, j

fi, j(a,∞] ∈ M,

and thus f isM-measurable.

Define λ(E) � ∑
i, j λi, j(E ∩ Ai ∩ B j). It is easy to check that λ is

indeed a measure.

Let W �
Ï

i, j Wi j and Z �
Ï

i, j Zi j . Then

λ(Z) �
∑
i, j
λi, j(Zi j) � 0,

and
µ(W) �

∑
i, j
µ(Wi j) �

∑
i, j
µi, j(Wi j) � 0.

Thus λ⊥µ.

Let

ρ(E) �
∫

E
f dµ �

∑
i, j

∫
E∩Ai∩B j

fi, j dµ �

∑
i, j
ρi, j(E ∩ Ai ∩ B j).

Check that

λ(E)+ ρ(E) �
∑
i, j
λi, j(E ∩ Ai ∩ B j)+

∑
i, j
ρi, j(E ∩ Ai ∩ B j)

�

∑
i, j
νi, j(E ∩ Ai ∩ B j) � ν(E).

This completes the proof. �
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25.1 Radon-Nikodym Theorem and The Lebesgue Decomposition The-
orem (Continued 2)

�Corollary 64 (A Corollary to Radon-Nikodym)

Suppose that (X,M) is a measurable space and µ, ν are σ-finite measures
on the space, such that ν � µ. Then ∃ f : X → [0,∞]M-measurable such
that

ν(E) �
∫

E
f dµ.

� Proof

By the Radon-Nikodym Theorem, we can find positive measures
λ, ρ such that ν � λ + ρ, λ⊥µ and ρ(E) �

∫
E f dµ for some f : X →

[0,∞]. We may then let X � A ·∪ B such that λ(A) � 0 and µ(B) � 0.
Since ν � µ, we have ν(B) � 0.

Let E ∈ M. Then

ν(E) � ν(E ∩ A)+ ν(E ∩ B) � ν(E ∩ A)

� λ(E ∩ A)+
∫

E∩A
f dµ

�

∫
E∩A

f dµ +

∫
E∩B

f dµ ∵ ρ(E ∩ B) � 0 as ρ � µ

�

∫
E

f dµ. �
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� Note 25.1.1

From here on, we shall denote the Lebesgue measure by m, instead of µ,
which we shall reserve for an arbitrary µ.

Let us take a short detour into derivatives.

Example 25.1.1

1. Let F : R → R such that

F(x) �


0 x ≤ 0

x2 0 < x < 1

x2 + 3 x ≥ 1

.

Then F is increasing and right continuous. Let

F1(x) �


0 x ≤ 0

x2 x > 0
F2(x) �


0 x < 1

3 x ≥ 1
.

Then F � F1 + F2. We may thus define µF � µF1 + µF2 for B(R).
From our understanding (from a much earlier example), we know
that µF2 � 3 · χ{1}. Let

f (x) �


0 x ≤ 0

2x x > 0
.

Notice that f is the derivative of F1. By the Agreement of Riemann
Integration and Lebesgue Integration for Bounded Functions, we
know

F1(b) − F1(a) �
∫
[a,b]

f dm.

Since m is the Lebesgue measure, and by �Theorem 12, we know∫
[a,b]

f dm �

∫
(a,b]

f dm � µF1(a, b] � F1(b) − F1(a).

Thus, since we may write any subset of R as a disjoint union of
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intervals, it follows that

µF1(B) �
∫

B
f dm.

Notice that µF1 and µF2 are one of the decompositions given in
The Lebesgue Decomposition Theorem and The Radon-Nikodym
Theorem, where ν � µF , λ � µF2 , ρ � µF1 , and µ � m, where we
note that µF2⊥m,

µF1(B) �
∫

B
f dm,

and clearly µF1 � m.

2. Recall the Cantor Function, which here we shall call it FC . Consider
the function F : R → R such that

F(x) �


0 x ≤ 0

FC(x) 0 < x < 1

1 x ≥ 1

.

Then F is continuous and increasing. Furthermore, F′(x) � 0 when-
ever x < C, where C is the Cantor set. Consider the function µF

constructed by the means of �Theorem 12.

Now, notice that we may write R � C ·∪CC . Recall that we showed
that µF(CC) � 0 while µF(C) � 1. Furthermore, under Lebesgue’s
measure, m(C) � 0. In this case, we may consider λ � µF and µ � 0,
and ρ � 0 to fit the framework of �Theorem 63. �

� Note 25.1.2

We know that give σ-finite measures ν and µ, where ν � µ, by �Corol-
lary 64, ∃ f ≥ 0 such that ν(E) �

∫
E f dµ. Recall from the Midterm

problem that ∫
E

h dν �

∫
E

h · f dµ.

We may thus look at dν as something like f dµ, which then f is some-
thing like dν

dµ .
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Remark 25.1.1

Given σ-finite measures ν and µ, with ν � µ, if we suppose f , h ≥ 0, and

ν(E) �
∫

E
f dµ �

∫
E

h dµ,

we know that f � h a.e. with respect to µ. �

� Definition 40 (Derivative)

Let ν and µ be σ-finite measures with ν � µ. If ν(E) �
∫

E f dµ, we say
that

dν
dµ

� f a.e. with respect to µ.

� Note 25.1.3 (Some formulae)

1. Given ν1, . . . , νn , µ all σ-finite, with νi � µ for all i, we know that by
�Corollary 64, ∃ f1, . . . , fn such that

νi(E) �
∫

E
fi dµ, for each i.

Let
ν(E) B

∑
i

νi(E) �
∫

E
( f1 + . . . + fn) dµ.

Then
dν
dµ

�
dν1
dµ

+ . . . +
dνn

dµ

a.e. with respect to µ.

2. (Chain rule) Suppose ν � λ � µ. Note ν � µ. Then

λ(E) �
∫

E
g dµ and ν(E) �

∫
E

f dλ

for some functions f , g. By our Midterm problem, we have

ν(E) �
∫

E
f · g dµ.

Then
dν
dµ

� f · g, f �
dν
dλ

, and g �
dλ
dµ

.
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Hence
dν
dµ

�
dν
dλ

· dλ
dµ

.

