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& Preface

Assignment problems is introduced in class as we go, so we have the

special environment homework for these in this note.

Iincluded a special chapter in the appendix (see Appendix A)
that records and provides insights into what drove the direction(s)
of certain proofs. This is an attempt to resolve the problem of proofs
being overly obscure with its motivations. Contents presented in this
appendix are typically like rough work, and so are typically much

longer than the presented proof.

I also made an appendix for some of the common themes and tricks
(see Appendix B) that are seen repeatedly in this topic I think it is
invaluable that they are noted down, because the ideas that these

commonalities carry forward.






@ Lecture 1 Sep 04th, 2019

Motivation for the Study of Measures

Recall Riemann integration.

& Definition (Riemann Integration)

Let f : [a,b] = R be a bounded function. We call
P={a=xp<x1<...<x,=0b}C|a,b]
a partition of [a, b], and
Axi = x;—Xxj1

as the length of the i interval fori=1,...,n.

Let
M; = sup{f(x) : x € [xi-1,xi]}

be the supremum of f on the i interval, and
mi =inf{f(x) : x € [xi-1, 5]}

be the infimum of f on the i'" interval. We define the Riemann upper

sum as

U(f,P) = ) MiAx;,

and the Riemann lower sum as

L(f,P) = Z miAx;.

Figure 1.1: Idea of Riemann integration
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We define the as

T ab
/ fdx = irl}fu(f,P)
and the as
b
/ fdx =supL(f,P).

We say that f is if

Zfdxzfabfdx,

and we write the integral of f as

‘/abfdx:ffdx:‘/ahfdx.

As hyped up as one does earlier in university about Riemann inte-

gration, there are functions that are not Riemann integrable!
Example 1.1.1

Consider a function f : [0,1] — R given by

1 x€Q
flx)= :
0 x¢Q
Then _
b b
/ fdleand/ fdx =0.
Thus f is not Riemann integrable. >

1. We cannot characterize functions that are Riemann integrable, i.e. we
do not have a list of characteristics that we can check against to see if a

function is Riemann integrable.
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This remained an open problem in the earlier 1920s.

2. The Riemann integral behaves badly when it comes to pointwise limits

of functions. The next example shall illustrate this.

3. The Riemann integral is awkward when f is unbounded. In particular,
we used to hack our way around by looking at whether the Riemann
integral converges to some value the function approaches the unbounded
point, and then “conclude” that the integral is the limit of that conver-

gence.

4. Recall that the states that

d X
& [ = s,

We know that this works for Riemann integrals. By the first shortcom-
ing, the problem here is that we do not fully know what are the functions

that the Fundamental Theorem is true for.

5. In PMATH450, we saw that Fourier developed the Fourier series, which
is an extremely useful tool in solving using
sines and cosines. However, the convergence of the Fourier series re-
mains largely unexplained by Fourier, and we have but developed some

roundabout ways of showing some convergence.

6. Consider the set R if Riemann integrable functions on the interval

[a, b]. The set R has a natural metric:

b
a5,9)= [ I -slax

However, the metric space (R, d) is not complete. This means many of
our favorite results in PMATH351 are not usable!

7. There are many functions that seem like they should have an integral,

but turned out that they did not under Riemann integration.

Example 1.1.2 (Pointwise Limits of Riemann Integrable Functions is

not necessarily Riemann Integrable)
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Let Q = {x; }nen. Then consider a sequence of functions

folx) = 1 xe{xl,...,xn}.
0 x¢&{xy,...,x,}

It is rather clear that

ffdx:‘/ahfdxzo.

However, the pointwise limit of the f,’s, and that is

) 1 xe@Q
lim f,(x) = f(x) = ,
n—oo 0 x ¢ Q
is, as mentioned in the last example, not Riemann integrable. N

To address the shortcomings of the Riemann integral, Henri Lebesgue
developed the , of which we have seen in PMATH450.

Instead of dividing the x-axis, Lebesgue decided to divide the y-

axis first.
If the range of a function f is [c, d], where ¢, d can be infinite, then
we partition the interval such that
P={c=yy<ym<...<y,=4d},
and we define
Ei ={x: f(x) € [yi-1, yil}.

Then if A; is the area of the “rectangle” for the i interval of [c, d], we
have
vi-1-0(E;) < A; <y - U(E)),

where ¢(E;) is the of the set E;. Then if we let /ab f

denote the Lebesgue integral of f, we would expect

n b n
Z yi-1-C(E;) < / f< Z yi - C(E;).
i=1 a i=1

However, to truly understand what this means, we need to understand

what the Lebesgue measure is.
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Furthermore, recall that in PMATH450, we saw that not all sets, in
R for example, are measurable, and for ‘good’ reasons, there always

exists non-measurable sets.

Algebras and o-Algebra of Sets

For this course, we shall use the conven-

tion that
e the ‘ambient’ space X is always
& Definition 1 (Algebra of Sets) non-empty;
e P(X), the power set of X, has non-
Given X, a non-empty collection of subsets of X, i.e. 0 # A € P(X), is trivial elements; and
called an algebra of sets of X provided that: e wedenote AC = {x € X:x¢A} for
ACX.

1. Ay,..., Ay e A = UL Ai e A;and

2. Ae A = A€ e A.

& Proposition 1 (Properties of Algebra of Sets)
If A is an algebra of sets of X, then
3. 0,XeA;
4. ABEA — A\B={xeX|x€eAAx¢B}eA;and

5. A1,..., Ay e A = N A €A

& Proof

3 A+0 = FJAeA — A°ce A = AUA=Xe A =
0=XCeA.

4 ABeA = A°ce A = AUBeA = A\B =
(ACUB)C € A.

5. (De Morgan’s Law) Notice that (A1 NA;N...NA,)C = Af LJAzc U

... AS € A since AiC € A. Thus the complement

AiNAyN...NA, € A. o
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Given X and 0 # A C P(X), we say that A is a o-algebra of sets of X if

it is an algebra of sets and

VA, e A,neN, UAn € A.
nelN

Example 1.2.1

1.

P(X) is a o-algebra.

. Consider X as an infinite set. We say that a set A is if AC is

finite. Let
A = {A € P(X) | A is finite or cofinite }.

Then A is an algebra of sets:

e finite union of finite sets remains finite;

e finite union of finite and cofinite sets remains cofinite; and

e complement of finite sets are the cofinite sets and vice versa.

However, A is not a g-algebra: consider A, = {2"} € X = N, which

we then realize that

U A, = set of all even numbers,
nelN
but the set of all even numbers is clearly not finite, and its comple-

ment, which is the set of all odd numbers, is not finite.

Consider X as an uncountable set. We say that a set A is

if A€ is countable. ! The set ! Recall that a set A is said to be count-
able if there is a one-to-one correspon-

dence between elements of A and the
A = {A C X | Ais countable or co-countable } natural numbers.

is a o-algebra:

e countable union of countable sets is countable;
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e countable union of countable and co-countable sets is co-countable;

and

e complement of countable sets are co-countable and vice versa.

Al
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Algebra and o-algebra of Sets (Continued)

We’ve seen some examples of o-algebras. Let’s now look at some other

important properties of g-algebras.

@ Proposition 2 (Closure of g-algebras under Countable Intersec-

tion)

Let X be a set, A a g-algebraon X. If A,, € A foreachn € IN, then
N, Ay € A.

This follows rather similarly to & Proposition 1 where we used De

Morgan’s Law.

& Proof
We observe that
ApeA = ASedA

= UASE.‘H
n

= (A= ([ JAS
n n

C
€ A. O
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Let A, € P(X), where « is from some index set. We denote

(A ={ACX:A€eA, Va}.
a

& Proposition 3 (Existence of the “Smallest’ -algebra on a Set)

Let X be a set and {Ay}, as a collection of o-algebras on X. Then (1, Aq

is a g-algebra.

Aeﬂﬂa = Va, Ac A,
o
= Va, A¢ € A,
— Aceﬂﬂa
o
and
VnelN,Aneﬂﬂa — VneN, Va, A, € A,
o

— Va, UAn €A,

n
- UAneﬂﬂa
n a

Due to the above proposition, the following definition is well-
defined.

& Definition 3 (Generator of a g-algebra)

Let X be a set, and & C P(X) has some non-trivial set(s). Consider all

o-algebras A, with the property that & C A,. Then we say that (), Aq
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is the o-algebra generated by &, and we denote this generated o-algebra as

M(E) = (] Aa-

Remark 2.1.1

1. It is clear from the definition that if A is a o-algebra on X and & € A,
then M(&) C A.

2. We often say that (&) is the “smallest o-algebra containing &”. ®

The following is an example of such a ¢-algebra.

Let X be a metric space (or topological space). The o-algebra generated by
the open subsets of X is called the Borel o-algebra, of which we denote
by B(X).

Remark 2.1.2 (Some sets in B(X))

Given an arbitrary metric space (or topological space) X. It is often hard to
firmly grasp what kind of sets are in the Borel o-algebra B(X). The following

are some examples that are in B(X).

1. Let {Oy}nen denote a countable collection of open sets. By & Proposi-
tion 2, (N, On € B(X). We call these countable union of open sets as Gs

sets.

2. Let {Fn}nen denote a countable collection of closed sets. By & Proposi-
tion 2, U, Fn € B(X). We call these countable intersection of closed sets

as F; sets.

3. Let {H,} be a countable collection of Gs sets. Then | J,, H, € B(X).
These are called the G, sets.

4. Let {K,} be a countable collection of F; sets. Then (,, K, € B(X). These

are called the F;s sets.
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We can continue constructing the Gsg.. and Fys.. similarly, and all these sets
belong to the Borel g-algebra B(X). o

& Proposition 4 (Other Formulations of the Borel o-algebra (aka
Proposition 1.2))

The following collection of sets are all equal:

1. %1 %(]R),

2. By = g-algebra generated by open intervals (e.g. (a,b));

3. B3 = o-algebra generated by closed intervals (e.g. [a, b]);
4. By = o-algebra generated by half-open intervals (e.g. (a, b]);
5. Bs = o-algebra generated by (—co,a) and (b, o0); and

6. By = g-algebra generated by (—co,a] and [b, o).

As commented before, it is often hard knowing that is in a Borel
o-algebra, and what is not, despite knowing what its generator is.
However, when talking about containments, this is a fairly straight-
forward discussion thanks to its closure under countable unions and

& Proposition 2. We simply need to talk about the generators.

B, € By Given an arbitrary generator (a, b) in B,, we know that
(a,b) is an open set, and clearly (a,b) € R. Thus (a,b) € By, so
By C By.

B3 € B, Given an arbitrary generator [a, b] of By, we have

[a,b]zﬂ(a—%,b+%) € B,.

n

Thus B; C By.
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By € Bz Given an arbitrary generator (a, b] of By,

(abl=J

n

a+l,b} € Bs.
n

Thus B, C Bs.

Bs € By Given an arbitrary generator (—oo, a) for Bs,

(=00,a) = U (_00, a— %) € By.

n

On the other hand, for (b, o) in Bs,

(b,00) = |_Jb,n) € Bs.

B C Bs We have that

(—o0,a] = ﬂ (—oo, a+ %) € By

n

and

[b, 00) = ﬂ (b—%,oo) € Bs.

n

B C B Let ¢ < d € R. Notice that
(=00, d]N[c,0) =|c,d] € Be.

Furthermore,

C+l,d—l] € Bg.
n n

(cd)=|J

n

Recall that given an open set O € R, we have

0= U{(c,d) CO:c,deQ)},

which shows that O is a countable union of open sets (with rational

endpoints). It follows that O € B and so By € Bg. o

Exercise 2.1.1

Show that B(R?) is generated by open rectangles (a, b) X (c, d).
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& Definition 5 (Infinitely Often)

Given E,, C X for n € IN, we say that x € E,, infinitely often (i.0.) if
{n:x€E,}
is an infinite set. We typically let
A={xeX:x€E,io }

be the set of x’s that are in the E,;’s infinitely often.

& Definition 6 (Almost always)

Given E, C X for n € IN, we say that x € E,, almost always (a.a.) if
{n:x¢E,}
is a finite set. We typically let
B={xeX:x€E,aa }

be the set of x’s that are in the E,;’s almost always.

% Homework (Homework 1)
Let X be a set, A a g-algebra on X, and E,, € A for n € IN. Prove that
A={xeX:x€E,io }

and
B={xeX:x€E,aa.}

are both in A.

& Definition 7 (Characteristic Function)
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Let E C X. We call the function

1 x€E
XE(x) =
0 x¢E

the characteristic function of E.

&2 Homework (Homework 2 — A review on limsup and liminf)

Let E, € X for n € N, and

A={xeX:x€E,io }
B={xeX:x€E,aa. }.

Show that

Xa(x) = limsup xg, (x)

xp(x) = hIT}ZinXEn(x)-

Remark 2.1.3

Due to the above result, some people write

A =limsupE,
B = liminfE,,. |

Measures

& Definition 8 (Measure)

Let X be a set and A a o-algebra of subsets of X. A function p : A —

[0, o] is called a measure on A provided that:

1. p(0) =0 and
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2. ifE, € Aforeach n € N, and {E, } is disjoint, we have

e e
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Measures (Continued)

& Definition 9 (Measure Space)

Let X be a set, Mt a o-algebra of subsets of X and p1 : M — [0, co]. We call
the 3-tuple (X, M, u) a measure space.

Remark 3.1.1

If u(X) = 1, wealso call (X, M, u) a probability space, and u is called a
probability measure. o

Example 3.1.1

1. (Counting Measure) Let X be a setand M = P(X). For E € N,
define

|E| E is finite
() =

oo otherwise

We verify that u is indeed a measure:
(a) We have that u(0) = [0| = 0.

(b) Let{E,};", € M be a pairwise disjoint set. Notice that if any of

the sets are infinite, say Ey, is infinite, then

.U(ENO) =00 = |EN0| :
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Since J;,_; E, is infinite in this case, we have

o)~

n=1
On the other hand, if all the sets are finite, then since the E,,’s are

disjoint, we have

(U

(e8]

e

n=1

= i |Eq| = i [J(En)-
n=1 n=1

We call 1 a counting measure.

2. Let X be an uncountable set. Recall that in Example 1.2.1, we
showed that

M = {A C X | Ais countable or co-countable }

is a g-algebra. There are many measures that we can define on this

o-algebra. For instance,

0 E is countable
V(E) = 7
1 E is uncountable

and
E is countable
O(E) = .
oo E is uncountable
Verifying that both v and 6 are indeed measures shall be left to the

reader as a straightforward exercise.

3. Let’s make a non-example. Let X be an infinite set, and M = P(X).
Define
0 E is finite
p(E) =

oo E is infinite

Consider X = IN and a sequence of sets with singletons,

E,={2n+1}, forneN.
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Clearly,

E,, = set of all odd numbers,
=1

n

and clearly
H (U En) = 0.
n=1
However, notice that

u(En) =0 for each n € IN.

Since each of the E,;’s are pairwise disjoint, we should have

0 = U (OEH) = iH(En) =0,
n=1

n=1
which is impossible. Thus u is not a measure. >
Remark 3.1.2 (Finite additivity)

Given a finite set of pairwise disjoint sets {E, }\_ C I for some o-algebra

It of some set X. By the definition of a g-algebra, we may set E,, = O for

n > N. Then
N 00 00 N
u ( En) =u (U En) = D u(En) = > u(Ey).
n=1 n=1 n=1 n=1
We call this the of a measure. ®

Let (X, 90, 1) be a measure space.
1. We say that u is finite if u(E) < oo for every E € M.
2. If X = Up-q Xy with X, € M, we say that y is o-finite if

(Xy) < co for every n € IN.

3. We say that  is semi-finite if for every E € I with u(E) = oo,
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3F C E € M such that
0 < u(F) < oo.

Exercise 3.1.1

1. Show that the counting measure is finite iff the ambient space X is a finite

set.

2. Show that 6 in Example 3.1.1 is neither finite, o-finite, nor semi-finite.

WP Theorem 5 (Properties of a Measure)

Let (X, 9, 1) be a measure space. Then

1. ( )IfE C Fand E,F € I, then u(E) < u(F).
2. ( JIF{Ey};" €M, then

(e

3. ( )IF{E,}, © M is an increasing sequence
of sets, i.e.
EiCE,C...CE,C...,

then
u (U En) = 11_11)10 H(Ey).
n=1 !
4. ( )IfF{Ey};7 © M is a decreasing sequence of
sets, i.e.

Et2E,2...2E,; 2...,

and 3ng € IN such that u(E,,) < oo, then

u (ﬂ En) = nh_I)I;lo P(En)'
n=1

Remark 3.1.3 (A comment on the condition for the 4t" statement)
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It may seem that the extra condition of a finite measure seem extravagant.

However, it is necessary, as demonstrated below.

Consider X = IN, with u as the counting measure. Then, consider the

sequence of sets

El = {1/2/3/‘ . '}r
EZ = {2/314/‘ . '}/
E; ={3,4,5,...},

Epo={nn+1,n+2,...},

Then (;_; Eqx = 0, which then y (-, Ex) = 0. However,

((E,) = oo for each n € N. ®

Q2 Homework (Homework 3)

Let (X, M, u) be a measure space. Let {E, };° , € M, and
A={xeX|x€E,io. }.

Prove that ), w(E,) < oo implies that p(A) = 0.
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Measures (Continued 2)

We shall now prove ® Theorem 5.

& Proof

1. Notice that
F=(FNE)U(F\E),

and F N E and F \ E are disjoint. Thus

u(F) = w(FNE) + u(F\E) = p(E) + p(F \ E).

Since u(F \ E) > 0, we have

p(F) = p(E).

2. Consider a sequence of sets defined as such: ! ! o This is a common technique in mea-
sure theory. We will see this repeatedly
so in this course.

Fi=E
Fo =Ex\ Ex

n-1
Fu=E\ | JE).
j=1

First, note that F,, € E, for each n € IN. So by the last part, we
have
w(Fn) < u(E,) for each n € IN.
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Secondly,
U F, = U E,.
n=1 n=1

Also, {F, };, is a pairwise disjoint collection of sets. It follows

that . N . .
z (U En) =p (U Fn) = Z u(Fn) < Z H(En).
n=1 n=1 n=1 n=1

3. Consider a sequence of sets defined as such:

F1=E
Fo=E\Eq
F3=E3\E>
Fy :En\En—l'

We see that

o Unii Fu=Unm Ens

° UnN:I Fp= UnN=1 E, = En; and

e {F,}, is a collection pairwise disjoint sets.
Thus we have

U] =+(de) -

= n=
N N

lim > uFy) = lim 4 (U Fn)
—00 n:l —00 n:l

AL M)

(o]

,U(Fn)
1

4. First, it is important that we notice that
[Ex=[]En
n=1 n=m
for any m € IN, since {E, },, is a decreasing sequence of sets.

Suppose 1y € N is such that u(E,,) < co. Consider a sequence of

sets defined as follows: for g < j € N, we let F; = E;; \ E;. Then
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we have
0=Fn CFups1 S ... CFpsx S ...,

i.e. {Fu},L,, is an increasing sequence of sets. By the last part, we

have

u ( U Fn) = HIE;I‘}O H(an+n) = nll—r)Igo p(En, \En0+n)

n=ngp

= u(Eny) — nh_rfolo H(Eng+n)

= W(Eno) = lim p(Ey).
Furthermore, we observe that

OFn =Eu \ ﬁ E,.
n=1

n=ngp

(0 o 15 = 5]

n=ng n=ngp n=no
= w(Eng) — (ﬂ En) :
n=1
It follows that indeed
u (m En) = nlgn [J(En) O
n=1

Exercise 4.1.1

Let (X, 9, u) be a measure space. Show that

1. wis finite iff p(X) < oo.

2. u is o-finite implies that u is semi-finite.
& Solution

1. This is rather simple.

(=) p is finite implies that each E € M has a finite measure. In

particular, X € 9, and so u(X) < co.
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(& )VE € M, E C X, thus by the first item in @ Theorem 5, we
have p(E) < u(X) < co. Thus p is finite.

. u being o-finite means that if X = |J;_; X, where X,, € M, then

t(Xy) < co for each n. Let E € M such that u(E) = co. If we take
E,=X,NE,

then u(E,) < coforeachn € IN. Then, taking a union of any
finite number of these E,;’s will give us a subset of E with a finite

measure. Hence, 1 is indeed semi-finite. ©

Let (X, 9, 1) be a measure space. The set
N ={NeM:uN)=0}

is called the |1-null set, or the null set of the measure L.

Remark 4.1.1

1.

2.

IfN]' € N, then U;ozl N; eN.?2
IfNeN,and E € Nitand EC N, then E € N.

It is important to note there that the highlighted condition is required,

since not all subsets of N are measurable.

. Nisnota o-algebra. If we picked an X such that u(X) # 0, then 0 € N

but X ¢ N. ®

Let (X, 9, ) be a measure space. We say that the space is complete if
N € Nand E C N, then E € . In this case, we also say that i is a
on M.

2 Requires elab
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Remark 4.1.2

By the first item in @ Theorem 5, we have that if u(E) = 0, and so E € N as
well. o

WP Theorem 6 (Extending the Measurable Sets)
Let (X, 90, 1) be a measure space and
N ={NeM| uN)=0}
Consider
M:={EUF|EeM, FCNeN}L

Then M is a o-algebra which contains M. Furthermore, if we define i
m— [0, 0] as
H(EUF) = u(E),

then 11 is a well-defined measure on .

Moreover, if v M — [0, 0] is any measure such that v(E) = u(E) for
all E € M, then v = .
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Measures (Continued 3)

#" Proof (Extending the Measurable Sets)

M is a g-algebra Since @ € M and 0 C N forany N € N, it is clear
that 0 € 9.

Now, for EUF € I, if we suppose F € N € N, then
(EUR) =(EUN)*U(N\EUF)eM
since EUN € Mand N\ (EUF) e N.

Let {E;, UF,};, C 9. Then we observe that

O(En UF,) = OEn UOFn e M.
n=1 n=1

n=1
———  ——
eMm eN

Well-definedness of i Let Ey UF; = E;UF; € . Suppose F; C
Ni,F» € N, e N. WTS

w(E1) = f(E1 U Fp) = u(E2 U F2) = u(Ez)

Notice that
Ei1 CE1UFL =E,UF, C E; UNpy,

and
E, CE,UF,=E{UF; C E{UN;.
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By ® Theorem 5, in particular, by subadditivity, we have that
u(E1) < p(E2 U N2) < p(Ez) +0 = p(Er)

and
p(E2) < w(E1 U N1) < p(E1) +0 = p(Eq).

It follows that p(Eq) = u(Es), as required.
U is a measure

1. Since @ € M and @ € N, u is defined for @, and

w(0) = (@) = 0.

2. Let{E, UF,};, C M be a pairwise disjoint collection. We

observe that

and

Hence

v=wuLetEUF € M. Suppose F C N € M By monotonicity,
HWEUF) = u(E)=v(E) <v(EUF).
By subadditivity,

V(EUF) < v(E)+v(F) < w(E)+v(N) < TEUF)+ u(N) = GEUF)+0.
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Thus, indeed,
v(EUF) =u(EUF). o

The Outer Measure

In this section, we will show that one way we can construct a measure

is by using an outer measure.

& Definition 13 (Outer Measure)

Given a set X, a function

pP(X) = [0,00]

is called an outer measure if

1. p (@) =0;

2. (monotonicity) if E C F, then u*(E) < u*(F); and
3. (countable subadditivity) if {Ay}n € P(X), then

.
n=1

[ee)

< [U*(An)-
1

n=

”a(-

Coming from PMATH450, we have seen an example of an outer

measure.

é Proposition 7 (Lebesgue’s Outer Measure)

Given E C IR, consider

p*(E) = inf {i(bn —ay):EC O(an,bn)} .
n=1 n=1

u* is Lebesgue’s outer measure.
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1. Itis clear that u*(0) = 0, since we can pick all (a,, b,) = 0.

2. Suppose A C B C R. Itis clear that any collection of intervals
whose union contain B will contain A, but there are such collec-

tions for A that do not contain B. This means that
w(A) < 1*(B)
by the property of the infimum.
3. LetE = Uj2q Ei. WIS u*(E) < X724 u*(Ej).

Now if pu*(E;) = oo for any i, then the inequality is trivially true.

Thus, wma u*(E;) < oo for all i.

1Let e > 0. By the definition of the infimum, for each i, we
can pick a countable sequence {(a’,, b;)}:’:l C P(X) such that
Ey € U5 (al, bi) and

[ee]

i i * €
2 —al) < w(ED) + o
n=1
Then . - .
E={JE =@k b))
i=1 i=1 n=1
And so it follows that
W(E) < Y Y (b —a})
i=1 n=1
(o] . (o] €
< Y WENY
i=1 i=1
= Z w(E;) +e.
i=1
Since ¢ was arbitrary, it follows that
w(E) < ) (E).

i=1

Exercise 5.2.1

! This is also a common trick in measure
theory.
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Show that had we defined Lebesgue’s outer measure with closed intervals, i.e.

i*(E) = inf{Z(bn —a,):EC U[an,bn]},
n=1 n=1

fi* is still an outer measure.
In fact, we can do so for half-open intervals.
Example 5.2.1 (Lebesgue-Stieltjes Outer Measure)

Let F : R — R be an increasing function that is continuous from the

right. Let
w(E) = inf{Z(P(b,n ~F(an):E € U(an,bn]} :
n=1 n=1
Then u* is an outer measure. >
Remark 5.2.1

Again, we could have defined the above outer measure using open or closed

intervals. o
Example 5.2.2 (Lebesgue’s Outer Measure on R?)

Let E € IR?, and

where A is the “area’ function, and R,, = (a,, b,) X (cu, d,) are open

rectangles. Then p* is an outer measure. >
Remark 5.2.2

1. Again, we can define the above outer measure using closed rectangles, or

half-open rectangles.

2. We can continue defining an outer measure for R® using cubes, for R*

using hypercubes, and so on. ®

We want to now show that given an outer measure, we can always

construct a measure. This is known as Carathéodory’s Theorem.
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This requires the following definition:

& Definition 14 (y*-measurability)

Aset A C X is said to be |1"-measurable if VE C X,

W(E) = p*(E N A) + " (EN AC).

Remark 5.2.3

1. By subadditivity, we always have
W(E) < W (ENA)+u'(ENAS),

since E = (ENA)U (EN A°).

2. Note that ENAC = E\ A. In a sense, A is said to be y*-measurable if it
can slice any subset of X such that we have additivity of the sliced parts.

We may also say that A is a ‘universal slicer’. o

WP Theorem 8 (Carathéodory’s Theorem)

If u* is an outer measure on a set X, let
M = {A C X : Ais u*-measureable}.
Then M is a g-algebra, and we set
p: M — [0, 0]

such that
p(A) = u(A).

Then i is a complete measure on I,
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The Outer Measure (Continued)

©2 Homework (Homework 4)

Let Mt be an algebra of sets on X, and whenever {A, }pen S Misa
disjoint collection of sets, then | J,, An, € M. Then Mt is a c-algebra.

@2 Homework (Homework 5)

Recall that Lebesgue’s Outer Measure on R is defined as

W(E) = inf{i(bn —ay):EC O(an,bn)} .
n=1 n=1

Prove that we can equivalently define

W(E) = mf{i(bn —ay):EC O(an,bn]} .
n=1 n=1

Similarly, Lebesgue’s Outer Measure on R? is defined as

#;(E) = inf{i(bn —ay)dy, —cy):EC O(unz byn) X (cy, dn)} .

n=1 n=1

Prove that we can equivalently define

H;(E) = mf{Z(bn —ay)(dy—cy) EC U(unr bu] % (cn, dn]} .
n=1 n=1
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& Definition 15 (Metric Outer Measure)
Let (X, d) be a metric space, and A,B C X, and
d(A,B) = inf{d(x,y) tx€eA ye B} .

An outer measure, (i, on X is called a metric outer measure if whenever
d(A,B) > 0, then
p(AUB) = u"(A)+ p*(B).

2 Homework (Homework 6)

Prove that Lebesgue’s Outer Measure on R is a metric outer measure.

Carathéodory’s Theorem

It is a o-algebra

0 € M Given any E C X, we observe that
W(ENO)+p (ENOS) = w'(0) + u(ENX)
= 0+ ' (E) = 1 (E).
A€M = AC € M Observe that given any E C X,
W(ENAS)+ " (EN(A)) = (BN AS) + 1 (E N A) = 1" (E).
Thus A¢ € M.

1 To show that M is closed under countable unions, we break the ! For a deep dive, see Appendix A.1.

work into several steps.
A,BeI — AUB € M Since A € M, we have

W(E) = w(ENA)+p (ENAS).



Since B € I,

W(E) = w(ENA)+p (ENAS)
=u(ENANB)+u (ENANBS)
+ W (ENASNB)+ u(ENA“NBC)
= (ENANB)+p(ENANBC)
+ W (ENASNB)+u (EN(AUB))

Notice that

EN(AUB) =[ENANBJU[ENAC NB]JU[ENANBC].

Thus

W(E) = w(ENA)+p (ENAS)
=uw(ENANB)+u (ENANBS)
+ W (ENASNB)+ u(EN(AUB))
> u(EN(AUB))+ u'(EN(AUB)°).

Thus AU B € .

Consequently, by induction, we have that V{A,}, € I,

N
UAn eM
n=1

forall N € IN.
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Now Mt is an algebra of sets. By Homework 4, it suffices for us to

prove the following to show that 0t is a g-algebra of sets.

V{A,}, € M disjoint, = |-J, A, € M Let By = (J\_, A,,. We first

require the following lemma:

VE C X, w*(ENBy) = 2N, w*(E N A,) Notice that for any n € N,

A, € M, and so

L (ENBy) = w (ENByNA,) +u (ENBy NAS)
= [J*(E NA,)+ y*(E N Bn-1).

The desired result follows by induction. 4
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Let B = |4J);_; An. Then

W(ENB) < > u(ENA,)
n=1
by subadditivity.

Now By C B for each N € IN. This implies that BS 2 B€, and so
by monotonicity,
w(ENBY) > u(ENBC).

Thus, for every N € IN,
w(E) = w(ENBy) + u(ENBY)
N
> Y W(ENA)+u(ENBO).
n=1
It follows that

W(E) 2 @ (ENA)+ ' (ENBC)

n=1

> u*(ENB)+ u*(ENB°).
With Homework 4, Mt is a g-algebra.
u is a measure

o 1) =) =0.

o Let {A,}, C M be a disjoint collection of sets, and B = [);_; Ay,.

Then by a similar argument as the end of the last ‘part’,

u(B) = '(B)

> > w(BNA,)+u (BnB%)

W(BNA,)+0

D2 1Mz 1DV

WA =) u(An).
n=1

=
Il
—_
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Thus

[ee]

. An
n=1

[e]

= 1(Ay).
1

n=

p(B) = u

p is complete Let A € N'and B € A. By monotonicity, u(B) =
w(B) < u*(A) =0. Then

p(ENB)+uw (ENBS) =0+ u'(ENBC) < u(E)

by monotonicity. Thus B € M. Thus u is complete. O

We would like to make sure that
1. there are many sets that are measurable; and
2. the notion of a measure covers our notion of length.

We shall see this with the Metric Outer Measure, and that the mea-

surable sets is at least the

The Lebesgue-Stieltjes outer measure is motivated by probability
theory. The idea is that we consider the measure space (Q, M, P),
where Q is the sample space set, 9t is a g-algebra on €2, and P is the

probability measure, i.e. P(Q) = 1.

We then define a , which is a function X : Q — R.
The (cdf) is defined as

Fx(t) = P({w : X(w) < t}),

and it has these properties:
1. Fx is increasing; and

2. Fx is right-continuous.

Example 6.2.1

Let Q = {H, T}, and define the probability measure as

1

P({H}) = 5 = P({T}).

57
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We can define
X(T)=0and X(H) = 1. 11:1
by
Then ‘»ﬂ—>
Plw: X(w) =1}) = PUHY) = % Figure 6.1: Simple example of a cdf
and

P({w: X(@) = 0)) = PUT)) = 5.

In the context of probability, we often see the shorthand

P(X =1t) = P{w : X(w) = t}). >

Let F : R — R be an increasing function that is continuous from the

right. Let

W (E) = inf{Z(F(bn) —F(ay)) : E C U(an,bn]} .
n=1 n=1

Then u* is an outer measure.

Exercise 6.2.1

We mentioned that the above is indeed an outer measure in Example 5.2.1.

Prove this.
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The Lebesgue-Stieltjes Outer Measure (Continued)

®PTheorem 9 (Carathéodory’s Second Theorem)

Let (X, d) be a metric space, and u* a Metric Outer Measure. Then every

Borel set is 1*-measurable.

& Proof

By Carathéodory’s Theorem,
M ={A C X:Ais u'-measurable}

is a 0-algebra. Then our statement says that B(X) € 9. Thus, it
suffices for us to show thatif U € B(X), i.e. if U C X is open, then
U € M. In particular, WIS VE C X,

W (E) = u(EnU)+ " (ENUC).
Again, by subadditivity,
E=ENUUENUS) = uE)<p(EnU)+ u(ENUC).
Thus it suffices for us to show that
W(E) > w(EnU)+ u'EnUC).

Now if u*(E) = oo, this is trivially true. WMA u*(E) < co.
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1 Consider {Ax}r € P(X) such that
1
Ay = {ernu:d(x,EnuC)z E} CENU.