3. (Change of variables) Suppose ν � µ � ν. Then there exists
functions f , g such that

ν(E) �
∫

E
f dµ and µ(E) �

∫
E

g dν.

Then we say

f �
dν
dµ

and g �
dµ
dν

.

By the Midterm problem, 1 1 This is the worst measure I’ve seen.

ν(E) �
∫

E
f · g dν ∀E.

Thus
f · g � 1 a.e. wrt ν and g · f � 1 a.e. wrt µ.

Thus means that the sets

A B {x : f (x) � 0} and B B {x : g(x) � 0}

both have measure zero. Thus(
dν
dµ

) −1

�
dµ
dν

wherever they are well-defined.
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26.1 Non-decreasing Functions

� Note 26.1.1

For sanity (of keeping up with notes for the rest of the course), we shall
refer to non-decreasing functions are increasing functions. We shall call
increasing functions are strictly increasing functions.

� Notation

Let F : R → R be an increasing function. We shall denote

F(x−) B lim
y→x−

F(y) � sup{F(y) : y < x},

and
F(x+) � lim

y→x+
F(y) � inf{F(y) : y > x}.

� Proposition 65 (Properties of F(x+) and F(x−))

Let F : R → R be an increasing function.

1. x1 < x2 �⇒ F(x1+) ≤ F(x2−).

2. F(x−) and F(x+) are both increasing.
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3. F(x−) is left continuous, i.e.

F(x−) � lim
y→x−

F(y−).

4. F(x+) is right continuous, i.e.

F(x+) � lim
y→x−

F(y+).

5. The set of points where F is not continuous is countable.

6. F is B(R)-measurable.

� Proof

1. Let x3 ∈ R be such that x1 < x3 < x2. It is clear that

F(x1+) � inf{F(y) : y > x1} ≤ F(x3)

and
F(x3) ≤ sup{F(y) : y < x2} � F(x2−).

2. Let x1 < x2. Then

F(x1−) � sup{F(y) : y < x1} ≤ sup{F(y) : y < x2} � F(x2−)

because the latter set allows for more choice for a supremum. For
the other case,

F(x1+) � inf{F(y) : y > x1} ≤ inf{F(y) : y > x2} � F(x2+)

because the former set allows for more choice for an infimum.

3. Let ε > 0. For any x ∈ R, since

F(x−) � sup{F(y) : y < x},

we know that ∃y < x such that
��F(x−) − F(y)

�� < ε
3 . Furthermore,

for each y < x, since

F(y−) � sup{F(z) : z < y},
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we can find z < y < x such that
��F(y−) − F(z)

�� < ε
3 .

Suppose to the contrary that
��F(y−) − F(y)

�� ≥ ε
3 . This means that

sup{F(z) : z < y} − F(y) > 0,

and so there must exist some z < y such that F(z) > F(y), but
that contradicts the fact that F is increasing. Thus

��F(y−) − F(y)
�� <

ε
3 .

It follows that ∃z < x such that

|F(x−) − F(z)| ≤
��F(x−) − F(y)

��+ ��F(y) − F(y−)
��+ ��F(y−) − F(z)

�� < ε.

4. The proof for (4) is similar to that of (3).

5. Let
B B {x : F is discontinuous at x}.

Note that F being continuous at a point x means that

F(x−) � F(x) � F(x+).

Since we always have F(x−) ≤ F(x+), if F is discontinuous at x,
then we must have F(x−) < F(x+).

If F has only one point of discontinuity, then our job is done.

Let x1 and x2 be 2 points of discontinuity of F on R. WLOG,
suppose x1 < x2. Then by part (1), we have

F(x1−) < F(x1+) ≤ F(x2−) < F(x2+).

This means that if we consider rx1 , rx2 ∈ Q such that

F(x1−) < rx1 < F(x1+) ≤ F(x2−) < rx2 < F(x2+),

we know that we can clearly distinguish rx1 and rx2 . If we then
consider the map

f : B → Q

x 7→ rx ,
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f must be one-to-one, and so B is at most countable.

6. Let a ∈ R, and consider A � (a,∞). WTS F−1(A) ∈ B(R). Note
that x ∈ F−1(A) ⇐⇒ F(x) > a. Since F is increasing, ∀y > x, we
know

a < F(x) ≤ F(y),

which implies that y ∈ F−1(A) as well. It follows that

F−1(A) �



∅

[b,∞)

(b,∞)

R

,

where b ∈ R can be checked, and we note that each of the possi-
ble forms of F−1(A) is a Borel set. �

26.2 Vitali Covering Lemma

� Notation

We shall use the symbol I to denote a collection of intervals, which are
possibly open, closed, or half-open, but cannot be singletons.

� Definition 41 (Vitali Covering)

Let E ⊆ R. We say that I is a Vitali covering of E if ∀ε > 0, ∀x ∈ E,
∃I ∈ I such that x ∈ I and `(I) < ε.

Remark 26.2.1

In words, a Vitali covering is defined such that for every positive ε, every
point x in E can be covered by an interval of length less than ε. So a Vitali
covering is a special kind of cover for E, and also a special kind of ε-net. �

https://tex.japorized.ink/PMATH351F18/classnotes.pdf#defn.70
https://tex.japorized.ink/PMATH351F18/classnotes.pdf#defn.75
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�Theorem 66 (Vitali Covering Lemma)

Suppose E ⊆ R and m∗(E) < ∞, where we note that m∗ is the Lebesgue
outer measure. Suppose I is a Vitali covering of E. Let ε > 0. Then
∃{I1, . . . , In} ⊆ I a disjoint collection

m∗

(
E

∖ N⋃
n�1

In

)
< ε.

� Proof

First, notice that if we can find a Vitali covering of E where each
interval is closed, such that the above statement holds, then we can
also find intervals of other forms that work. Thus WLOG, assume
every I ∈ I is closed.

Will come back �
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27.1 Vitali Covering Lemma (Continued)

� Definition 42 (D+, D−, D+, D−)

Let f : (a, b) → R. We define

D+ f (x) B lim sup
h→0+

f (x + h) − f (x)
h

D− f (x) B lim sup
h→0−

f (x + h) − f (x)
h

� lim sup
h→0+

f (x) − f (x − h)
h

D+ f (x) B lim inf
h→0+

f (x + h) − f (x)
h

D− f (x) B lim inf
h→0−

f (x + h) − f (x)
h

� lim inf
h→0+

f (x) − f (x − h)
h

Remark 27.1.1

1. Since all the above are defined using lim inf and lim sup, we know that
these values always exists.

2. However, they are not always equal, since derivatives don’t always exist.
In other words, if all 4 are equal, we know that f ′(x) exists and is equal to
the common value. �
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�Theorem 67 (Partial Fundamental Theorem of Calculus for
Increasing Functions)

Let f : [a, b] → R increasing, then f ′(x) exists for almost all x, f ′(x) is
Lebesgue integrable, and∫ b

a
f ′(x) dm ≤ f (b) − f (a).

Example 27.1.1

Consider the Cantor Function F, where we recall

F(0) � 0, F(1) � 1, and F′(x) � 0 ∀x < C,

and F is increasing. Notice that

0 �

∫ 1

0
F′ dm < f (1) − f (0) � 1. �

� Proof (Outline of �Theorem 67)

We’ll come back �

Remark 27.1.2

From Example 27.1.1, we know that we cannot have the Fundamental Theo-
rem of Calculus for general measures. �

However, we are not going down without a fight. We shall now
look into the class of functions that satisfy the Fundamental Theorem
of Calculus for general measures.

27.2 Functions of Bounded Variation

� Definition 43 (Functions of Bounded Variation)

Let F : [a, b] → C. 1 We say that F is of bounded variation if 1 Note that we use C here, so that we
allow for the function to map to both
complex and also purely real values.
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VF[a, b] B sup
P[a,b]

{
n∑

i�1
|F(xi) − F(xi−1)| : xi ∈ P[a, b]

}
< ∞,

where P[a, b] is a partition of [a, b]. We also write that F ∈ BV[a, b]. We
call VF[a, b] the variation of F on [a, b].

We may extend [a, b] to be the entire real line and consider, instead,

VF(R) B sup
P(R)

{
n∑

i�1
|F(xi) − F(xi−1)| : xi ∈ P(R)

}
,

where in this case, our partition P(R) can be

P � {x0 < x1 < . . . < xn},

where x0 and xn are arbitrary points in R.
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28.1 Functions of Bounded Variation (Continued)

� Definition 44 (Total Variation)

Let F be a function of bounded variation. The total variation of F is
defined as

TF(x) B sup
partition

{
n∑

i�1
|F(xi) − F(xi−1)| : x0 < x1 < . . . < xn � x

}
.

Remark 28.1.1

1. TF is increasing (non-decreasing).

2. ∀x ∈ R, notice that
0 ≤ TF(x) ≤ VF(R). �

Example 28.1.1

1. Let F : [a, b] → R be increasing, with an arbitrary partition

a � x0 < x1 < . . . < xn � b.

Then∑n
j�1

��F(x j) − F(x j−1)
�� � ∑n

j�1 F(x j) − F(x j−1) ∵ F is increasing

� F(xn) − F(x0)

� F(b) − F(a) < ∞.

Telescope
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Thus F ∈ BV[a, b]. Furthermore

VF[a, b] � F(b) − F(a).

2. Consider the function F(x) � x. Then it’s clear that F ∈ BV[a, b].
However, F < BV(R), since F(x) → ∞ as x → ∞ and so VF(R) � ∞.

3. Let F : [a, b] → C ∈ BV[a, b]. Let

F̃ : R → C

x 7→


F(b) x ≥ b

F(x) a < x < b

F(a) x ≤ a

.

Thus F̃ ∈ BV[a, b] as well, and

TF[a, b] � TF̃(R).

This means that we can focus on functions that map from the whole
real line.

4. Let F : R → R be increasing and bounded. Then

lim
x→∞

� sup{F(x) : x ∈ R} �: F(+∞) < ∞

and
lim

x−>−∞
� inf{F(x) : x ∈ R} �: F(−∞) < ∞.

Then F ∈ BV(R) and

TF(R) � F(+∞) − F(−∞).

5. Suppose h ∈ L1(R, m) Let

F(x) �
∫
(−in f t y,x)

h dm.

Then F ∈ BV(R), and

TF(R) ≤
∫

R

|h | dm.
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� Proof

Let x0 < x1 < . . . < xn . Notice that

��F(x j) − F(x j−1)
�� � �����∫(−∞,x j )

h dm −
∫
(−∞,x j−1)

h dm

�����
�

�����∫(x j−1,x j )
h dm

�����
≤

∫
(x j−1,x j )

|h | dm,

for each j. Thus

n∑
j�1

��F(x j) − F(x j−1)
�� ≤ ∫

(x0,xn )
|h | dm

≤
∫

R

|h | dm.

It is then clear that
TF(R) ≤

∫
R

|h | dm. �

� Lemma 68 (Total Variation ±F)

Let F : R → R ∈ BV(R). Then TF + F and TF − F are both increasing
functions and bounded.

� Proof

We’ll come back �

� Note 28.1.1 (Jordan Decomposition of F)

For F ∈ BV(R), we may write

F �

(
TF + F

2

)
−

(
TF − F

2

)
,
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which is a difference of 2 increasing bounded functions.

�Theorem 69 (Properties of Functions of Bounded Variation)

1. BV(R) is a vector space.

2.

F ∈ BV(R) ⇐⇒ F ∈ BV(R)

⇐⇒ <(F), =(F) ∈ BV(R),

where F is the complex conjugate of F.

3. Let F : R → R. Then

F ∈ BV(R) ⇐⇒ F � H1 − H2,

where H1, H2 are increasing and bounded.

4.

F ∈ BV(R)

�⇒ lim
y→x+

F(y), lim
y→x−

F(y), lim
y→∞

F(y), lim
y→−∞

F(y)

all exists.

5. Let F ∈ BV(R). Then the set of points of discontinuity of F is at most
countable.

6. Let F : R → R ∈ BV(R). Then F′(x) exists a.e.

� Proof

We’ll come back �

� Definition 45 (Absolutely Continuous Functions)

A function f : R → C is said to be absolutely continuous if ∀ε > 0,
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∃δ > 0 such that ∀(a1, b1), . . . , (an , , bn) that are disjoint, if
∑n

j�1(b j −
a j) < δ, then

n∑
j�1

��F(b j) − F(a j)
�� < ε.