Itis clear that Ay € Ay € A3 C ... ie. {Ax}k is an increasing

sequence of sets. Also, |y Ax = ENU.

For each k € IN, notice that A U (E N UC) C E. Thus by subaddi-

tivity and additivity over disjoint sets, for every k, we have
W(E) = g (AcU(ENUS) = w(Ap) + 1 (EN UO).
Since {Ay } is an increasing sequence of sets, it follows that

1 (E) = ;35?0 W (Ag) + u(ENUC).

Claim: limy_, p*(Ax) = p*(ENU) Since Ax € E N U, by subadditiv-
ity,
W(AY < i (ENUD).

It remains to prove the other inequality.

2Let Dy = A1, Dy = A3\ Ay, ...D, = A, \ Ay,—1. Then, notice that
EnU=UDn=A1UD2UD3U...
n

=A,UD3UDgU. ..

ZAnUDn+]UDn+2U...,

since {A,} is an increasing sequence of sets. Now for x € D,,, we

have that x € A, but x ¢ A,,_1. 3 In particular, we have

<d(x,EnU°) <

S|

n-1

tLetm >n+2. Considery € Dy, x € D,andz € EN U€. Then
we know by the triangle inequality that

|-

<d(x,z) <d(x,y)+d(y,z).

! We look at points that get increasingly
closer to the edge of the set E N U, or

in other words, increasingly closer to
Enuc.

2 This part here requires an escape from
where we already are. If your head is in
the muddle, stop reading, go out, walk,
and then come back.

Here, we ask ourselves: so what if we
look at how much the Ay’s change as k
increases?

3 We see that the D,,’s form some kind of
a ring-like partitioning of E U U.

* Let’s look at putting every odd D,’s
together, and see how far apart are they.
Directly looking at D;s altogether is
difficult because then their boundaries
get muddled together.



We may then pick zg € E N UC such that

1
d(y,zo) < m——r
Then
l<cl(xz)<al(x )+—1
n= 740 'Y m_lr
and so
1
P <d(x,y).
Notice that
1 1 1 1 1 1

> - - - _ -
n m-1"n n+2-1 n n-1

Therefore, Vx € D,, and y € D,,, we have

1

n n-1

<d(x,y).

In other words,
d(Dy,Dy) >0

aslongasm > n+2.

Since u* is a Metric Outer Measure, it follows that

U Dy = Z 1 (Dn)-

n odd n odd

*

u

Since D1 U D3 U... € ENU, by subadditivity,
' (DiUDsU...) < u(ENU) < co.

In particular,

Z @ (Dy) < oo.

n odd

Similarly, we can show that

”*( J o)=Y won<w.
n even n even
Putting the two together, we have
w U Dy = Z 1 (Dy) < oo.
n n
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Finally, since ENU = A, UDy41 UDy42 U.. ., by subadditivity,

pENU) < u'(An) + U Dy | = w'(An) + Z 1 (D).
m>n m=n+1
Since 3}, *(Dy) < oo, the tail
D W (D) =0
m=n+1

as n — oo. Therefore,

w(ENU) < lim p*(Ay) + lim Z (D)
m=n+1

= lim u*(An),
n—0o0

as required. o

& Proposition 10 (Lebesgue-Stieltjes Outer Measure on Half-

open Intervals)

Let uy, be the Lebesgue-Stieltjes Outer Measure. Then fora < b € R, we

have
ur((a,b]) = F(b) - F(a).

First, notice that (a, b] C (a, b], and so
tr((a, b]) < F(b) - F(a)
by definition.
Let ¢ > 0. Pick a covering (a, b] € |, (a,, b,] such that

D (E(ba) = F(an) < pp((a,b]) +e.
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By right-continuity of F, we may pick b, > b, such that
F(b!) < F(by) + 21
Notice that
DL FW) = F(a) < Y (F(ba) + 5 — Flan))
n 1
= ¢+ ) (F(by) ~ F(ay))

< up((a, b)) +2e.

Similarly, we can pick a” > a such that F(a") < F(a) + ¢. Then

[a,b] € (a,b] € | J(an bl < | Jian, b)),

n n

By , there exists a finite subcover, i.e. AN € IN such that

N
[a/,b] C U(ank,b;k). o
k=1
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The Lebesgue-Stieltjes Outer Measure (Continued 2)

#" Proof (Lebesgue-Stieltjes Outer Measure on Half-open Inter-

vals continued)

Continuing from before, let us first reorder the finite number of

intervals such that b}, > b;, > ....

Figure 8.1 illustrates what sets do we throw away (labelled T),
what we shall keep (labelled <), and what is impossible (labelled ).

removed since it does not intersect [a’, b]

impossible since there are no b,; between b,,, ., and b,
v
K I K K T
| [N | [
! \ Y ! \ j
’
Any @ bl O b, Ay Oy b b b, A by

ay < a’ for a similar reason b;, > b

Figure 8.1: An arbitrary representation

. of the finite cover.
Most importantly, we observe that

’
Any < by, .

Therefore,

(o) N
D F(b;,) - Faw) = ) F(b},) - Fay,)
k=1 k=1
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>0 >0

= F(by) —F(a1) + F(by) —F(az) + F(D3)

>0
—_——

+...+F(by)—F(an)
> F(b}) — F(an) = F(b) — F(a').

It follows that

ur((a,b]) +2e > F(b) = F(a’) > F(b) - (F(a) + ¢),

and so
F(b) — F(a) < up((a,b]) + 3e.
Since ¢ > 0 is arbitrary, our proof is complete. o
Remark 8.1.1

& Proposition 10 means that the Lebesgue-Stieltjes outer measure falls back

nicely onto our usual notion of length when it comes to intervals. ®

& Proposition 11 (The Lebesgue-Stieltjes Outer Measure is a

Metric Outer Measure)

Wy is a Metric Outer Measure.

Let 0 > 0. For each interval (a,b] € R such that b —a > 0, we may

break it up so that
(a,b] = (x1,x2] U (x2,x3] U ... U (xn-1, XN],
where x; — x;_1 < 0, and x1 = a, x5 = b. Notice that

F(b) - F(a) = F(xN) —F(XN_1) +F(xN_1) —...t sz - F(xl).
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Therefore, given 6 > 0, by the definition of u}, we have that VE C R,

ur(E) = inf{z F(bi) = F(@i) < E € (@i, bi), bi—a; < 6} .
i=1 i=1
Now let A, B € R such that d(4, B) > 26 > 0. Given any ¢ > 0, we
can pick a cover AU B C J;(a;, b;] with b; —a; < 6 such that
Z F(b;) - Far) < th(AUB) + €.
i

Since d(A, B) > 20 and b; —a; < 0 for each i, the following are the

only possible scenarios: for each i,

e AN(a;, bi] = 0and BN (a;, b;i] = 0, in which case we choose an

even finer covering of A U B to remove (a;, b;];
e AN(aj, bi]# 0and BN (a;, b;i] =0; and
e AN(a;,bj]=0and BN (a; b;] # 0.
We may thus consider the following subsets of indices:

{ix}ken = {ix : AN (a;, bi,] # 0, BN (ai, bi ] =0} C {i}ien
{jthen ={j1i : An(aj,b;,] =0, BN(aj,b;] # 0} C {i}ien.

In particular, we have
Ac| Ja, biland B c | Jaj, b1
k=1 =1
Then by & Proposition 10,

up(A) < ) F(bi) - Flay)

k=1
1H(B) < > F(bj) - Flap).
1=1

It follows that

UR(A) + pp(B) < > F(by) = Flay) + ) F(b;) = F(aj,)
k=1 I=1
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- Z F(b;) - F(a;) < :(AUB) + &.
i=1
Since ¢ was arbitrary, we have

pp(A) + up(B) < up(AUB)

as required. o

WP Theorem 12 (Lebesgue-Stieltjes Theorem by Carathéodory)

Let F : R — R be an increasing function that is right continuous. Let
W} be the corresponding outer measure. Then the collection M of p7.-
measurable sets contains B(R) and pr : Mg — [0, co] is a Complete

Measure Space with

ur((a,b]) = F(b) - F(a).

This is a direct result of Carathéodory’s Second Theorem, @ Propo-

sition 10, and & Proposition 11. O
Example 8.1.1
When F(x) = x, ur is simply Lebesgue’s measure. >

Example 8.1.2 (Dirac delta measure of a point)

Fix xo € R. Let

0 x<xp
F(x) =
1 x>x

Notice that

Vb >xo wr((xo,b]) =F(b)—F(xo) =1-1=0,



which then
pe((xo, 00]) = 0.

Also

Ya < xg yp((a,xo—%}) =F(x0—%) —Fa)=0-0=0,

which then since
“ 1
(arxo) - g_:)l (a/xo - Z:| ’

we have

ur((a, x0)) =0,

which since this holds for all a < xg,

pe((=o0, x0)) = 0.

However, for a < x,
ur((@,x0]) = F(xo) ~ F(a) =1 -0 = 1.

Furthermore, since
= 1
) = [r0- 5]
n
n=1

by continuity from above,

1
pr({xo}) = nlglt}o UF (Xo - E,xo] =1

With the above example in mind, recall the Cantor set

C= ﬁ Cu,
n=1

where C,, = Cy_1 \ P,,, where P is the middle 1/3 of each of the

remaining intervals, with Cp = [0, 1].
We have that the Lebesgue measure of each C,, is

w(C) = %

Q=
|
O N

B(Co) = u(C) - 5 =1~
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1 2 4
MG =357
1 2 on-1
HC)=1-3-5= "
Then
&y gn-1 1o 2\ 11
C)=1- —1-2) (5] =1-:- - 0.
#O 3 32(3) 37 7-2°"
n=1 n=1 3

Cantor Function ~With the Cantor set, we may construct the famous/in-
famous Cantor function. The Cantor function, which we shall label F,

is defined such that F is

3 7 8
o ion(5,5),
and so on, on each of the removed intervals. We also let F(0) = 0 and

F(1) = 1. Then F is increasing and continuous. Furthermore, F/ = 0 on

all the removed intervals.
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The Lebesque-Stieltjes Outer Measure (Continued 3)

Continuing with the Cantor set, we notice that F’(x) = 0 forall x ¢ C.

In particular, the derivative of F exists almost everywhere.

Now for intervals that we have “thrown away”, by Example 8.1.2,

the measure of each of these intervals is 0. However,
ur[0,1] = F(1) - F(0) = 1.
Since [0,1] = C U C€, we have that
1= uel0,1] = pp(C) + e(CE) = ue(C) +0,

and so
pr(C) = 1.

Remark 9.1.1

On R, we can define a k-dimensional Lebesgue outer measure Wy by cover-

ing sets with “boxes” such as
Ri = (a1,b1) X ... X (ag, bx),

where
VOl(Rk) = (b1 - LZ1) oo (bk - ak).

Thus

w(E) := inf {Z Vol(Ry) - E || Rk} .
k

Exercise 9.1.1
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Show that w; (E) for each k > 2 is a metric outer measure.

Applying Carathéodory’s theorems, we get the k-dimensional measure, and
we know that B(RK) are all measurable. 4

WP Theorem 13 (A Measure Constructed By Another Measure)
Let u : B(R) — [0, oo] be a measure with
Va,be R pu((a,b]) < co.

Define
p(©,x]) x>0
F(x) =10 x=0-.
—u((x,0]) ¥ <0

Then F is increasing and right-continuous. Furthermore, u(A) = ur(A)
forall A € B(R).

F is increasing
0O<x<y
Notice that (0, x] C (0, y]. Thus by subadditivity,

F(x) = u(0,x] < p(0, y] = F(y).

x<y<0
Observe that
(x,0] 2 (y,0],

and so subadditivity dictates that
p(x,0] > u(y,0].

Thus
F(x) = —p(x,0] < —u(y,0] = F(y).
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F is right-continuous
O0<«x

Consider a sequence x, \ x. ! Then notice that

(0/ x] = m(ol xi’l]/
n=1
and
(0/ xn] 2 (O/ xn+1]/

ie. {(0, x,]}n is a decreasing sequence of sets. Furthermore, we note
that
1“ (0/ X Vl] < 00

by assumption. Thus, by continuity from above,

F(x) = p(0,x] = lim p(0,x,] = lim F(x,).

x <0

Consider a sequence x, “\, x. Then, notice that

(x,0] = |_Jexn, 00,

n

and
(xn/ 0] c (xn+1/ 0]/

Le. {(x,,0]}, is an increasing sequence of sets. By continuity from
below,

F(x) = —u(x,0] = lim —pu(x,,0] = lim F(x,).

VA € B(R) wu(A) = ur(A) Consider the set
A= {A€BR): p(A) = pr(A)} € B(R).

Now if A is a g-algebra and contains intervals, then B(R) € A,

which means B(R) = A, which is equivalent to what we want.
A contains intervals

e Let0 <a <b € R. Notice that

u(0,a] + u(a, b] = (0, b],

L' We write x,; \, x to mean that {x, },,
is a sequence such that x < x, and
hmn—)oo Xp = X.
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since

(0,a]W(a, b] = (0,b].

Since F(a) = (0, a] and F(b) = u(0, b], it follows that
F(a) + u(a, b] = F(b),
and soby @ Proposition 10,

H(ﬂ/ b] = F(b) - F(a) = lLlF(a/ b].

e Leta <0 < b € R. Notice that
(a/ b] = (alo] U(OI b]/
and soby & Proposition 10,

(a,b] = u(a, 0] + (0, b] = ~F(a) + F(b) = p(a, bl.

e Leta <b <0 € RR. Notice that
(a,0] = (a,b]U(b,0],

and so

u(a,0] = p(a, b] + (b, 0],

By @ Proposition 10,

[.l(ﬂ, b] = H(ﬂ,O] - [.l(b,O] = —F(ﬂ) +F(b) = .’JF(”/ b]

A is a o-algebra

e Itis clear that

1(0) = 0= pp(0),

and so 0 € A.
e Let {A,}, € Abe a disjoint collection. Then it is clear that

gLt gL
n n

u

= > A = ) (A = pr
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e Let A € A. Consider an interval (a, b] € A. Note that
(a,b] = ((a,b] N A)WU((a,b] N AC).

So
u(a, b] = u((a, b] N A)+ p((a, b] N AC), ©.1)

Consider an arbitrary covering
(a,b]nA < | Jas, bil
i

Then
u((a,b]NA) < Z w(a, bi] = Z F(b;) - F(a;).

Thus

u((a,b] N A) < inf {Z F(b;) - F(a;) : (a,b]NA C U(a,», bi)}
= pp((a,b]NA) = pp((a, b]N A).
Similarly, we have
wu((a,b) N AC) < up((a,b] N AC).
Therefore, going back to Equation (9.1),

p(a,b] < ur((a, b1 N A)+ ur((a,b] N A)
= ur(a,b] = p(a,b].

It follows that we must have
p((a,b]NA) = ur((a,b] N A),

and
u((a,b] NAS) = up((a, b] N AC).
In particular, (a,b] N A€ € A. Notice that
A = U (n,n+1]NAS,
n=—o0

and so since we’ve showed that A is closed under countable
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unions, A€ € A.

This concludes the proof. O

Measurable Functions

We look into so-called measurable functions that shall be our next step

towards the theory of integration.

& Definition 17 (Measurable Space)

Let X # 0 be a set and M a o-algebra of subsets of X. We call the pair

(X, M) a measurable space.

& Definition 18 (Measurable Functions)

Let (X, M) and (Y, M) be measurable spaces, and f : X — Y a function.
We say that f is a ()i, 9t)-measurable function, or that f is (9)t,J0)-
measurable, if

VEeN fYE)eM.

Remark 9.2.1

For those who remember contents from real analysis, the definition of a mea-
surable function is similar to the definition of a continuous function on
topological spaces. We shall, in fact, see that their similarity goes beyond than
their definitions. ®

& Proposition 14 (Composition of Measurable Functions)
Let (X, M), (Y, N) and (Z, D) be measurable spaces. Suppose
o f:X — Yis (M, N)-measurable; and

o ¢:Y — Zis(N,D)-measurable.
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Then go f : X — Z is (M, O)-measurable.

Let E € O. Then since ¢~ !(E) € M, it follows that

(ge /ITYE) = fHgTH(E) e M. 5

é Proposition 15 (Measurability of a Function Defined on Gener-

ators of the Codomain)

Let (X, M%) and (Y, M) be measurable spaces, and let & be the generator of
N.Let f: X > Y.Iff7YE) € MforallE € &, then f is (M, N)-

measurable.

Consider
A={Ae: f1(A)eMm}).

Notice that if A is a o-algebra, then we must have & C A, which
then forces A = N.

A is a g-algebra

e Since & is a o-algebra, @ € &, and so f~1(0) € M by assumption.
Thus @ € A.

e Suppose {A,}, € A a disjoint collection. Notice that since f is a

function, it must be that 2 21f this is not clear, notice that if some
f’l(An) and f’l(Am) are not disjoint,
then that means A, and A, are not
U Ayl = U f—1 (Ap). disjoint, or that f is not a function.
n n

f—l
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Since f~1(A,) € M and M is a o-algebra, it follows that

[
n

f—l

= Uf‘l(An) e M.

Thus |J, A, € A.

e Suppose A € A. Notice that f~1(A) € M, and so (f~1(A))C € M.
We need to show that

A = (F1 )¢
But this follows for the same reason as the last point.

It follows that A is a o-algebra. o

#= Corollary 16 (Continuous Functions on Borel Sets are Measur-
able)

Let X and Y be topological spaces, with B(X) and B(Y') as their corre-
sponding Borel sets. Suppose f : X — Y is continuous. Then f is
(B(X), B(Y))-measurable.

LetU € B(Y),i.e. U C Y isan open set. Since f is continuous,
f7H(U) is openin X, i.e. f71(U) € B(X). Thus f is (B(X), B(Y))-

measurable. Furthermore,
E={UCY:Uisopen}

generates B(Y).
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Measurable Functions (Continued)

Let (X, 90) be a measurable space. The function f : X — R is said to be

Ni-measurable, or measurable, when it is (I, B(R))-measurable.

@ Proposition 17 (Characteristics of Mt-measurable Functions)
Let (X, M%) be a measurable space and f : X — R. TFAE:
1. f is M-measurable.
2. YaeR f7Y((a,00)) €M,
3. VaeR f7Y([a,))eM.
4. VaeR fY((-oco0,a)) € M.

5. VaeR f (oo, a]) € M.

& Proof

We shall only look at (1) &= (2), since the proof for (1) = (i)

fori = 3,4,5 are similar.

(1) = (2) Va € R, since (a, ) € B(R), it follows by Ni-measurability
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of f that
fY(a,00) € M.

(2) = (1) We know that
& :={(a,):a e R}

generates B(RR). By assumption VE € &, f~1(E) € M. By & Proposi-
tion 15, it follows that f is indeed a Mi-measurability. O

Remark 10.1.1

When X = R, we say that f : R — R is measurable
& VBeB(R) fB)eB(R)
& YaeR f(a,o) e BR).

Let L be the o-algebra of all Lebesgue measurable sets. f : IR — R is said
to be Lebesgue measurable when

YaeR fla,)eL

> VBeB(R) f(B)e L. o

1, Warning

Notice that the last remark can be problematic. Compare what was written
above with & Proposition 14. In particular, notice that for the definition of
a Lebesgue measurable function, instead of requiring f~'(a, ) € B(R),
we simply required f~1(a,00) € L. Thus, if we have another function

g :R = R, for f o g to be Lebesgue measurable, we require
(feg) ' (a,0) € L.

However, f ~(a,0) € L, and it is not necessarily true that
g (f e, ) € L.

There are various examples that show this, typically arising from the Can-

tor Function.
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WE Go on a little tangent about products of g-algebras to make our

lives down the road a little easier.

Let (Y1,91) and (Y2, N2) be measurable spaces. We define 9ty @ Ny to be

the g-algebra on the Cartesian product Y1 X Y; as

Ny @My := {B1 X By : By €y, By € Ny}

Remark 10.1.2

We will unofficially call Wy ® Ny the tensor product of Jiy and Vs, o

& Proposition 18 (Tensor Product of B(IR)’s)

We have
B(R) ® B(R) = B(R?).

B(R?) € B(R) ® B(R) Let O € R? be open. Then
O = U{(r1,51) X (r2,52) €O : 11,12,51,52 € Q},

which means O is a countable union of open sets. Since (r1,51), (2, 52) €
B(IR), it follows that

(r1,51) X (r2,52) € B(R) @ B(R),
and so O € B(R) ® B(R) since B(R) ® B(R) is a g-algebra.
B(R) ® B(R) C B(R?) WTS

VB1,By € B(R) B x By € B(R?).
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Let
A ={ECR:EXR e B(R?)}.

If Ais a g-algebra and (a,b) € A foranya < b € R, then B(R) € A

and we are done.
A is a o-algebra
e PXxR=ReB(R)and so D € A.

e Suppose {E,}, € A is a disjoint collection of sets. Then E,, X R €
B(IR?) for each 1. Since B(IR?) is a g-algebra, it follows that

U(En xR) € B(R?).

n

Notice that

X R.

U(Enle):( .|E,

n

Therefore ), E;, € A.

e LetE € A. Then
E€ xR = (E xR)¢ € B(R?).

Thus E€ € A.
Va,b e R (a,b) xR € A This is indeed true since (a, b) X R is open.

Similarly, we can do the same for
A :={FCR:RxF e B(R?},

and have B(R) € A.

Let By, B, € B(R). So By € A and B, € A, and
B; xR € B(R?) and R x B, € B(R?).

Therefore
B1 x By = (B x R) N (R x By) € B(R?). o

& Proposition 19 (Component-wise Measurability of Functions)
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Let (X, M), (Y1, M) and (Ya, Ny) be measurable functions. Let f; : X —
Yiand f, : X = Yy. Let f : X — (Y1, Y2) such that

fx) = (fi(x), f2(x)).

Then f is (M, (N1, No))-measurable <= f1 is (M, Ny )-measurable and
f is (M, Ny)-measurable.

(= ) Let By € 9. WTS fl_l(Bl) € . We know B1 XY € 91 @ No,
and f~1(By x Y2) € M since f is (M, (N1, N2))-measurable. Then

xefiB1xY;) & f(x)eBxY,
[—— (fl(x),fz(x)) € B1 X Yz

— fi(x) e By

> x € f(B).
Thus fl‘l(B1) = f~1(B1 x Y2) € M. Hence f; is (M, N;)-measurable.
The proof is similar for f, being (M, N,)-measurable.

(& )!Let ! Again, we use the trick of showing

o -1 q that a cleverly chosen set that has the
A={BCYixXYz: f(B) € M}. property that we want is a g-algebra.

Notice that f is (M, (N, Ny))-measurable iff Ny @ Ny € A.
A is a o-algebra
e Let B € A. Then f~!(B)C € M. Thus
xe 4B < x¢f(B)

— f(x)¢B

& f(x)eB"

= x e f1(BO).

Thus f~1(B€) = f~1(B)¢ € M.

e Suppose {B,}, € A. Consider {C,}, € A whereC, = B, \
U;l:_f Bj and C; = By. Notice that C,, € M for each n. Also, {Cy }»
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is pairwise disjoint. It follows that
F (U Bn) =f (U cn) =) em
n n n

This completes the claim.

NN C AWTSVYBy € Ny VBy € Ny By X By € A. We know that

this is true iff
VBy €%y VBy €Ny f1(By x By) € M.
Notice that

x€ fi'(Bi)Ax € f;1(By) & fi(x) € B1 A fo(x) € B,
[——t (fl(x), fz(x)) € Bl X Bz
— f(x) € B1 X By

— x € f‘l(Bl X By).

Thus f~1(B1 X By) = f7'(B1) N f;1(B2) € M.
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©% Homework (Homework 7)

Let F be the cumulative distribution function (cdf) for the flip of a fair
coin. Prove that iy = P(R). Find and prove a formula for ur(A) for any
ACR

©% Homework (Homework 8)
Let
0 t<uxg

Fy(t) = .
1 xg<t

Let {r, }» be an enumeration of Q. Set
o 1
F()= ) 5, (@),
n=1

Prove

1. F is strictly increasing (Le. x < y = F(x) < F(y)) and right

continuous.
2. Find a prove a formula for u;.(A) for any A € M.

3. Prove Mg = P(R).

2 Homework (Homework 9)
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Let (X, ) and (Y, ) be measurable spaces. For E € X XY, set

Ex={yeY:(x,y) €eE}.

IfE e M N, prove Ex € N.

Measurable Functions (Continued 2)

& Definition 20 (Extended Reals)

We define the extended real numbers as

R, = RU {—00, c0}.

The Borel set of R, is

B(R,) = {BCR, : BNR € B(R)}.

& Proposition 20 (Characteristics of (M, B(R,))-measurable

Functions)

Let (X, 9t) be measurable. Let f : X — R,. TFAE:

1.

2.

fis (M, B(R,))-measurable.
YaeR fl(a, 0] € M.
VYaeR fl[a, 0] € M.
VaeR fl[-c0,a) € M.
VYaeR f[-co,a] € M.

VYaeR f(a,00) € Mand f1({o0}), f1({—00}) € M.
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When any of the above hold, we say that f is measurable to mean that f is
(M, B(R, ))-measurable.

The proof is similar to that of é Proposition 17. o

& Proposition 21 (Extremas, Supremas and Infimas of Measur-

able Functions)

Let (X, M) be measurable, and {f; : X — R.}; be a sequence of countable

or finite number of functions. If each f; is measurable, then

~

- g1(x) = sup; f;(x),

N

. &2(x) = inf; fi(x),

o8]

. g3(x) = lirnsup]- fi(x), and

HN

. ga(x) = liminf; f;(x)

are all measurable.

We shall prove for (1) and (3), since the proof of (2) and (4) follow

similarly, respectively.

1. Leta € IR. Notice that

g1(x)>a & Fjoy fjo(x) >a

— x¢€ Ufj_l(a,oo].
=1
It follows that

87 (a,00] = Ufj‘l(a,oo] e M.
j=1
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Hence g1 is measurable.

3. Let hx(x) = Supjsy fj(x). Then {h}y is a decreasing sequence.
Note that

g3(x) = lim sup fi(x) = h;fn hi(x) = irklfhk(x).
]

By (1), we know that each /. is measurable. By (2), we know that

infy hy is measurable. Hence, g3 is measurable as desired. o

#= Corollary 22 (Min and Max Functions are Measurablee)

Let (X, 90t) be a measurable space, and f1, f» : X — R,. Then

max{ fi, fo} and min{f1, fo}

are both measurable.

Note that
max{fi, f2} = sup{f1, f2}
and
min{f, 2} = inf{f1, fo}.
The result follows by & Proposition 21. O

$= Corollary 23 (Limit points of a Sequence of Measurable Func-

tions forms a Measurable Set)

Let (X,9) be a measurable space. Let {fj : X — R};. Let
E = {x € X : lim fj(x) exists }.
]

Then E € IN.



PMATHA51 — Measure and Integration 89

& Proof

First, note that lim; f;(x) exists iff

g3(x) = lim sup filx) = limjinff]-(x) = qu(x).

]

Thus,

E = {x € X : lim f;(x) exists }
i

={x e X:g3(x) = ga(x)}
={x € X:(g3—g4)(x) =0}
= (g3 — g4) " ({0}) € M.

m}
& Definition 21 (f* and f™)
Let f : X — R,. We define
fH(x) = max{f(x),0},
and
£ (x) = max{£(x),0}.
Remark 11.1.1
1. Weseethat f = f*— f~.
2. UIf f is measurable, then f* and f~ are measurable. !In what is possibly a statement similar
to & Proposition 19, we can show this.
3. |fl=fFr+f
4. f*-f~=0. L

Recall the Characteristic Function.
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é Proposition 24 (Characteristic Function of Measurable Sets are

Measurable)

Let (X, M) be a measurable set. Suppose A € X. Then

XA is measurable —— A € IN.

& Proof

Notice that

e l<a = x,;'(a,00)=0¢€M
e 0<a<1l = )(zl(a,oo)zA.
e <0 = )(;ll(a,oo)zXeim.

Thus, by definition of a measurable function, x4 is measurable iff
A e M. o

& Definition 22 (Simple Function)

Let (X, M) be a measurable space. A function f : X — Ris called a

simple function if f is measurable and has a finite range.

Suppose f is simple, say with the range {a,}\_, C R. Since f is measur-

able, we may let
Aj={x: f(x)=a;} = f'({a;}) e M.

We may then write

N
flx)= Z ajxa;(x), (11.1)
j=1
where we note that {A;} is a disjoint partition of X. We call Equa-
tion (11.1) the standard form of f.
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Example 11.1.1
Consider the function f : R — R such that
f=2x1021 +3Xx11,31-

The form of f above is not the standard form since [0,2] N [1,3] =

[1,2] # 0. We may, however, re-express f as
f=2X[0,1) +5x[1,21 +3X(2,3)s

which is then a standard form for f. >

WP Theorem 25 (Increasing Sequence of Simple Functions Con-

verges an Arbitrary Measurable Function)
Let (X, M%) be a measurable space. Let f : X — [0, c0]. Then there exists
simple functions {@y }n, such that
0<po<p1<...<f
such that
f(x) = lim @ (x).

If f is bounded on E C X, then ¢, — f uniformly on E.

4 Strategy

Let’s consider the bounded case. Let M be the bound on f. We construct ¢4
by subdividing [0, M] into 2 equal parts, in particular considering

EO::{x:OSf(x)S%}
Eq :={x:%<f(x)$M},

and letting
M
P1 = OXE[) + 7XE1 < f

Note that f(x) — @1(x) < %
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Similarly, we construct @, by subdividing [0, M] into 4 equal parts

Em:{x:OSf(x)S%}

E; :{x:%<f(x)si}
Ezzz{x:%sf(x)<¥}
Ey:{x:%sf(x)sM},

and letting

M M 3M
@2 = 0xE, + ZXEl + ?XEZ + TXE3 <f.

Note that f(x) — @a(x) < % and @1 < @2. We can continue doing this for

©3, P4, - . ., and we will show that this gives us what we want.

For the unbounded case, we can use a similar idea but consider

k k+1
Enx = {x:z—nsf(x)< X }

for 0 < k <22 -1, and set
Eyon = {x D f(x) > 2”}.

Then, constructing the ¢,,’s in a manner similar to that in the bounded case,

we can prove the statement.
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yWMB Measurable Functions (Continued 3)

WP Theorem 25

Forn e NU{0} and 0 < k <2%" -1, let

k k+1
_ 1
=),

E,om = {x: f(x) > 2"}.

k k+1
Enx = {x Lo < flx) < X

and let

Then, for each 1, we define

22n

k
(Pn = Z z_nXEn,k’
k=0

which we see that each ¢, is measurable and hence a simple func-

tion. Furthermore, for each n and for all x,

Pn(x) < f(x).

21 _
Note that for x € Ui:o ! E, k, we have

) = pul)] < 55

Thus for f(x) # oo, p,(x) = f(x) pointwise. For f(x) = co, we must
have x € E, »u, which then ¢, (x) = 2" — coasn — oo. Thus,

regardless of the value of f(x) for every x, we have ¢, (x) — f(x).

Let ¢ > 0. Now if f is bounded on some set E, say by f(x) < M
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for all x € E, then as soon as 2N > M for some (large) N = —log, ¢,

we must have that
2211

X € U En,k/
k=0

for each n > N. It follows that

1 1
[pn(0) = f)] < 5 < 5y =&
It follows that ¢, — f uniformly on E. o

A [ntegration of Non-Negative Functions

& Definition 23 (Integral of a Simple Function)

Let
LT ={f: X > [0,00]| f is M-measurable}.

Given ¢ € L* a simple function, i.e. range @ = {0 < a1 < ...a,}, with
E; = {x: @(x) = a;}, the standard form for ¢ is

n

p(x) = ) ajxe,(x).

k=1
We define the integral of ¢ as

n

/X du = aju(E),

k=1
where we let
0+ () =0 = (c0)-0.
If A € I, then we also define

n

L(pdy = Za]-y(E]- NA).

k=1

@ Proposition 26 (Properties of Integrals of Simple Functions)
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Let @, € L be simple functions. Then

1.

2.

3.

ichO,then/Xcgody=c/C(pdy.
fle+y)ydu= [(odu+ [ pdu.
0<p<yp = [pdu< [ pdu

Fixing @, let
v(A) = / @du.
A

Then v is a measure on IN.

. If c =0, then

/0~(pdu=0:0/(pdp.
X X

If ¢ > O, then for ¢ = Zﬂ]‘)(Ej,

cp = Z CajXE;,

which is also a standard form. * Thus 11t is rather important that we note that
this realization that c¢ is a standard
form is important, since it allows us to
cQ d,u = anjXEj = CZ”]’XE,- =c (Pd[J- then use B Definition 23.
X X
Let

n

¢ = ZanE}. and ¢ = ibi)(a,
i=0

=0

be the standard form for ¢ and 1 respectively. Note that

EJUE,U...UE, =X and F,UFU...UF, =X.

Thus {E; N F; }]m:f ;_1 is a pairwise disjoint collection of X, with
n m
| JEinFi=X.
j=1i=1

Now on each E; N F;, we have

(p+1,b:aj+bi.
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Thus l
pty= Z CkXGyr

k=1
where
Gi = {x : p(x) + P(x) = cr},
where we note that x € Gy = x € Ej, N Fj;, for some jo and i,
which then
ck = @(x) + Y(x) = aj, + bj,.