We write that f ∈ AC(R).

Remark 28.1.2

Notice if there is only one of (ai , bi) that works, then the above definition is
simply the definition of uniform continuity. Thus, since this ε works for all
the intervals, in a sense we may think of absolutely continuous functions as
“uniformly uniform continuous functions”. �
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29.1 Functions of Bounded Variation (Continued 2)

� Proposition 70 (Measure Constructed From A Bounded, Abso-
lutely Continuous, Increasing, Right-Continuous Function)

Let H : R → R be a bounded, right-continuous increasing function. Then

µH � m ⇐⇒ H ∈ AC(R).

� Proof

We’ll come back �

� Lemma 71 (Absolutely Continuous Functions are of Bounded
Variation)

Let F : [a, b] → R be absolutely continuous. Then F ∈ BV[a, b].

� Proof

We’ll come back �
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� Lemma 72 (Total Variation of Absolutely Continuous Func-
tions are Absolutely Continuous)

Let F : [a, b] → R be absolutely continuous. Then TF(x) is also absolutely
continuous.

� Proof

We’ll come back �

� Lemma 73 (Building Block for Fundamental Theorem of Cal-
culus for General Measures)

Let f be a bounded measurable function, and a ∈ R. Let

F(x) B
∫
(a,x)

f dm.

Then F′(x) � f (x) a.e.

� Proof

We’ll come back �
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30.1 Functions of Bounded Variation (Continued 3)

�Theorem 74 (Anti-Derivative of Bounded Integrable Func-
tions)

Let f ∈ L1([a, b], m). Let

F(x) B
∫
(a,x)

f dm.

Then F′ exists a.e. and F′(x) � f (x) a.e.

� Proof

We’ll come back �

�Theorem 75 (Fundamental Theorem of Calculus (Lebesgue
Version))

Let F : [a, b] → R. TFAE:

1. F is absolutely continuous.

2. ∃ f integrable such that

F(x) � F(a)+
∫
(a,x)

f dm ∀a ≤ x ≤ b.
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3. F′(x) exists a.e., F′ is integrable and

F(x) � F(a)+
∫
(a,x)

F′ dm.

� Proof

We’ll come back

(2) �⇒ (3) This is proven in �Theorem 74. �

30.2 The Lp-spaces
It is helpful to review some of the
contents from real analysis on metric
spaces, particularly in

• metric;

• convergence;

• Cauchy sequences; and

• completeness.

You may find the material at PMATH
351.

It may also be helpful to review
some of the materials on Lp spaces in
the course on Lebesgue measure and
integration (PMATH 450).

� Definition 46 (Lp-spaces)

Let (X,M, µ) be a measure space. Let 1 ≤ p < ∞. We define

Lp(X,M, µ) B
{

f : X → Re measurable :
∫

X

�� f
��p dµ < ∞

}
.

We set  f


p �

(∫
X

�� f
��p dµ

) 1
p

.

� Definition 47 (Essentially Bounded)

Let f : X → Re be a measurable function. We say that f is essentially
bounded if

∃M µ({x :
�� f (x)

�� > M}) � 0.

� Definition 48 (Essential Norm)

Let f : X → Re be a measurable function. We define the essential norm
of f as  f


∞ B inf{M : µ({x :

�� f (x)
�� > M}) � 0}.

https://tex.japorized.ink/PMATH351F18/classnotes.pdf
https://tex.japorized.ink/PMATH351F18/classnotes.pdf
https://tex.japorized.ink/PMATH450/classnotes.pdf
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� Note 30.2.1

While we call
 f


∞ the essential norm, we have not defined what a norm

is. We shall do that later.

� Definition 49 (L∞-space)

We define the L∞-space as

L∞(X,M, µ) B { f : X → Re measurable : f is essentially bounded }.

� Definition 50 (Hölder conjugates)

Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. We say that (p, q) is a Hölder conjugate
if

1
p
+

1
q
� 1,

where we set
p � 1, q � ∞ and p � ∞, q � 1.

� Lemma 76 (Young’s Inequality)

Let (p, q) be a Hölder conjugate, and a, b ≥ 0. Then

a · b ≤ ap

p
+

bq

q
.

� Proof

We’ll come back �
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�Theorem 77 (Hölder’s Inequality)

Let (p, q) be a Hölder conjugate. If f ∈ Lp(X,M, µ) and g ∈ Lq(X,M, µ),
then f · g ∈ L1(X,M, µ) and f · g


1 ≤

 f


p ·
g


q .

� Proof

We’ll come back �
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31.1 The Lp-spaces (Continued)

� Proposition 78 (Lp-spaces are Vector Spaces)

Let 1 ≤ p ≤ ∞. Lp(X,M, µ) is a vector space.

� Proof

Case: 1 < p < ∞ Let α ∈ R and f , g ∈ Lp .

Closure under scalar multiplication Notice that∫
X

��α f
��p dµ � |α |p

∫
X

�� f
��p dµ < ∞.

Thus α f ∈ Lp .

Closure under addition First, notice that

�� f (x)+ g(x)
�� ≤ 

2
�� f (x)

�� �� f (x)
�� ≥ ��g(x)��

2
��g(x)�� otherwise

.

Thus

�� f (x)+ g(x)
��p ≤


2p

�� f (x)
��p �� f (x)

�� ≥ ��g(x)��
2p

��g(x)��p otherwise

≤ 2p
(�� f (x)

��p + ��g(x)��p) .
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Hence ∫
X

�� f + g
��p dµ ≤

∫
X

2p
(�� f (x)

��p + ��g(x)��p) dµ < ∞.

It follows that f + g ∈ Lp . �

�Theorem 79 (Minkowski’s Inequality)

Let 1 ≤ p ≤ ∞. If f , g ∈ Lp , then f + g


p ≤
 f


p +

g


p .