It follows that

Gy = U{E]' NF;: aj+ b; = Ck},
i

and so
uG = > uENE).
u,'+b,:ck
Thus
1
[+ 9rau=Y ey
X k=1
I
=2 > (aj+b)u(E;nF)
k=1 I,Z]'+h,'=Ck
n m
= Z(ﬂj+b,’)y(E]‘ﬂFi).
j=1 i=1
On the other hand,
n m
/¢@+/¢W=Z%MW+ZMMM
X X =1 i=1
n m m n
= “jZP‘(Eiji)"‘ZbiZ.“(EinFi)
=1 =1 =1 j=1

(a]' + bi)y(E]' N F;).
=1 k=1

AW+@W=L¢W+L¢W-

Hence
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3. Since 0 < ¢ < 1, the function

y=v9-¢=20

is in £*, measurable and clearly simple. In particular, we notice

that
y=p+y.
By (2), it follows that
/¢@=/¢W+/yW2/¢@-
X X X X
4. Fix ;
P = Z AjXE;-
=1
Then .
v(A) = ./A(pdy = Zajy(E]- NA).
j=1
Showing that v is a measure on IN
e For A = (), we have
n n
v(©0) = > aju(Ejn0) = > a;u(0) = 0.
j=1 j=1

o LetA=JY A Then

n n N

wmzzyw@mm:zyjzmﬁm&)
=1 =1 i=1
N n N
=ESEZWHGJHA0=§E/”¢d#
i=1 j=1 i=1 YA

N
= ZV(Ai)- o

i=1

#= Corollary 27 (Integral of Simple Functions not in Standard

Form)
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Suppose ¢ € L is simple. Suppose we express

n
¢p = Z ijF/‘r
j=1

not necessarily in standard form, where b; > 0. Then

/ pdu= ) bju(F).
X j=1

The proof is similar to that of (2) in & Proposition 26.
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IRNA [nteqration

We are now ready to define the integration for an arbitrary measur-

able function.

& Definition 24 (Integral of a Measurable Function)

Let (X, M, ) be a measure space. Suppose f € L*. We define

/fdy ::sup{/(pdy:OS(pSf,(pissimple}.
X X

Remark 13.1.1

Notice that for a simple function @, we now have seemingly 2 definitions for
its integral. However, it is not difficult to realize that the 2 definitions agree.
In particular, @ itself is one of the simple functions in the set of which we take

the supremum, and in particular ¢ itself is the supremum. o

@ Proposition 28 (Properties of the Integral of Measurable Func-

tions)

Let (X, M, ) be a measure space, and f € L*.

/}(cfdy=c/xfdy.

1. Ifc >0, then
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2. Ifge LT suchthat0 < g < f, then

/ngyg'/xfd‘u.

1. If c =0, then

‘/XO-fdy=O=0‘/);fdy.

/cfdyzsup{/qody:OSSqoScf,(pissimple}.
b'e b'e

If ¢ > 0, then

Butgp < ¢f & cl¢ < f,andy = clpissimple. In

particular, we can thus have

cp=¢<cf.

Thus

cfdy—sup{ (pdy:OS(pSCf,(pissimple}
sap{ [

cpdu:0<cy Scf,gbissimple}

sup{c/xl,bdy:OSl,be,l/zissimple}
:csup{/xlpdy:OSl,DSf,lpissimple}

=c'/xfdu

2. Notice that
{:0<yPp<g pissimple} C{p:0< ¢ < f, pissimple }.
Thus
/ngﬂ=sup{/xwdy:os¢Sg,¢issimple}

Ssup{‘/xgody:OSqoSf,qoissimple}=/dey O
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Example 13.1.1
Consider f, =n - X(0,1)- We see that Vx € R,
lim f,(x) =0,
n—00

ie. that f; — f = 0pointwise. However, notice that under the
Lebesgue measure

1
/ﬂ;fnd,u—n-;—l,

for each n. Thus

lim/fndy=1¢0:/limfndy. >
R RHHOO

n—oo

14 Warning

The above example shows that the limit of the integral of a sequence of
measurable functions need not be the integral of the limit of the sequence of

measurable functions, i.e. it need not be the case that
lim / fodu = / lim f,dy.
n—00 X X n—-00

In other words, limits do not behave nicely with our definition of inte-

gration for arbitrary measurable functions.

We shall see that not all hope is loss, and there are indeed some

sequences of functions which have this desirable property.

®PTheorem 29 (W Monotone Convergence Theorem (MCT))

Suppose { fu}n C L* such that f, < fy41. Let

flx)= nlgl;lofn(x) = sup fu(x)

n>1
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forall x € X. Then

/fdy:hm/fndy=sup/fndy.
X n=eoJx nz1 JX

By (2) of & Proposition 28, we have that

/andFS/anHd#-

Thus we indeed have

lim /fn du = sup/f,, du.
n—oo X n>1 X

It is also easy to see that since f, < f for each 1, we have, by the

/andys./xfd[u

sup/fndyS/fdy.
n>1 JX X

It remains to show that

sup/fndyszdy.
n>1 JX X

To do this, fix an @ such that 0 < a < 1. Consider a simple

function ¢ such that 0 < ¢ < f. Then Vx € X, p(x) < f(x). Now let

same reasoning as above

for each n, and so

E, ={x: fu(x) = ap(x)}.

Notice that not all E, = 0, since ¢ is fixed and lim;, e fu(x) = f(x)

by assumption. Observe that

and



Recall that (4) of & Proposition 26 tells us that

v(E) = Acwpd,u

is a measure, and we know that measures are continuous from

below. It follows that
/a(p du =v(X) = lim v(E,) = lim / apdy.
X n—oo n—oo En

Now on each E,;, we know that f, > a¢. Thus

/fndpszndyzf apdu,
X Ex Ey

for each n, which then

lim [ fody>lim [ f,du= / apdu.
X En X

n—00 n—00
Hence

sup [ fu dyZ/)(aqody

n>1JX

for every simple function ¢ < f. This implies that

sup/xfndy2asup{‘/x(pdy:OS(psf,(pissimple}

nx1
= a/fdy.
X

Since sup{a : 0 < @ < 1} =1, it follows that

sup/fndyszdp.
n>1 JX X
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#= Corollary 30 (Addition of Integrals of Measurable Functions)

Let f,g € L*. Then

/X(f+g)du=/xfdu+/xgdy-
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By ®Theorem 25, 3{ @y }n, {{n}n such that
¢n/f and ¢u g
both pointwise. Clearly then
Pnt Y /S fH8

By the MCT, we have

/X(f+g)du YE sup (<Pn+¢n)d#

n>1

= [ %d*”/ i

zsup/(pndp+sup/1pndy

n>1 n>1

MCT
= /fdy+/gdy.
X X

$#= Corollary 31 (Interchanging Infinite Sums and the Integral
Sign)

Let {fu}n € L and
s(x) = ) fal®).
n=1

Then

ie.

For each N € IN'\ {0}, let

N
sN(x) = D ful).
n=1
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Then since f, > 0, we have that sy ' s. By the MCT, we have

/sdy MET Jim sndu
X N—oo Jx
N
= lim/ d
Jlim X;fn r
N
- tim > [ s

=Z/andy- ;

& Definition 25 (Almost Everywhere)

Let (X, 9, 1) be a measure space. Let E € 9. Let (P) be a property. We
say P holds almost everywhere (a.e.) if the set

B = {x € E : (P) does not hold for x}

has measure zero, i.e. 11(B) = 0.

Example 13.1.2

We say that f = 0 a.e. iff

u({x s fx) #0}) = 0. »

é Proposition 32 (Almost Everywhere Zero Functions have Zero

Integral)

If f € L, then
/fdyzo — f=0ae
X

& Proof

105
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(= ) Observe that our supposition says that

Oz/fdyzsup{/gody:OSgoSf,goissimple}.
X X

In particular, this means that V¢ < f simple, we have that fX pdu=

0. Notice if we write the simple function ¢ as its standard form, i.e.

then

Then if a, > 0, we must have y(E,) = 0. On the other hand, if
a, = 0, then u(E,) can be anything but it will not contribute to the

sum. In other words,
p({x : p(x) #0}) =0,
andso @ =0a.e.

Consider ¢, /' f pointwise, which we can get from ® Theo-

rem 25. By the above argument, for each 7, the set
B, ={x:@u(x) #0}

has measure zero, i.e. u(B,) = 0. Let B = |J;_; B,. Then by subaddi-
tivity,
©(B) = 0.

For each x ¢ B, we have that ¢,(x) = 0, for every n. Since
©n /" f, we have that

Vx¢B f(x)=0.
Thus

BC C {x: f(x) =0}
= B2{x: f(x)+0}
— u({x: f(x)#0)) < p(B) =0
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= u({x: f(x)#0})=0.

(&) Since f =0 a.e., we have

u({x: f(x) #0}) =0.

Let ¢, / f by ®Theorem 25. Then ¢, = 0 a.e. Let

Pn = Z An,jXEy,

j
be the standard form of ¢, for each n. Thenif a,,; # 0, we must

have u(E;,;) = 0. This implies that

/X(pn du = Z an,jt(Ep,j) =0
i

for all n . By the MCT, we have

/fdy:hm pndu=0. O
X n—oo X
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©2 Homework (Homework 10)

Suppose f : R — R is increasing. Prove that f is B(R)-measurable.

2 Homework (Homework 11)

Suppose (X, M, u) is a measure space, and f € L*. Let {E,}, C M bea

pairwise disjoint set, and E = | J,, E,,. Prove that

/Efdu=Z/Enfd#-

2 Homework (Homework 12)

Let f : [0,1] — R, be Lebesgue measurable, f > 0, and f[o 1 fdu < oo.
Prove that
/ x*f(x)du — 0as k — .
[01]

What if f[o 1 fdu = oo? Prove that it is still true or give a counter

example.

©2 Homework (Homework 13)

Suppose F : R — R is increasing and right continuous. Suppose E € M
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with up(E) < oo. Given ¢ > 0, prove that there exists a set

A= Ja bl
k=1
such that
ur((E\A)U(A\E)) <.

(Note: EAA = (E\ A) U (A \ E) is known as the syymmetric difference of
Eand A.)

YERR [ntegration (Continued)

We have used a similar notation eatlier on for a sequence of values. We

shall use the same notation for a sequence of functions.

By fu /" f a.e., wemean 3B a set such that u(B) = 0, such that
Vx ¢ B, we have
filx) < folx) < ... < fx)

and

Tim £, (x) = f(x).

#= Corollary 33 (Monotone Convergence Theorem (A.E. Ver.))

Let (X, M, u) be a measure space. Suppose { fu}n S L' such that f, / f

a.e. Then
lim/fndyszdy.
n—00 X X

Let B be a set such that u(B) = 0, such that Vx ¢ B

filx) < fo(x) < ... < f(x)
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and
Tim fu(x) = f(2)
Then we may write
f=Ff Xpe+f-xs

By #= Corollary 30, we have

/de#:/Xf‘XBcd#Jr/Xf'XBdu=/Xf')(3cdy+0.

Observe that on B¢, we have f, - xgc ,/ f - xg. Thus by the
W Monotone Convergence Theorem (MCT)

/fdu /f XBcdu—hm/fn Xpe dp.

Finally, observe that
/fndy=/fn-chdy+/fn-)(de=/fn-)(Bcdy+O.
X X X X
Thus indeed

/fdyz lim f,du. O
X n—oo

WP Theorem 34 ( W Fatou’s Lemma)

Let {fu}n € L", and
flx)= lir'?zilnf fu(x)

is measurable. Then

/fdy = /liminffn du < liminf/ fudp.
X x n=1 n>1 X

Let
gulx) = inf £,(2)

111



112 Lecture 14 Oct 4th 2019 Integration (Continued)

Then gx /" f(x). By W Monotone Convergence Theorem (MCT),

/fdy:lim/gkdp:sup/gkdy.
X k—oo Jx k>1 /X

Notice that Vn > k, by construction, gx < f,. Thus (by & Proposi-

tion 28), Vn >k,
/gkdys/fndy.
X X

/gk du < inf/fn du.
X n>k Jx
It follows that

/fdp = sup/ gkdu < sup inf/fn du = liminf/fn du. o
X k>1 /X k>1 n>k X n>1 X

This implies that

Example 14.1.1

Recall our example where

fo=m-Xog)
and
}grgofn(x) = f(x)=0.

We see that

/fdy:0<l:hminf/fndy.
X n>1 X

Therefore, we do not always expect an equality to happen vis-a-vis
W Fatou’s Lemma. >

The following propositions have pretentious names, but we will see

why right after looking at them.

& Proposition 35 (Integrable Functions have Value at Infinity

over a Set of Measure Zero)

Let f € L*and [ fdu < oo. Then

u({x s f(x) = 00)) = 0.
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Let A = {x : f(x) = oo}. Consider the sequence of simple functions
Pn=1n-XA-

Then when not on A, we have ¢, = 0 < f,and on A, we have

@n=n <oco=f. Thus ¢, < f. Therefore, Vn > 1

ny(A):/X(pndyS/dey<oo.

In particular, Vi > 1,

It follows that

& Proposition 36 (Set where the Integrable Function is Strictly
Positive is o-finite)
Let f € L" and ./X fdu <oo. Then {x : f(x) > 0} is , Tie. itis ! This o-finite has a similar meaning to

. . . .. the o-finite we have seen before.
expressible as a union of subsets which have finite measure.

LetE = {x : f(x) > 0}. Consider E, = {x:f(x) > %} Then
E = U:[ozl En.

Foreachn > 1,let ¢, = 2xg, < f. Then

1
—y(En):/(pndyS/fdy<oo.
n X X
Hence
1
M(En)S—/fdu<°°-
nJx

It follows that, indeed, each E,, has finite measure. o
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Let (X, M, 1) be a measure space. Let f : X — IR, be measurable.
If we write f = f* — f~, recall that /" and f~ are both measurable.
f| = f*+ f~. We observe that

/Xf+duS/X|f|dy=/xf+du+/xf‘dy,

and similarly for f~. Thus

‘/X|f|d#<°° = /Xf+dy,/xf‘dy<oo_

Furthermore,

Let (X, 9, ) be an arbitrary measure space. Let f : X — R, bea
measurable function. We say that f is integrable if

/f+dy<oo and /f‘dy<oo.
b' b'

Remark 14.2.1

Since f = f* — f~, by #= Corollary 30, we have

/de#=/xf+du—/xf‘d#-

Remark 14.2.2 (On complex functions)

Consider f : X — C ~ R2. We know that ¥z = a + ib € C, we may write
z = (a,b) € R?, with

R(z)=a and 3J(z)=0>b.

Notice that

|z| = Vzz = Va2 + b2.
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Thus
la| <|z| and |b| < |z]|.
We observe that
|z| = |a+1ib| < |a|+|b] =2]z].
Now if we let

f=R()+3(f),

then by a similar line of thought as above,

If] < |RH|+]3(f)]
= R(F)* +R() +I(H)" +I(f)
< 4lf|.

Then by the same arqument that we’ve seen at the beginning of this section,

/X|f|du
[—

[ R0y [ Ry [ 90 du [ 36y du <o

Therefore, we say that f : X — C is integrable if all the above 4 integrals are

finite. In particular, we can set

[rau= [ ®pauri [ 5(au
- [ [ du- [ Ko au

+1

[ st au- [ sy du]-

This shows that it suffices for us to focus on studying real-valued functions

to understand complex-valued functions within our context. ®

Let (X, 9, ) be a measure space. We write

L :={f:X—>1Re|/X|f|dy<oo},
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and

L ::{f:X—>C|/X|f|dy<oo}.

& Proposition 37 (£ is a Vector Space)

L is a vector space. Furthermore, for f, g € L, we have
1. fo+gdy:fodp+fngy.
2.YaeR [oafdu=af fdu.

Note that this is also true for L¢.

, we have

L' is a vector space Let f, g € L. Since |f + g| < [f| +]g
that

Jlreslus [ |ddu [ ol <o
Thus f + g € L.

Foranya € R, |ﬂf| = |ﬂ||f

/X|”f|dH=|ﬂ|/dey<oo.

,and so

Thusaf € L.

Linearity in L' Leth = h* —h~ = f+g¢ = f*— f~+¢" — ¢~. Note
f=f"—f"andg=g¢"—-g . WIS

/hdu=/f*dy—/f‘dw/fdu—/g‘d#.
X X X X X

By rearrangement, we have that
WP+ f~+¢ =h"+f"+g",

where we rearrange them so that all the functions are now non-

negative. By #= Corollary 30, we have 2 2 For sanity, let’s drop the du and sub-
script X here. We shall do this when the
context is clear.
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[rsfrefo=[re[s]s

It follows that, indeed,

frefrefr-frefe-fs

Now for any a € R,

af =aft—af".