� Proof

Case: 1 < p < ∞ Let (p, q) be a Hölder conjugate. Note that q �
p

p−1

and lp � (p − 1)q. Then, using Hölder’s Inequality at (∗), we have f + g
p

p �

∫
X

�� f (x)+ g(x)
��p dµ

�

∫
X

�� f (x)+ g(x)
�� �� f (x)+ gx

��p−1 dµ

≤
∫

X

�� f (x)
�� �� f (x)+ g(x)

��p−1 dµ +

∫
X

��g(x)�� �� f (x)+ g(x)
��p−1 dµ

(∗)
≤

(∫
X

�� f (x)
��p dµ

) 1
p
(∫

X

�� f (x)+ g(x)
��(p−1)q dµ

) 1
q

+

(∫
X

��g(x)��p dµ
) 1

p
(∫

X

�� f (x)+ g(x)
��(p−1)q dµ

) 1
q

�
 f


p

(∫
X

�� f (x)+ g(x)
��p) 1

q

+
g


p

(∫
X

�� f (x)+ g(x)
��p) 1

q

� (
 f


p +

g


p)
(∫

X

�� f (x)+ g(x)
��p) 1

q

� (
 f


p +

g


p)
 f + g

 p
q .

Hence  f + g
p− p

q
p ≤

 f


p +
g


p .
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Finally, note that

p −
p
q
� p

(
1− 1

q

)
� p · 1

p
� 1.

Thus  f + g


p ≤
 f


p +

g


p . �

� Definition 51 (Semi-norm)

Let V be a vector space over C. We call the function ‖ ·‖ : V → R a
semi-norm when ‖ ·‖ satisfies

1. ∀v ∈ V ‖v‖ ≥ 0;

2. ∀v ∈ V ∀α ∈ C ‖αv‖ � |α | ‖v‖ ; and

3. (triangle inequality) ∀v, w ∈ V ‖v + w‖ ≤ ‖v‖ + ‖w‖ .

� Definition 52 (Norm)

Let V be a vector space over C. We call the function ‖ ·‖ : V → R a
norm when ‖ ·‖ is a semi-norm such that

‖v‖ � 0 ⇐⇒ v � 0.

� Definition 53 (Normed Space)

Let V be a vector space over C and ‖ ·‖ be a norm on V. We call the pair
(V, ‖ ·‖) a normed space.

� Note 31.1.1

Let ‖ ·‖ be a semi-norm for a vector space V. Then the set

N B {v ∈ V : ‖v‖ � 0}
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is a subspace. We may then consider the quotient space

V /N B {v +N : v ∈ V} � {[v] : v ∼ w},

where v ∼ w ⇐⇒ v − w ∈ N . 1 We can show that V /N is a vector 1 We shall not show that V /N is a
vector space, but this is not hard, and
those that are familiar with vector
spaces will quickly realize so.

space. We may then set
‖[v]‖ B ‖v‖ ,

which will then be a norm on V /N .

Most importantly to us, notice that given f ∈ Lp , we know that f


p � 0 ⇐⇒
∫

X

�� f
��p dµ � 0 ⇐⇒ f � 0 a.e.

� Definition 54 (Lp-spaces)

Let (X,M, µ) be a measure space. Let 1 ≤ p ≤ ∞. Consider the space
Lp(X,M, µ). Let

N p B { f ∈ Lp : f � 0 a.e. }.

We define

Lp(X,M, µ) B Lp(X,M, µ)
/
N p(X,M, µ)

� {[ f ] : f ∼ g ⇐⇒ f � g a.e. }.

� Note 31.1.2

We define the norm of Lp-spaces as we do in the last note, i.e. we define[ f ]


p B
 f


p

for any [ f ] ∈ Lp(X,M, µ). For 1 ≤ p < ∞, Minkowski’s Inequality tells
us that (Lp(X,M, µ), ‖ ·‖ p) is a normed space. We leave the case of p � ∞
to be a homework problem for a later date.
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Remark 31.1.1 (Normed spaces are metric spaces)

It is important that we note the following. 2 A norm induces a metric, and 2 This requires knowledge from metric
spaces. See PMATH 351.so normed spaces are also metric spaces. In particular, given a normed vector

space (V, ‖ ·‖), the standard metric of the vector space is given by

ρ(v, w) � ‖v − w‖ ,

and we can show that (V, ρ) is a metric space. �

� Definition 55 (Banach Space)

A normed vector space (V, ‖ ·‖) is called a Banach space if (V, ρ) is
complete, where ρ is the induced metric

ρ(v, w) � ‖v − w‖ .

Note that completeness is in the context of metric spaces, where every
Cauchy sequence converges to a point in the space.

�Theorem 80 (Riesz-Fischer Theorem)

Let (X,M, µ) be a measure space. For any 1 ≤ p ≤ ∞, (Lp(X,M, µ), ‖ ·‖ p)
is a Banach space.

� Proof

Case: 1 ≤ p < ∞ Let {[ fn]}n ⊆ Lp be a Cauchy sequence. We need to
construct an f ∈ Lp such that

[ f ] − [ fn]


p → 0 as n → ∞.

By the Cauchyness of the arbitrary sequence, inductively define a
subsequence {N1 < N2 < . . .} such that ∀n, m ≥ Nk we have[ fn] − [ fm]


p <

1
2k

.

Set
g1 � fN1 , g2 � fN2 − fN1 , . . . , gk � fNk − fNk−1 , . . . .

https://tex.japorized.ink/PMATH351F18/classnotes.pdf
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Notice that gk


p �
[gk]


p �

[ fNk ] − [ fNk−1]


p <
1

2k−1

It thus follows that
∞∑

k�1

gk


p < ∞.

Let C �
∑∞

k�1
��gk

��
p < ∞. Let hn(x) �

∑n
k�1

��gk(x)
��. It is clear that

h1(x) ≤ h2(x) ≤ h3(x) ≤ . . . .

Set h(x) � ∑∞
k�1

��gk(x)
�� � limn→∞ hn(x) (which possibly evaluates to

∞). Then for any m,

‖hm(x)‖ p �

 m∑
k�1

��gk(x)
��

p

≤
m∑

k�1

��gk(x)
��

p ≤ C.

In other words, ∀m, we have∫
X

hm(x)p dµ � ‖hm(x)‖ p ≤ Cp .

3 Furthermore, we know that hm(x)p ↗ h(x)p . By the �Monotone 3 Note that we may drop the absolute
value on hm(x) since hm(x) ≥ 0.