Jar=[ar=[ar

and each of the functions on the RHS is non-negative, by & Propo-

Jar=a[s=af5=afrs .

Since

sition 28,

é Proposition 38 (Absolute Value of Integral is Lesser Than
Integral of Absolute Value)

fodu

If f € L1, then

S/X|f|du-

Since f = f* — f~, we have

JA-lf -1

<[rafr=[1n

& Proposition 39 (Sub-properties of £ functions)

1. If f € L1, then
{x: f(x)#0}

is o-finite.
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2. Iff,g € L1, then

VE € M /Efdy:/Egdy
= /X|f—g|du=0

= f=gae

Exercise 14.2.1

The proof of (1) in & Proposition 39 is left as an easy exercise of which the

reader may refer to an earlier proof for reference.

We shall prove (2) in the next lecture.
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WA [ntegration of Real- and Complex-Valued Functions (Continued)

&' Proof (of (2) in & Proposition 39)
(2) & (38) We have that

A|f_g|dy:0 — |f—g|:0a.e. — f=gae

(B) = (1) f = ga.e. means thathfdy = fE gdu for any E € M.

(1) = (8) Since fE f= /E g forall E € 9, in particular, we have
that on
E={x:f(x)—g(x)>0}eM,

we have
/E (f—8g)du=0.

This means that f = g a.e. onE, ie.
u({x € E: f(x) - g(x) > 0}) = 0.

Let& = {x € E: f(x) - g(x) > 0}. Similarly, on
F={x:f(x)-g(x) <0} €M,

we have

u{x e F: g(x)— f(x) > 0}) =0.
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Let 7 = {x € F: g(x) — f(x) > 0}. It follows that

pfx e X f(x) # g(0)}) < u(&) +u(¥) =0,

i.e. that f = ga.e. on X. O

®PTheorem 40 (W Lebesgue’s Dominated Convergence Theo-

rem)

Let (X, M, u) be a measure space, { fu}n C L1 be a sequence of measurable
functions such that f,, — f pointwise a.e., where f is also measurable.

Suppose g € L such that
Vn >1 \fn(x)| < g(x) ae.

Then f € L' and

For each n > 1, we have |fn(x)| < g(x) a.e.. In particular, f,(x) <

g(x)ae.. Thus f(x) < g(x)a.e. Also, —f,(x) < g(x)a.e. and so
—f(x) < g(x) a.e.. Thus |f(x)| < g(x) a.e., and so

/|f|duS/gdu<°°-
X X

Thus f € L.

Now, since f, — f pointwise a.e., we also have that g + f, —

¢ + f pointwise a.e. In particular, by # Fatou’s Lemma,

/g+/f=/(g+f)slirr}linf‘/(g+fn)=‘/g+lirr}1inf‘/fn.
Thus
‘/fslin}linf‘/fn.
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Similarly, we have g — f, — ¢ — f pointwise a.e., and so

/g_/f:/(g—f)slirr}iinf/(g—fn)
:/g+lirr}linf(—/fn)
:/g—limnsup/fn-

/ fz limnsup / fa-

Thus

It follows that

limsup/fn S/fﬁliminf/fn < limsup f.
n n n

/ f= hmnsup / fu = lirr}linf / fu,

which implies that the limit exists, and so

/lei;m/fn,

as desired. 5

Thus

#= Corollary 41 (A Series Convergence Test for Integrable Func-

tions)

Let {fu}n € L', and suppose

2(/){ |fn|du) < oo,

Then Y., fn converges a.e.

Ifwelet f(x) = X fu(x) a.e., then

/deu=Z/andu~
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Let g(x) = 220:1 |fn(x)| 1 For N > 1, let 1t could be that g(x) = oo for some x.

N
sv(0) = > [fa0)].
n=1

Then sy " g. By the W Monotone Convergence Theorem (MCT),

/3:1%5“/5Nzh,gniflfn|=2/|fn|<oo.

Thus ¢ € £L!. By a similar reasoning to & Proposition 35, if we let
N = {x: g(x) = oo}, then u(N) = 0. Then for x ¢ N, we have that
gx) =20, |fn(x)| < oo. Thus ;7 ; fu(x) converges absolutely on
NC. This implies that Y, ; fu(x) converges a.e.

Now set
> x) x¢N
f(x) _ n=1 fn( ) )
0 xeN
2 Let hy(x) = 25:1 fu(x) foreach N > 1. Then hy — f pointwise 2 We can set f(x) to be anything for

a.e.. Observe that || < XN, |f4| < g a.e.. By the W Lebesgue’s xeN

Dominated Convergence Theorem, we have that

/fZIiI{]n/hNZIiZ{Ini/fHZZ/fn,

as desired. o

Example 15.1.1

Consider the function

X

NI=

O0<x<l1
flx) =

0 otherwise

From PMATH450, since f is bounded on (0, 1), Lebesgue’s integral ‘
Figure 15.1: Graph of f in Exam-
ple 15.1.1
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coincides with Riemann’s integral, and so
'
du = / —dx =2.
/ fav= |

Now, let {r,,}, be an enumeration of Q. Let
- 1
()= ) 5 flr=ra).
n=1
Since g(x) > 0, by the W Monotone Convergence Theorem (MCT),

/g=§;/2lnf(x—rn)=n§;2ln-2<oo.

Thus g is integrable. However, g is unbounded on every open inter-

val, and in particular, it is discontinuous at every rational point, with

lim g(x) = oo. >
x—ory

®PTheorem 42 (Littlewood’s Second Principle, for a general mea-

sure)

Let (X, M, u) be a measure space. Let f € L' and ¢ > 0. Then there exists
a simple function ¢ € L' such that

[-pan<e
X

If u = ur is a Lebesgue-Stieltjes measure on R, then there exists a function

g that vanishes outside of a bounded interval such that

/If—gldw<8-
X

Let f = f* — f~. By ®Theorem 25, 3¢, /" f*and 3¢, / f~. By
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the W Monotone Convergence Theorem (MCT), we have

‘/f+:lirrln/(pn and /f‘:lign/lpn.

In particular, we have

Jor=on—0 ad [ -p-0

This means that

Ny Vn > Ny /(f+—g0n)<§
AN, Vn > N, /(f——¢n)< %

Picking N = max{Nj, N>}, we have that Vn > N,

/|f—(§01—¢n)|S/If*—(pn|+/|f‘—lpn|<g.

This completes the first part.

Now suppose u = pr. By the last part,
N

9= anxe,
n=1

be a simple function such that / | f- (p\ dur < e. By 8% Home-

work , for each E,;, let

Ay = U(ﬂj,bj],
=1

such that
&
UF(EndAy) < ——.
la,| N
3 Consider the simple function % This is so that we can get a more well-
understood set, and intervals are quite
well-understood and easy to grasp.
lp = Z al’lXA” *
n
Then

N
/I<p—¢|dwsZ|an|/|xE,,—xAn|dyp
n=1

N
= Z la,| H(EnAAn) <é&.
n=1
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It follows that

/|f—¢|dwS/If—@ldup+/|<p—¢|dyp<ze. 5

~

The details for the rest of this proof shall be left to the reader as
an exercise. Refer to Figure 15.2. / \

Figure 15.2: Idea for constructing the

continuous function
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BN Riemann Integration VS Lebesgue Integration

We shall take a quick detour into the agreement between Riemann
integration and Lebesgue integration on bounded functions. For fur-
ther details, you may wish to refer to notes on PMATH450. However,
in this section, we shall look at using so-called upper and lower en-

velopes of a function to prove the same result.

& Definition 27 (Step Functions)

A function @ : R — Ris called a step function if ¢ is simple with

P = ZanXEnr

where each E,, is an interval or a singleton.

standard form

Recall the B Definition . Given a bounded function f : [a,b] — R,

we shall see that we can equivalently define

T b
/ f(x)dx = inf{ @du: f <@, ¢ step function } ,
a [a,b]

and

b
/ f(x)dx = sup {/ pdu: ¢ < f, ¢ step function } .
Ja_ [a,0]


https://tex.japorized.ink/PMATH450/classnotes.pdf
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We may then say that f is Riemann integrable if

r (x)dx = h (x)dx.
[ =[5

We shall call the common value above as the Riemann integral, of
b
/ fdx.
a

& Definition 28 (Upper and Lower Envelopes of a Function)

which we shall denote by

Let f : [a,b] — R. We define

Up(x) = U(x) =lim sup f(y) = max{f(x), limsup f(y)}

|y—x|§6 y—x

as the upper envelope of f. We define
Lf(x) = L(x) =lim inf f(y)=min{f(x), liminf f(y)}
610 |y-x|<o y—=x

as the lower envelope of f.

& Proposition 43 (Characterization of Continuity with Upper and

Lower Envelopes)

Let f : [a,b] = R. Then U(x) = L(x) iff f is continuous at x.

& Proof

(=)

f is continuous at x

= f(x) = limy (1)

— limsupy_)x fly) = f(x) = liminf, . f(y)
= U(x) = f(x) = L(x).

(=)
U(x) = L(x)
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& f(x) < U(x)=L(x) < f(x)
=

limsup f(y) < U(x) = f(x) = L(x) < h;rggff (y) < limsup f(y)

y—Xx y—ox

— limsupy_)x fly) = liminf, f(y)
& f(x)=1lim, . f(y) o

& Proposition 44 (Monotonic Sequence of Step Functions to the

Upper and Lower Envelopes)

Let f : [a,b] — R. Then there exists step functions {@, }n such that
@n " L, and step functions {, },, such that ¢, ~, U. Hence U and L

are measurable.

Exercise 16.1.1

Prove & Proposition 44. Hint: Take a partition of the domain, take refine-

ments, . ...

WP Theorem 45 (Characterization of the Upper and Lower Rie-

mann Integrals of Bounded Functions)

Let (X, 9, 1) be a Lebesgue measure space. Let f : [a,b] — Rbea
bounded function. Then

)
/fdxz/ Udu,
a la,b]

b
/fdx:/ Ldu.
Ja_ [a,0]

and

Exercise 16.1.2

Prove W Theorem 45.
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WP Theorem 46 (Agreement of Riemann Integration and Lebesgue

Integration for Bounded Functions)
Let f :[a,b] — R be bounded. Then

1. if f is Riemann integrable, then f is measurable and

b
/ fdx = fdu.
a [a,b]

2. f is Riemann integrable iff

u({x : f is not continuous at x}) = 0.

& Proof

Modes of Convergences

Consider a sequence of functions { f, }n.

. . . ptw .
o (Pointwise convergence) We write f, — f if Vx we have

lirrlnfn(x) = f(x).

. . . a.e. .
e (Almost everywhere pointwise convergence) We write f, — f if

lim £, () = f(x)

except for x's in a set of measure zero.



PMATHA451 — Measure and Integration 131

o ( ) We write f, bﬂffif

Vx>03N € N Vx Vi > N |fu(x) - f(x)] < e.

For fu, f € L', we say that the f,,'s converge in L' to f, of which we

denote by
-Cl
fn - f/
when
[ V= flau =0
X
Example 16.2.1

Consider the Lebesgue measurable space (R, B(R), u).

1. Let f, = % X(o,n) foreach n,and f =0. We see that Summary for modes of convergences in
example 1.

ptw w

e f, — 0 (once x > n), fnp—>0 £250
unif 1

of,,go,and fi0 Ao

unif
o f, = 0.

However, Vn,
/|fn—0|dp:1-n:1—>1.
X n

1
Thus f, §—> 0.
2. Let fn = X[n,n+1) for each n, and f =0. We see that Summary for modes of convergences in
example 2.
ptw
e f, — 0 (same reason as before), and fi P £550
o f250. fr B0 f o

if
However, f, l;g 0, since Ve > 0 VN, dx and dm > N such that
fm(x) #0.

Also, for each n,

/|fn—0|dy=1—>1¢0.
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Thus f, 7[7—1> 0.

3. Let f, = nX[0,1] foreach n, and f = 0.

tw
Then f, 1;’—> 0 since for x = 0, Ve > 0, for any N € N, there always
exists 19 > N such that f,,(x) = ng # 0.

Now notice that the above is only the case for x = 0, and singletons

a.e.
have measure zero under the Lebesgue measure. Thus f, — 0.

ptw
For uniform convergence, by the reason stated for when f, /~ 0,
we know that there is no “uniform” ¢ > 0 that will give us what is

if
required for this mode of convergence. Thus f, 1;& 0.

For .El-convergence, since forn > 1,

1
du=n-—=1,
A,l]fn H "

we have that

/,|ﬁ—0wy=1—»1¢0
[0.1]

Thus f, £> 0.

4. Consider the following sequence of functions of which we have no

nice way to properly express recursively so.

(Pointwise convergence) We observe that on any x # zim for any
m > 1, fu(x) — 0. However, on x = 2l,,,,for anym > 1, fu(x) = 1.

ptw
Thus, it is clear that f, /> 0.
(Pointwise convergence almost everywhere) !

(Uniform convergence) We know that there is no ¢ > 0 such that
fn(x) = 0 for every x by the reason stated in (Pointwise conver-

gence).

Summary for modes of convergences in
example 3.

ptw

a0 350
fleifO fnf_l)o

Summary for modes of convergences in
example 4.
ptw ae.
fu> 0 fuf0

unif

Ll
fn 0 fu—>0

! Requires clarification.

Current belief is that this should
hold, by the reason stated in (Pointwise
convergence), and that u(Q) = 0.

However, lecture recorded f, 3’5 0.
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(L!-convergence) We see that indeed

/ fndu—0,
[0,1]

since the integral of the functions have the form of 1, although we

see that the occurrence for each 4 occurs longer and longer.

.Ll
Thus f, — 0. >

Remark 16.2.1

We see that uniform convergence has no logical relationship with £'-

convergence. ®

We introduce a new mode of convergence.

Let (X, 9, 1) be a measure space, and f,,, f : X — R, be measurable
functions. We say that { f,} converges in measure to f, of which we

denote by
I
fn— f)

provided that Ve > 0, AN € IN such that Vn > N
plx: [fa() = f)] 2 e}) <&,

or equivalently

(x| ful) - f()] 2 e} > 0.

Exercise 16.2.1

We look back at the last example. Show that the following are the case with

respect to each of the examples.
1. fu 50

u
2 fudro

3. fu50
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4 f, -0
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Modes of Convergences (Continued)

& Definition 31 (Cauchy in Measure)

Let (X, M, ) be a measure space, and f,, f : X — R, be measurable
functions. We say that { f, } is Cauchy in measure if Ve1, €2 > 0,
AN € NN such that Vn,m > N, we have

w{x | fa(x) = ()] = €1}) < ea.

@ Proposition 47 (L!-convergence implies Convergence in Mea-

sure)

Let (X, MM, ) be a measure space, and f, : X — R, a sequence of

-Cl
measurable functions. If f, — f for some function f, then f, — f in

measure.

& Proof

For any ¢ > 0 and any n > 1, let

Epe = {x:|fulx) = f(x)] > €}
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Then, by assumption, we have that

cwEne) < [ 1fu=fldu s [ 1fu=fldn o
It follows that indeed

p(Ene) = 0asn — oo o

WP Theorem 48 (Various results related to convergence in mea-

sure)

Let (X, 9, 1) be a measure space, { f, : X — R, }, a sequence of measur-

able functions, and f, g be measurable functions.
1L S frAfube = f=guae

2. {fu}n is Cauchy in measure = 3If : X — R, measurable such that
u
fo = f

3 fu 5 f inmeasure => 3{ fu, e C { fuln such that fu, =5 f.

1. Suppose f, 5 fand f, 4 g- Let ¢ > 0. Note that

|f(x) = g()| < |£(x) = fu2)] + | fu(x) = g ()]

Thus

{x: |f(x) - g(x)| = &}
c {x F () = fulx)] 2 %} U {x fu(x) - g(0)] 2 %}

By monotonicity,

p{x s |f(x) - g(x)]| = €})
<u ({x f ) = fulx)] 2 %}) +u ({x | fulx) - g(x)] 2 %}) .

By our assumption, the terms on the RHS converges to 0 as n —
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co. It follows that

u({x:|f(x) —gx)| = ep =0
for arbitrary ¢ > 0.

Now notice that

1
{x : f(x) # g(X)} - U {x : |f(x)—g(x)| > E} .

n

It follows that
pu{x: f(x) # g(x)}) < Zy ({x : |f(x)—g(x)| > %}) =0.

Therefore u({x : f(x) # g(x)}) =0. Thus f = g ae.

©2 Homework (Homework 14)

Let (X, M, ) be a measure space, fy, f : X = R, forn > 1, with f, — f
a.e. Suppose [(X) < oo. Furthermore, suppose that there exists an M such
that Vn > 1,

u{x s |fa ()] = M}) = 0.