Convergence Theorem (MCT), we have∫
X

h(x)p dµ � lim
m→∞

∫
X

hm(x)p dµ ≤ Cp .

This means that µ({x : h(x) � ∞}) � 0.

Let Y � X \ {x : h(x) � ∞}. Then ∀x ∈ Y, we have h(x) < ∞. This
means that ∀x ∈ Y,

h(x) �
∞∑

k�1

��gk(x)
�� < ∞,

i.e. {gk}k is absolutely convergent on Y. Hence {gk}k converges on
Y. With that, we define

f (x) B

∑∞

k�1 gk(x) x ∈ Y

0 x < Y
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Then ∀x ∈ Y, we have

f (x) � lim
K→∞

K∑
k�1

gk(x) � lim
K→∞

fNk (x).

Finally,  f −
K∑

k�1

gk


p

�

(∫
X

����� f (x) −
K∑

k�1

gk(x)
�����p dµ

) 1
p

�

(∫
Y

����� f (x) −
K∑

k�1

gk(x)
�����p dµ

) 1
p

�

(∫
Y

�� f (x) − fNk (x)
��p dµ

) 1
p

�

(∫
Y

����� ∞∑
k�K+1

gk(x)
�����p dµ

) 1
p

�

 ∞∑
k�K+1

gk


p

≤
∞∑

k�K+1

gk


p ,

where we observe that the final term is the tail of C, and hence goes
to 0 as K → ∞. Hence

 f − fNk


p → ∞, and so[ f ] − [ fn]


p → 0 as n → ∞. �





32 � Lecture 32 Nov 25th 2019

32.1 The Lp-spaces (Continued 2)

� Homework (Homework 24)

Let F : R → R be increasing and right continuous. Prove that ∃Fi :

R → R increasing and right continuous for i � 1, 2 so that F � F1 + F2,
µF1 � m and µF2⊥m.

� Homework (Homework 25)

Let f ∈ L∞(X,M, µ). Prove that

µ({x :
�� f (x)

�� >  f

∞}) � 0

and that if
 f


∞ > 0, then f


∞ � sup{M : µ({x :

�� f (x)
�� > M}) > 0}.

� Homework (Homework 26)

Let f , g ∈ L∞(X,M, µ). Prove that f + g, f · g ∈ L∞(X,M, µ) and f + g

∞ ≤

 f

∞ +

g

∞ f · g


∞ ≤

 f

∞ ·

g

∞ .
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� Homework (Homework 27)

Prove (L∞(X,M, µ), ‖ ·‖∞) is a Banach space.

� Homework (Homework 28)

Let 0 < α, and define fα : [0, 1] → R by fα(x) � xα sin
( 1

x

)
. Find and

prove the values of α such that

1. fα ∈ BV[0, 1].

2. fα ∈ AC[0, 1].

�Theorem 81 (Density of Simple Functions in L
p)

Let 1 ≤ p ≤ ∞, f ∈ Lp(X,M, µ) and ε > 0. Then ∃ψ ∈ Lp(X,M, µ) a
simple function such that

 f − ψ


p < ε.

� Proof

Case: 1 < p < ∞ Write f � f + − f −. By �Theorem 25, there exists
simple functions

ϕn ↗ f + and ψn ↗ f −,

where ϕn ,ψn ∈ Lp(X,M, µ) since ϕn ≤ f �⇒
∫

X ϕn dµ ≤∫
X f + dµ < ∞ and similarly so for ψn with f −.

Let γn � ϕn − ψn . Then�� f − γn
��p �

�� f + − ϕn − ( f − − ψn)
��p

�
�� f + − ϕn

��p + �� f − − ψn
��p

≤
�� f +

��p + �� f −
��p �

 f


p .

because of how the pairs alternate
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By the �Monotone Convergence Theorem (MCT),

lim
n→∞

∫
X

�� f − γn
��p dµ �

∫
X

lim
n→∞

�� f − γn
��p dµ � 0.

Thus
 f − γn

p
p → 0, i.e. ∃n0 such that

 f − γn


p < ε. �

Remark 32.1.1

This density extends to Lp-spaces. �

� Definition 56 (Bounded Linear Functional)

Let (V, ‖ ·‖) be a normed vector space. A linear function T : V → R is
called a linear functional. It is called a bounded linear functional if
∃M such that |T(v)| ≤ M · ‖v‖ for all v ∈ V.

We define

‖T‖ B inf{M : |T(v)| ≤ M · ‖v‖ , v ∈ V}.

Alternatively,

‖T‖ B sup{|T(v)| : ‖v‖ � 1}

� sup{|T(v)| : ‖v‖ ≤ 1}

� sup
{
|T(v)|
‖v‖ : v , 0

}
.

� Proposition 82 (Bounded Linear Functionals are Continuous)

Let T : V → R be a bounded linear functional. Then T is continuous. 1 1 The converse is also true, and we have
seen this in PMATH 351 and PMATH
450.

� Proof

Given ε > 0, let δ �
ε

‖T‖ . Then if d(v, w) � ‖v − w‖ < δ, we have

|T(v) − T(w)| � ‖T(v − w)‖ ≤ ‖T‖ · ‖v − w‖ < ‖T‖ · ε

‖T‖ � ε. �

https://tex.japorized.ink/PMATH351F18/classnotes.pdf
https://tex.japorized/ink/PMATH450/classnotes.pdf
https://tex.japorized/ink/PMATH450/classnotes.pdf


218 Lecture 32 Nov 25th 2019 The Lp-spaces (Continued 2)

� Proposition 83 (p-norms As Bounded Linear Functionals)

Let (p, q) be a Hölder conjugate, and g ∈ Lq(X,M, µ). Then the function
Tg : Lp(X,M, µ) → R defined by Tg[ f ] B

∫
X f g dµ is a bounded linear

functional with
Tg

 �
g


q . Moreover,

Tg1 � Tg2 ⇐⇒ g1 � g2 a.e.

� Proof

Case: 1 < p < ∞ That Tg is linear is by linearity of integration.
Furthermore, note that if f1 � f2 a.e., then f1 g � f2 g a.e. and so

Tg[ f1] �
∫

X
f1 g dµ �

∫
X

f2 g dµ � Tg[ f2].