I Prove that ! We may say that each f,, is bounded by

/ﬂWﬂm/ﬁ@. Mae
X moJx

©2 Homework (Homework 15)

Let (X, M, ) be a measure space with (X) < oo. Let us say that f ~ g
when f = g a.e. Let

[fl=1g:8~f}

Let
Y = {[f]: f: X > Ris measurable }.

Prove that
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1. The function
|f -]

p([f],[g])=/xl+|f_g|

is a metricon Y.

2. p([ful, [f]) = Oifand only if f, — f in measure.

2 Homework (Homework 16 (Generalized Fatou’s Lemma))

Let (X, 9, 1) be a measure space, f,, f : X = R, forn > 1, with f,, > 0.

If fu — f in measure, then

/fdy < liminf/ fudp.
X nooJXx
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Modes of Convergences (Continued 2)

®PTheorem 49 (Egoroff’s Theorem)

Let (X, 9, 1) be a measure space, and (1(X) < oo. Let f,, f : X — R be
measurable functions. Suppose f, 5 f. Then given ¢ > 0, 3E € M such
that u(E) < € with f, Lﬁl{f on EC.

& Proof

Suppose f; 5 f. Let

N = {x 0 f(x)}

be the no-good set. Then X = N U X1, where

ptw

X = {x ™S f(x)} |

Let

[ee]

Enx = U {x €Xy: |fm(x)—f(x)| > %}

m=n

Notice that Ej, x 2 Ej41 and



140 Lecture 18 Oct 23rd 2019 Product Measures

By continuity from above,
Hm u(Ey ) = (@) = 0.
Thus we may pick a subsequence n; such that
€
[J(Enl, l) < E .

Let

E= UEW.
1

Then by monotonicity and subadditivity of measures,

p(E) < Z p(En,1) < €.
1

Let ¢ > 0. Choose L > 0 such that } < ¢. Now for any x € ES, we

X € ﬂEC .
1’!1,1
!

have

Note that

[se]

Eij=(ﬁ{x4ﬂAm—funs%}.

m=n;

Therefore, for any [ > L, for any m > n;, we have

< E.

==

) - £ < 7 <

if
Therefore, indeed f, i f on EC. o

Given measure spaces (X, M, u) and (Y, N, v),

1. we want a measure space of the form (X XY, M @ N, A) where

MAXB) = u(A) - v(B),
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and

2. to have the measure play nice with integration, in that given a (M ® N)-

measurable function f : X XY — [0, o], we want

[ro=J o]
[

It turns out that we can always have (1) but not (2). We will not go into
the details of showing for (1) in full detail. However, we can have both

when y and v are o-finite.

Given any E € X XY, we define the function

A(E) = inf{z 1(Ay) - v(By): E C UAn X By, Ay €M, B, € sn} .
n n

Exercise 18.2.1

Prove that A* is an outer measure.
By Carathéodory’s Theorem, the set
L :={AXBCXXY:AXB is A"-measurable }

is a g-algebra, and we can thus define A as a complete measure on L. It

then remains to show that M QN C L.

Example 18.2.1 (How (2) fails when one of the measures is not o-
finite)

Consider X = Y = [0,1], M = N = B(X) = B(Y), and M is the
Lebesgue measure while v is the counting measure. We know that v is

not o-finite.
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Consider
D ={(t,t): t €]0,1]} € [0,1] x[0,1],

which is Borel and hence measurable. Then we can define

A(D) = A*(D) := inf {Z w(A,)-v(By): D C UAn X Bn} .

n=1 n

Note that the components of each element in D iterates through every
real number in [0, 1]. Furthermore, [0,1] € |, B,, and so we have
v(B,;) = o0. We can then show that A(D) = co. Then

/ xpdA = A(D) = co.
[0,1]%x[0,1]

However, we see that

/ / )(Ddydv=/ 0dv =0,
[0,1] /[0,1] [0,1]

since when we fix one value of y, xp(x, y) = 1 only happens at one
point that is x = y. Furthermore, by a similar reasoning, when we fix

x, xp(x,y) =1iff x = y and so

/ xpdv=v({x}) =1,
[0,1]

when then we see

/ / xpdvdu = 1dv =1, >
[0,1] J[0,1] [0,1]

& Proposition 50 (Component-wise Measurability of Functions

and Sets)

Let (X, M) and (Y, N) be measurable sets.

1. IfE € MON, then

Ex={yeY:(x,y)eE} eN,
EV={xeX:(x,y)€E}eM.
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2. If f: X XY — R, is (M @ N)-measurable, then

fx(y) = f(x,y) : Y — R, is N-measurable
f¥(x) = f(x,y): X = R, is M-measurable

1. This was Homework 9.

2. Fixa. Let E = (a, oo]. Since f is M ® Yi-measurable, we have that
F~YE) € M@ N. It follows from part (1) that if we fix x,

fFUE)={y: f(x,y) €E} =E, e N.

The result holds similarly for fY(E) € 9. O

Let X be a non-empty set. & C P(X) is called a monotone class if
1. E]' elwithE1 CExC... = J,Eyn €&, and

2. FpeéwithFi2F2... = (), F, €&.

1. Notice that every o-algebra is a monotone class.
2. P(X) is a monotone class.

3. If &4 € P(X) are monotone classes, then
ﬂéa:{EgX:Eeéa,Va}
o

is also a monotone class.
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4. Given any collection of subsets of X, there exists a smallest monotone

class that contains them, and we call this the monotone class generated
by those subsets.

WP Theorem 51 (Monotone Class Theorem)

Let X a non-empty set, and A C P(X) an algebra of sets. Then the o-

algebra generated by A is equal to the monotone class generated by A.

We require the following lemma.

£ Lemma 52 (Lemma for Monotone Class Theorem)

Suppose A is an algebra of sets on X. Then A is a 5-algebra iff V{E;} C
A with E1 CEy C ..., then U]-E]‘ e A.

(== ) Follows simply by definition of a g-algebra.

(&) Let{A;}; € A. Consider
E1=Ay, E2=A1UAy, ...
Then by assumption,
Jai={JEean
i i

since E; € E; € .... Thus A is indeed a o-algebra.



& Lecture 19 Oct 25th 2019

Product Measures (Continued)

Monotone Class Theorem

Let C be the monotone class generated by A and It be the o-algebra
generated by A. We want to show that C = 9.

Note that since every o-algebra is a monotone class, we must
have C € M. Thus it remains to show that 9t C (. To that end, it
suffices for us to show that C is a g-algebra, since 9t is the “smallest”

o-algebra generated by A.
1LetE € C. Set ! The proof gets really slippery from
hereon.
Cg={Fe(C:F\E E\F,ENnFe(}

We want to show that (g = C.

It is clear that E € (g. Furthermore, § € (g sinceE = E\ 0 € _.
Note that F € (f < E € (.

Claim: (g is a monotone class Suppose F; € Cg withF1 C F» C ...
Let F = |J; Fj. For each j, we know that

F]'\E, E\F]‘, EﬂF]' eC.
Thus since C is a monotone class, and

FI\ECFR\EC...,
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we have

F\E:U(F]-\E)EC.

]
Since
E\Fi2E\F,2...,

we also have

E\F:E\UFj:Eﬂ ﬂF}C :ﬂE\Fjec.
j j j

Finally,
ENFiLCENF, C...,
SO

Enl JFec
j

Therefore, F € Cg. Similarly, given F1 2 F> 2 ..., we can show that

N j F; € Cg. This proves the claim. 4
Ca = Cforany A € A ltis clear that (4 € C simply by definition.

It remains to show that C € Ca. To that end, we simply need to
look at elements from the generator A. Let E € A C C. Since A
is an algebra of sets, and A € A, we have that E\ A, A\ E, and
ANE e A C L Thus E € (4, and furthermore, A C (4. This proves

the claim. 4

Cg = Cforany E € C We know thatforany A e A, E€ (4 & A€
Ce. Thus A C Cg. By the last claim, we know that Cg = C for any
EeC. A

We now know that VE, F € C,
Felg=>E\F,F\E,ENnFec(.
Thus, for any E € (, letting F = X, we have that
F\E=E%,E\F=0,ENF=E €L

In particular, 0, E© € C.
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Now VE,, F € {, we have EC, F€ € {, and so E€ N F€ € C. Thus
EUF =(ESNFS)C e L.

By induction, C is closed under finite unions, and by De Morgan’s
Laws, closed under finite intersections. Thus C is an algebra of sets

and a monotone class.

By Lemma 52, we have that C is a o-algebra. It follows that Mt C

¢, and our proof is done. 0

WP Theorem 53 (Existence of Product Measures for o-finite Mea-

sure Spaces)

Let (X, M, u) and (Y, N, v) be o-finite measure spaces. Let E € N @ N.
Then

1. x +— v(Ey) is Mi-measurable and y +— @(EY) is N-measurable;

[rEodu= [ wenav

3. ifweset (u X v)(E) = /X v(Ey)du, then u X v is a measure on MM @ N

2. we have

and
(p xv)(AXB) = u(A)-v(B).

Case: u(X), v(Y) < co Let
C={EeMeN: (1)and (2) are true }.
Let A be the algebra generated by {A X B : A € M, B € N}.

2FeA = F=|J"(A; xBj), where A; € M, B; € N Note that for
any F € A, we may write F = A X B for some A € Mt and B € N. As
stated, note that A is an algebra.

It is often useful to think of AX B as a
rectangle.

2 We want to show that we may write
each element of A as a disjoint union of
rectangles, each of which has compo-
nents in Mt and N.
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If F = (A x B)®, then we may write
(AxB)® = (A x Y)U(A x B)

(see Figure 19.1).

If F = (A1 X B1) U (A2 X By), then we may partition F such that

(A1 X B1)U (A2 X By)
=(A1NA) x (B NBy) U(A1 \ A2) X B U(Az \ A1) X By
(see Figure 19.2).

By extending on the above inductively, we can prove that we may

write

n
F = U(Ai X Bi)
i=1

for any F € A, with A; € Mt and B € N. A

Figure 19.1: Idea of partitioning (A X
B)C.

(A2\ A1) x B

(A1NA2)x (B1NBy)

Figure 19.2: Idea of partitioning (A1 x
Bl) X (Az X By).
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WP Theorem 54 (Fubini-Tonelli Theorem)
Let (X, M, u) and (Y, N, v) be o-finite measure spaces.

1. (Tonelli) If f :+ X XY — R, with f > 0isa M ® N-measurable
function, then

glx) = / fr dv is M-measurable,
Y

and
h(x) = / Y du is N-measurable.
X

Furthermore,

/X/fodVd#=LLfydv=Anyd(”XV)‘

2. (Fubini) If f : X XY — R, € LUX X Y) is (M ® N)-measurable, then
fee LYY) forae x and fYe LYX)forae. y,

and

Let us first consider several relevant examples.
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Example 20.1.1

Consider X =Y = R and p = v is the Lebesgue measure. Consider the

function

f = X{xo}xR + XRx{yo}s

for some xo, Yo € R. We see that f = Oa.e,andso f € LR x R).
However,

foly)=1Vy = fi, ¢ L'(R).

Similarly,
fr(x)=1V¥x = f¥% ¢ LY(R).

Tonelli’s statement says that such points xg and o, in their respective

spaces, can only happen on a set of measure zero. >

Example 20.1.2 (Failure of Fubini’s Theorem when f ¢ £1(X X Y))

Consider the function

1 x<y<x+1
flx,y)=9-1 x-1<y<x-

0 otherwise

Note that the graph of f is illustrated in Figure 20.1.

Notice that when x > 1 (to the right of the red dashed vertical line), Figure 20.1: Values of f(x, y) in Exam-

ple 20.1.2
/ fedy =0.
R

‘/]fody:&
/]fodyzl.

Finally, when x € (0,1), we have

O</fxdy<1.
R

This holds rather similarly for y for f¥ (using the blue dashed hori-

we have

When x < 0, we have

When x = 0, we have
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zontal line for reference), except for the fact that

—1</fydx<0
R

/ f Odx = -1
R
In particular, one may see that

/R/]fodydxzé.
AAfydxdy:—%. »

for when y € (0,1), and

for when y = 0.

However,

Case 1: Characteristic Functions Suppose f = xg where E € M @ .

Fixing x, we have

1 (x,y)€E
fy) = xelx,y) = = Xe ()
0 (x,y)¢E

Thus fy = xg, and similarly f¥ = xgs. Then by 2 Theorem 53, we
have that

//)(Exdvdysz)(ydv=/ XEA(u X V).
xJy Yy JX XxY

Case 2: Simple Functions This is simply extending on Case 1 by
linearity of integration, since simple functions are expressible as

finite sums.

Case 3: (M ® N)-measurable Functions Since f > 0, we may construct
¢n /" f by way of ® Theorem 25. The result follows from the
W Monotone Convergence Theorem (MCT). o
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Given a measure i, we shall say that a set A is a [1-null set if u(A) = 0,

i.e. A has measure zero with respect to L.

# Proof (Fubini)

Notice that since | f | = f*+ f~ while f = f* — f~, we noted that
feLl(XxY) & |f| e LYX xY). Inparticular, f*, f~ >0
by construction. We notice that we can use Tonelli’s theorem if we

fulfill the rest of its conditions.

Recall that

[ sawxn= [ pragxn- [ fawxo,
Let

g (x) = /Yf+(x, y)dv and g (x)= ‘/yf_(x, y)dv.
Then by Tonelli’s theorem,

[ rratuxn= [ g

and

[ rawxn= [ g
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Consider
= {x: g (x) = oo}

Then since ¢* is M-measurable, we have that u(N*) = 0. Similarly,
theset N~ = {x : ¢7(x) = oo}isa u-null set. It follows that
N = N*UN~ isalso p-null.

For x ¢ N, let g(x) = g*(x) — g7 (x), which then

g(x) = /Y Fxp)dv.

By Tonelli’s theorem, we know that

[ograu= [ grawxn= [ s,
X\N XxY (X\N)xY

and

sau= [ fawxn=[ o
X\N XxY (X\N)xY

Thus
[ = [ e [ oo
=/X\N 8 du— / 8§ dp
/ (8" -8 )du
- [ o -r e
-/ | [ ] au
- [|[sema]an

The other iteration follows if we instead constructed

@ = [ Fende and 5@ = [ s

in place of g* and g, and follow through the proof similarly.

Remark 21.1.1
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Given o-finite measure spaces (X, M, u) and (Y, N, v), we now know that we

can get the measure u X v on M @ N.

We can, in fact, complete this measure, by making use of % Theorem 6. In

particular, we let

MN :={EUF:EcMN, FC B, Be MR, suchthat uxv(B) =0}.

and let

U Xv(EUF) = uxv(E)
for all F’s as described in M @ N. |
Example 21.1.1

It is important to note that even if u and v are both complete, u X v is

almost never complete.

Consider A € M with u(A) = 0, and N # P(Y), where u = v is the
Lebesgue measure. If E € P(Y) \ 9, then A X E ¢ 9 @ . However,
AXECAXYand uxv(AXY)=0. >

The following is a corollary for ® Theorem 54, stated as a theorem.

WP Theorem 55 (Fubini-Tonelli Theorem for Complete Measures)

Let (X, 9, p) and (Y, M, v) be complete, o-finite measure spaces. Let (X X
Y, O, A) be the completion of (X XY, MM, uxv). Let f : X xY = R,
be (M ® N)-measurable. Then f is N-measurable for a.e. x and f¥ is

Mi-measurable for a.e. y. Furthermore,

S avau= [ [ prauan= [ oo

Example 21.1.2

Consider X = Y = R, and pu the Lebesgue measure. Let © = B(R).



156 Lecture 21 Oct 30th 2019 Product Measures (Continued 3)

Consider the measure spaces

(R?, B(R)® B(R), ux ) and (R% D@D, ux p). >

©% Homework (Homework 17)

Show that the conclusion of Egoroff’s Theorem can fail to hold when

(X, M, u) is o-finite.

©2 Homework (Homework 18)
Let f, fu : R — R, each f, continuous and
f) =tim f(x) V.
Prove that Ve > 0, 3E C R measurable, with u(E) < & such that f is

continuous on EC.

Q3 Homework (Homework 19)
Let (X, M, p) and (Y, M, v) be o-finite measure spaces. Let E € M @ N
with X v(E) = 1. Prove that for t > 0

~~ | =

u({x s v(ED > 1)) <

©% Homework (Homework 20)

Let (X, M, ) be a measure space, and fy, gu, f, g : X — R be measurable

functions. If f, — f in measure, g, — g in measure, prove that f, +

gn — [ + g in measure.

2 Homework (Homework 21)
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Consider the measure space (IN, P(IN), u), where u is the counting mea-

sure.

1. Let f :IN — [0, o), with f(n) = a,. Prove that

/Nfdy=g;an.

2. Let f :IN — R, with f(n) = ay. Prove that f € L'(N,P(N), p) &

iy an converges absolutely and that in this case

‘/Nfdy:ni:;an.