Thus Tg is well-defined.

By Hölder’s Inequality, ∀ f ∈ Lp(X,M, µ), we have��Tg[ f ]
�� � ����∫

X
f g dµ

���� ≤  f


p ·
g


q �

[ f ]


p ·
[g]q .

By definition (the last of the alternatives), we know that Tg is
bounded and

Tg
 ≤

g


q .

2 Consider f (x) � sgn(g(x)) ·
��g(x)��q−1. Then f (x)g(x) �

��g(x)��q . 2 We consider one example where
the other inequality is true, and this
is sufficient to show that the other
inequality is true.

This means thatg
q

q �

(∫
X

f g dµ
)
�

��Tg[ f ]
�� ≤  f


p

g


q .

Note that f
p

p �

∫
X

�� f
��p dµ �

∫
X

��g��p(q−1) dµ �

∫
X

��g��q dµ �
g

q
q .

Hence Tg
 ≥

��Tg[ f ]
�� f


p

�

g
q

qg
q/p

q

�
g

q−q/p
q �

g


q .

Hence we must have
Tg

 �
g


q . �
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�Theorem 84 (Riesz Representation Theorem)

Let 1 ≤ p < ∞ and (X,M, µ) be a σ-finite measure space. If T :

Lp(X,M, µ) → R is a bounded linear functional, then ∃g ∈ Lq such
that T � Tg and

g


q � ‖T‖ .

� Proof

Case: 1 < p < ∞

Case: µ(X) < ∞ Since µ is finite, ∀E ∈ M such that

‖χE‖ p
p �

∫
X
χ

p
E dµ �

∫
X
χE dµ � µ(E).

In other words, all characteristic functions of subsets of X are in the
Lp-space.

Let ν : M→ R by ν(E) � T(χE).

Claim: ν is a finite signed measure To be proven

Constructing g ∈ Lq Note that ∀E ∈ M, µ(E) � 0 �⇒ ‖χE‖ p �

0 �⇒ χE � 0 a.e. This means that

µ(E) � T([χE]) � T([0]) � 0.

Thus ν � µ.

Taking a Hahn Decomposition, write X � A ·∪ B, where A is a
positive set and B a negative set. Let ν+(E) � ν(E ∩ A) and ν−(E) �
−ν(E ∩ B). By Lemma 59, we know that ν+, ν− � µ. By the Radon-
Nikodym theorem, ∃g+, g− : X → [0,∞] such that

ν+(E) �
∫

E
g+ dµ and ν−(E) �

∫
E

g− dµ.

Then

ν(E) �
∫

E
(g+ − g−) dµ �

∫
X
χE(g+ − g−) dµ � T([χE]).
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It follows that for any simple function ψ,

T([ψ]) �
∫

X
ψ(g+ − g−) dµ. (32.1)

Let g � g+ − g−. Note that g+ �B� 0 and g− �A� 0.

Since g+, g− ≥ 0, by �Theorem 25, ∃ϕn ↗ g+ and ψn ↗ g−.
Let γn � ϕ

q/p
n − ψq/p

n . Then γn(x) → g(x)q/pas n → ∞. Observe that
for each n, we have

T([γn]) �
∫

X
γn g dµ �

∫
X

(
ϕ

q/p
n − ψq/p

n

)
(g+ − g−) dµ

�

∫
X
ϕ

q/p
n g+ dµ +

∫
X
ψ

q/p
n g dµ,

since ϕq/p
n g− � 0 � ψ

q/p
n g+ for all x. Note that for (p, q) a Hölder

conjugate, we have q
p + 1 � q. Thus, with the �Monotone Conver-

gence Theorem (MCT),

lim
n

T([γn]) � lim
n

∫
X
ϕ

q/p
n g+

+ ψ
q/p
n g− dµ

�

∫
X
(g+)q/p+1

+ (g−)q/p+1 dµ

�

∫
X

��g��q dµ �
g

q
q .

Note that this means we have

‖T‖ ≤
g

q
q .

Observe thatg
q

q � lim
n

T([γn]) ≤ ‖T‖ · lim
n

γn


p . (32.2)

Note that

lim
n

∫
X

��γn
��p dµ � lim

n

∫
X

��ϕq
n + ψ

q
n
�� dµ MCT

�

∫
X

��g��q dµ.

Thus

lim
n

γn


p �

(∫
X

��g��q dµ
) 1

p

�
g

q/p
q .
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Going back to Equation (32.2), we haveg
q

q ≤ ‖T‖ ·
g

q/p
q ,

which implies that g


q �
g

q−q/p
q ≤ ‖T‖ .

We have thus constructed g such that g ∈ Lq .

T � Tg Recall that we defined

Tg([ f ]) B
∫

X
f g dµ,

which is a bounded linear functional on Lp . By Equation (32.1), we
showed that Tg([ψ]) � T([ψ]) for any simple function ψ. By the den-
sity of simple functions in Lp , and bounded linear functionals being
continuous, we have that ∀[ f ] ∈ Lp , Tg([ f ]) � T([ f ]). Furthermore,
note that there is uniqueness for g, for if

ν(E) �
∫

E
g1 dµ �

∫
E

g2 dµ,

then g1 � g2 a.e.

Note that this also shows that
g


q � ‖T‖ vis-á-vis � Proposi-

tion 83.

This completes the case for µ(X) < ∞. a

Case: µ is σ-finite (sketch proof) We may write X �
Ï

n Xn where
µ(Xn) < ∞ for all n. The key idea is to extend each f : Xn → R by
defining f̃ : X → R by

f̃ (x) �


f (x) x ∈ Xn

0 x < Xn

.

Then ∫
Xn

�� f
��p dµ �

∫
X

�� f̃
��p dµ.

Using the one-to-one identification, from Lp(Xn ,M, µ) → Lp(X,M, µ)
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given by f → f̃ , we note that

T �Lp (Xn ,M,µ): Lp(Xn ,M, µ) → R

remains a bounded linear functional. Then by the last case for when
µ(Xn) < ∞, for each n, ∃![gn] ∈ Lq(Xn ,M, µ) with gn : Xn → R such
that gn

q
q �

∫
Xn

��gn
��q dµ < ∞ and T([ f̃ ]) �

∫
Xn

f gn dµ.

We can then stitch each gn ’s together to get g : X → R given by

g(x) � gn(x) for when x ∈ Xn .

From here, it remains to show that g ∈ Lq(X,M, µ) and that
Tg([ f ]) � T([ f ]) for all [ f ] ∈ Lp . �

Remark 32.1.2

1. Note that Riesz Representation Theorem is false if X is not σ-finite.

2. Even when X is σ-finite, the theorem is false for when p � ∞. In par-
ticular, ∃T : L∞(X,M, µ) → R a bounded linear functional such that
�g ∈ L1 such that T([ f ]) �

∫
X f g dµ. This is also the case for when

X � N, and µ is the counting measure. �



A �Deep Dives into Proofs

A.1 Proving thatM is closed under countable unions in Carathéodory’s
Theorem

This section is created in reference to the proof for Carathéodory’s
Theorem.

We have
M � {A ⊆ X : A is µ∗-measurable }

where µ∗ is an outer measure. We wanted to show thatM is a σ-
algebra. In particular, the hard problem was to show thatM is closed
under countable unions.

Consider {An}n ⊆ M. Thinking from behind, WTS ∀E ⊆ X,

µ∗(E) ≥ µ∗

(
E ∩

⋃
n

An

)
+ µ∗ ©«E ∩

(⋃
n

An

) Cª®¬
� µ∗

(
E ∩

⋃
n

An

)
+ µ∗

(
E ∩

(⋂
n

AC
n

) )
.

For simplicity, write B �
⋃

n An . WTS

µ∗(E) ≥ µ∗(E ∩ B)+ µ∗(E ∩ BC). (∗)

Also thinking from behind, ifM is a σ-algebra, 1 then it must be an 1 Useful links: Algebra of Sets, σ-
Algebra of Sets.

algebra (of sets). We showed thatM is closed under complementation.

IfM is closed under finite unions, 2 then for each N ∈ N, 2 Unproved point 1



224 Deep Dives into Proofs Proving thatM is closed under countable unions in Carathéodory’s Theorem

µ∗(E) � µ∗

(
E ∩

N⋃
n�1

An

)
+ µ∗ ©«E ∩

(
N⋃

n�1
An

) Cª®¬ .

Let BN B
⋃N

n�1 An ∈ M. Then

µ∗(E) � µ∗(E ∩ BN )+ µ∗(E ∩ BC
N ) (†)

for each N ∈ N.

Notice that

BN �

N⋃
n�1

An ⊆
∞⋃

n�1
An � B.

Consequently,

�⇒ BC ⊇ BC
N �⇒ µ∗(BC) ≤ µ∗(BC

N )

by the monotonicity of the outer measure.

As a result, looking at Equation (∗) and Equation (†), we see that

µ∗(E) � µ∗(E ∩ BN )+ µ∗(E ∩ BC
N )

≥ µ∗(E ∩ BN )+ µ∗(E ∩ BC)

for each N ∈ N.

We are in quite the predicament at this point. We need to do some-
thing about µ∗(E ∩ BN ) and somehow relate it to µ∗(E ∩ B). We can try
and see that

µ∗(E ∩ BN ) ≤
N∑

n�1
µ∗(E ∩ An).

Notice that in the case of equality, we would have

µ∗(E) ≥
N∑

n�1
µ∗(E ∩ An)+ µ∗(E ∩ BC)

for all N ∈ N. Since {∑N
n�1 µ

∗(E ∩ An)}N is an increasing sequence in
R, we have

µ∗(E) ≥
∞∑

n�1
µ∗(E ∩ An)+ µ∗(E ∩ BC),
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and
∞∑

n�1
µ∗(E ∩ An) ≥ µ∗(E ∩ B)

by subadditivity since B �
⋃∞

n�1 An .

Unfortunately, the equality does not always hold. But, since µ∗ is an
outer measure, we can make an educated guess 3 that given {An}n a 3 Unproved point 2

disjoint collection of sets,

µ∗

(
N⋃

n�1
An

)
�

N∑
n�1

µ∗(An).

Our work becomes even easier with the realization of Homework 4.
Proving that all of our above argument works for the case of {An}n ⊆
M being disjoint, is sufficient to prove thatM is indeed a σ-algebra.





B �Common Themes and Tricks

B.1 Re-represent an arbitrary union using disjoint sets

A common trick in measure theory, especially when it comes to a
collection of sets, is to represent its union as a disjoint union of sets.
This is a useful trick because measures simply add over disjoint sets,
instead of just having subadditivity.

Example B.1.1

Given a collection {An}n of sets, we may define a collection of disjoint
sets whose union is

⋃
n An as such:

F1 � A1

F2 � A2 \ A1

F3 � A3 \ (A1 ∪ A2)
...

Fn � An \
n−1⋃
i�1

Ai

... �

Example B.1.2

Given an increasing collection {An}n of sets, i.e.

A1 ⊆ A2 ⊆ A3 ⊆ . . . ,
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we may represent the countable union of the An ’s as such: let

F1 � A1

F2 � A2 \ A1

F3 � A3 \ A2

...

Fn � An \ An−1

... �

Remark B.1.1

The reason why we simply consider Fn � An \ An−1 instead of having to take
a union up to the (n − 1)th set in Example B.1.2 is because

n−1⋃
i�1

Ai � An−1. (B.1)

The reader may also notice that Example B.1.2 is an application of Exam-
ple B.1.1 just because of Equation (B.1). �

B.2 Abusing σ-algebras

When we discuss about a property within the realm of σ-algebras, one
should remain aware that one of the options available to them when
working on a proof, is to show that the set that contains elements that
allows the property to hold is itself a σ-algebra.

In particular, if P is the property of which we want to show is true,
then we may be able to show that

A B {x : P(x)}

is a σ-algebra to complete our proof.
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Finite measure, 37

Fubini-Tonelli Theorem, 149
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Lebesgue’s Dominated Conver-
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Measure, 33
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Radon-Nikodym Theorem, 174
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Riemann lower sum, 19
Riemann upper integral, 20
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Semi-norm, 209
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