©2 Homework (Homework 22)

Let g : INxIN — R with
g(n/ m) = An,m-

For each finite subset F € IN X IN, set

Sp = Z An,m-

(n,m)eF

We say that limr Sr exists and is equal to L provided that Ve > 0, 3Fg a
finite set such that VF 2 Fo where F is finite, we have |L — Sf| < e.

Prove or disprove: g € LY(INxIN,P(N) @ P(N), u X u)

limp Sg exists. And, in this case

/ gd(ux u) =limSr.
INXIN F

(You may use P(IN) ® P(N) = P(IN x N).)
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Consider a function f < 0. We know that we can seek the integral of f

with respect to a given measure (i, i.e.

/dep.

Considering the way we define such an integral, we may very well

have /x fdu < 0. On the other hand, we know that we can define a

v(E) = /Efdy.

Had f be non-negative, v would be a measure. We want to allow

function

v, where f < 0, to also be considered a ‘measure’. This leads us to

consider the following notion.

Let (X, M) be a measurable space. We say that v : X — R, is a signed

measure if
1. v(0) =0;
2. v can take on all values in R,, but not both oo and —oo; and

3. E=J,1Ex = Vv(E) = X, v(E,) where },v(E,) converges
absolutely when v(E) # +oo, and properly diverges to oo if v(E) = oo
(ie. Ve >0,3IN €N, Vn > N, 37 v(Ej) > c).

Remark 21.2.1

The second condition where v cannot simultaneously have —co and oo in
its domain is considered so that we do not have to deal with the controver-
sial case of oo — oo, while still allowing for oo to be a possible value in our

measurement. o
Example 21.2.1

1. Consider f € L1(X,M, u) where y is a (regular) measure. Note
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f = f"—f". Define

ve = [ fau= [ Frau= [ £ du= @),

where u* and y~ are ordinary measures, while v is a signed mea-

sure.

2. Let p1, pz be 2 measures on the measurable space (X, Mt). Wlog,
suppose p1(X) < co. Then

V(E) = p1(E) — p2(E)

is a signed measure.

3. Suppose
/f+dy<oo and /f_dy<oo.
X X
Then
we = [ fdu
E
is a signed measure. >

Note that every measure is a signed measure. For emphasis, we shall also
refer to our old definition of measures as the ordinary/reqular/positive

measure.

Notice that in the case of IR, we may write
E=(ENRHUYENRY),

where, for now, R* = R\ (—0,0) and R~ = R\ [0, o). Then we may

define
we)= [ g [ faw
ENR* ENR—

= / frdu- fdu
ENR* ENR~
= (ENRY)—u (ENR").
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This motivates us to make the following definition.

Let (X, M%) be a measurable space, and v a signed measure. We say that
E € M is v-positive if VF € M such that F C E, we have v(F) > 0.
We say that E € Wt is v-negative if VF € It such that F C E, we have
v(F) <0.

Remark 21.2.2

It is important to note that the notion of v-positivity and v-negativity is not
mutually exclusive, i.e. saying that a set A is “not v-positive” does not mean

that A is v-negative, and vice versa. ®
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Hahn Decomposition

WP Theorem 56 (Hahn Decomposition Theorem)

Let v be a signed measure on a measurable space (X, ). Then 3P € M
that is v-positive and N € I that is v-negative such that X = P UN.
Furthermore, if X = P” U N’ for some other P’ that is v-positive and N’
that is v-negative, then PAP’ and N AN are v-null.

&2 Homework (Homework 23) Recall that PAP’ is called the symmetric
difference of P and P’, and it is defined as

Let v be a signed measure. Let
PaP’ =(P\P')U(P'\P).

Then
v(E) = limv(E,).
n

IfFi2F2...and F =, F,, and v(Fy) # +oo, then

v(F) = lizn v(Fp).

% Lemma 57 (Lemma for Hahn Decomposition)

Suppose v is a signed measure. Then
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1. Pisv-(x)and Q CP = Q is v-(+); and
2. Py arev-(x), then \J,, Py is v-(»),

where v-(+) stands for v-positive, v-negative, and v-null.

Lemma 57

1. For any R € 9t such that R € Q C P, it follows that p(R) > 0 since

P is v-positive. Thus Q is v-positive.

2. LetA € M such that A € |, P,. Notice that A = |J,,(P, N A).
In particular, P, N A C P,. Since P, is v-positive, we know
v(P, NA) > 0. Let

A1 =ANPy, A2=(Aﬂ(P1 UPZ))\A],

In general

A, =1AN

O P; \ Ayt
i=1

It is then clear that A = |-J, A,. Thus v(A) = )} A,. Further-
more, since each A, C P, it follows that v(A,) > 0, and so
v(A) > 0. o

Hahn Decomposition Theorem

Let E € 9t such that v(E) # oo. Let
M = sup{v(E) : E is v-positive }.

Note that set {v(E) : E is v-positive } is non-empty since 0 is v-
positive, and so M is a valid value. We may then let P, € 9t such
that

lirrln v(P,) = M.

Let P = |J, P,. By Lemma 57, we know that P is v-positive. Fur-
thermore, v(P) < M.

Now notice that P = P, U(P \ P,),and P \ P, C P and so by
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Lemma 57 we have v(P \ P,) > 0. It follows that
v(P) = v(Py) +v(P\ Py) 2 v(Py)
for each n. Therefore
M =supv(P,) = lirrln v(Py) < v(P).

Hence v(P) = M.

Let N = X \ P sothat X = PUN. WTS N is v-negative. Firstly,
consider A C N and A is v-positive. In particular, we must then

have that A U P is v-positive. This means that
M > v(AUP)=v(A)+v(P)=v(A)+ M, (22.1)

which means that v(A) = 0. Furthermore, VB € 3 such that B C A,
by the same reasoning as in Equation (22.1), we have that v(B) = 0.

It follows that VA C N that is v-positive, A is v-null.

Suppose to the contrary that N is not v-positive. This means that
VA C N, v(A) > 0. However, we showed that v(A) = 0. So A cannot
be v-positive. This implies that 3By € Wt with By € A, we have
v(Bp) > 0.

Let C = A\ By, so that A = By U C. Then
0 <v(A)=v(By) +v(C),

and in particular
v(A) < v(C).

Inductively, let us perform the following. Due to our above argu-

ment about By, we may let
) 1
11 = min n:BQN,v(B)>; .

Let A; C N such that v(4;) > + By the above argument about C,

ny’

we know that 3C C A such that v(C) > v(Aq). Let

1
np = min{n :CC Ay, v(C) > " +V(A1)} .
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Then set A, C A1 such that

1 1 1
V(A2) > V(A + — > — + —.
na ni %)

We continue inductively so that we construct as a decreasing se-
quence

. C A1 CARC ...

of sets, such that

1 1 1 1
V(Ags1) >V AR)+ —— > —+...+ — + .
Nk+1 n Mg Mg+

Let A = () Ak. Notice that since v(A;) is finite, by continuity from
above,

o 1
v(A) = limv(Ag) > Z —.
k P Ny
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Hahn Decomposition (Continued)

& Definition 35 (Hahn Decomposition)

Let v be a signed measure, and X = P U N, where P is v-positive and N is

v-negative. We call PU N the Hahn decomposition of v.

Remark 23.1.1

Given a Hahn decomposition, consider E € X. Then we may define v1(E) =
v(E N P) such that vy is a positive measure, and vo(E) = —v(E N N) such

that v, is a positive measure. Then

v(E) = vi(E) — vo(E). 4

& Definition 36 (Mutually Singular)

Let (X, 9t) be a measurable space, with signed measures 1 and v. The
measures |1 and v are said to be mutually singular, of which we denote by
uLv, when

X=EUF EFeM

such that E is p-null and F is v-null.

Example 23.1.1
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From our remark above, we see that N is v1-null while P is vo-null.
Thus viLvs. >

P Theorem 58 (Jordan Decomposition Theorem)

Let (X, 90) be a measurable space with a signed measure v. Then v+, v~

positive measures such that

v=vt—v~ and viiv.

(Existence) The proof for existence is exactly what we showed in the
last remark. Let X = P UN by the Hahn Decomposition Theorem
with v1(E) = v(EN P) and v, = —v(E N N), so that

v=vi—vy and vilvp.

(Uniqueness) Suppose v(E) = p1(E) — p2(E) for some positive

measures (1, tp such that ujLuy, so that
X=EUF

with F being uq-null and E being pio-null.

Let A C E. Then notice that
v(A) = wi(A) = p2(A) = i (A) 2 0.

Thus E is v-positive. Similarly, F is v-negative. Hence X = EUF is
indeed another Hahn Decomposition on v. By the Hahn Decompo-

sition Theorem, we have that

PAE, NAF are v-null.

Let A € 9. Since E and F are disjoint,

u1(A) = p1(ANE)+ u(ANF) = p1(ANE).



Note that
ANE=(ANENP)UAN(E\DP)).

Then

Ui (ANE)=v(ANE)
=v(ANENP)+v(AN(E\P))
=v(ANENP)=vi(ANE),

where v(A N (E \ P)) = 0 since PAE is v-null. Thus
p1(A) = ;i(ANE) =vi(ANE).
Also, notice that
ANP=(ANPNE)YANP\E)),
and so

11(A)=v(ANP)
=v(ANPNE)+v(AN(P\E))
=v(ANENP)=vi(ANE) = ui(A),
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since P \ E C PAE which is v-null. Thus y; = v;. Similarly, we can

show that > = vy.

[m}

B Definition 37 (Positive and Negative Variation of a Signed

Measure)

Let (X, 9t) be a measurable space and v a signed measure of the space. By

the Jordan Decomposition Theorem, we may write v = v* — v~ such that

vTLv™. We call v* the positive variation of v and v~ the negative

variation of v.

& Definition 38 (Total Variation of a Signed Measure)
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By the same assumption as the above, we call
lv| =vt+v~

the total variation of v.

4 Warning

Consider the measure

v(E)=/Efd#,

where 1 is any positive measure, E C X = PUN. Suppose f* = 0on N
and f~ =0on P, where f = f* — f~. It is easy to see that

ve)= [ 5y

v (E) = /f_ du.
E
Then the total variation is expressible as
M ® = [ If]dn
E
However, recall that
v(E)| = '/fd# < /Ifl = [vI(E).
E E
Thus, we may have
[v(E)| < [v[(E).

Radon-Nikodym Theorem and the Lebesgue Decomposition The-

orem

& Definition 39 (Absolutely Continuous Measure)

Let (X, 90t) be a measurable space. Let v be a signed measure and 1 a

positive measure. We say that v is absolutely continuous with respect
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to u, of which we denote v < u, provided that
WE)=0 = v(E)=0

forallE C X.

% Lemma 59 (Equivalent Definitions of a Absolutely Continuous

Measure)

Let (X, 9t) be a measurable space, v a signed measure and 1 a positive
measure. TFAE:

1. v
2. v < pand v- < y;and

3. v < .

(1) = (2) Write v = v* — v~ by the Jordan Decomposition The-
orem. Then for any E € M such that u(E) = 0, since v(E) = 0, we

have
v (E)—v~(E) =0and so v*(E) = v (E).

Now, note that y(E) = 0 = u(E N P) = 0 by subadditivity. It
thus follows from assumption that v*(E) = v(E N P) = 0by the

assumption that v < p.

(2) = (8) Since |v| = v* +v7, it follows that for any E € 9t such
that u(E) = 0, we have v*(E) = 0 = v~ (E), and so

[V (E) =v*(E)+v (E) = 0.

(83) = (1) Notice that for any E € i, we have |v(E)| < |v|(E), as
noted in the last warning. Therefore, VE € M such that u(E) = 0, it
follows that

Iv(E)| < |v[(E) =0,
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and so it must be that v(E) = 0. o

P Theorem 60 (Alternative Definition for Absolute Continuity of

Measures)
Let v be a finite signed measure, and u a positive measure. Then v <
p =

Ve>030>0 u(E) <o = |v(E)| <e.

= Suppose that the -6 condition fails. Let ¢y > 0 be the ¢ that

fails. Consider 6,, = zln Then there exists P, € M such that
p(Py) < 6n A v(Pn)| = €.

Let Fy = Uff:k P,and F = ﬂ;ozl Fy. By subadditivity, for any k,

p(FD) < ) uPu) < ) o = 5y
n=k n=k

It follows from continuity from above that

u(F) = lim u(Fy) = 0.

However,

v(F) 2 v(Pr) 2 o

and v is finite, v(F1) < oo, and so continuity from below indicates
that

v(F) = lilgnv(Fk) > &p.
Thusv %« p. (&= ) Suppose that the ¢-6 condition is true. In
particular, we may consider a sequence ¢, = 1 > 0o that 35, > 0
such that

B(E) <6y = [v(E)| <

for any E € M. Then in particular, if E € Mt such that u(E) = 0,

then u(E) < 6, for any n, and so |[v(E)| < % for any n. Therefore
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v(E) =0. o
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Radon-Nikodym Theorem and the Lebesgue Decomposition The-

orem (Continued)

#= Corollary 61 (On a special signed measure)

Let f € LYu). ThenVYe > 0,36 > 0 such that if u(E) < 0, then
|fEfdy’ <e.

# Proof

Letv(E) = fE f du. We know that v is a finite signed measure.
Notice that p(E) = 0 means that v(E) = fE fdu =0.Hencev < p.
Therefore, by WP Theorem 60, the statement holds. o

% Lemma 62 (Relationship Between Two Finite Positive Mea-

sure)

Let p and v be finite positive measures on the measurable space (X, M).
Then either uLv,or ' 3¢ > 0and 3E € M with u(E) > 0 such that ! This is an exclusive or statement.
VF C E, we have

v(F) > eu(F),

i.e. v — e is a positive measure on (E, Mg).
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For eachn > 1, consider the signed measure v — % u, which is
finite. By the Hahn Decomposition Theorem, let P, and N,, be such
that X = P, | N, with P, being (v — 1 u)-positive, and N, being

(v — Lu)-negative.
LetP = J,P,and N = (\Ny,. Then X = P{JN. Since N C N,

for all n, we have that

(V— %p) (N)<0 Vn.

Thus
1
0<v(N) < ;[u(N) vn.
Hence v(N) =0, i.e. N is v-null.

Now if p(P) = 0, then pLv and we are done. WMA u(P) # 0.
Since P = |J,, P, we know that 3ng such that u(P,,) # 0. However,

Py, is (v — L u)-positive, i.e.
1
VA C Py, v(A)- ;‘u(A) > 0.

Then in this case, we simply need to pick ¢ = nio, and our job is

done. O

P Theorem 63 (The Lebesgue Decomposition Theorem and The
Radon-Nikodym Theorem)

Let (X, ) be a measurable space, and u and v be o-finite positive mea-
sures. Then, there exists positive measures A and p such that uLA, p < u
and v = p + A (Lebesgue Decomposition). Moreover, 3f : X — [0, o]

that is M-measurable such that

p(E)=/Efd#

(Radon-Nikodym).

This is a constructive proof. It tells us
exactly how to create A and p.
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Case 1: u and v are both finite Let

F = {f : X — [0,00] | f is M-measurable, /fdy <v(E) VE € im} .
E

Note that ¥ # 0 since 0 € 7.

¥ is closed under max function Let f,h € ¥ and ¢ = max{f,h}. Let

A= {x:g(x) = f)}

Then for x € AC, we have g(x) = h(x). Note that ¢ is Mi-measurable.
WTS g € . Observe that

/gw=/ gW+/ gdu
E ENA ENAC
= / fdu+ / hdu
ENnA ENAC

<v(ENA)+v(ENAS) = v(E).

Hence indeed g € 7. 4
¥ contains limits of its sequences Let

a::sup{‘/xfdy:fe?'}.

Let {f,} € ¥ be a sequence of functions such that

/fndy—w.
X

Let g1 = f1, 2 = max{f1, fo}, ..., ¢n = max,{f1,..., fu},.... Let
f =lim, g,. Then g, /" f. By the last claim, note that each g, € 7.
WIS f e F.

Let E € M. By the W Monotone Convergence Theorem (MCT),

/fdyzlim/gndy
E nJE

< liznv(E) =v(E).
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It follows that f € ¥ and in particular

[{fdy:a.ﬁ

Let p(E) fE fdu. Thenitis clear that p < u. Let A(E) =

v(E) = p(E) = 0. Then A is a positive measure. Furthermore, we

have that v = A + p.

uLA Suppose not. Then by Lemma 62, we know Je > 0 and JE € IN
with u(E) > 0 such that VF C E, A(F) > €u(F). Then, VA € M, we
have

AMA) 2 AMANE) > eu(ANE).

However,

A(A)zv(A)—[qfdyZey(AﬁE)ze/A)(Edy.

This means that
vz [(f - exodu

Hence f — e¢xg € . Thus
a:/fdys/(f+sxg)dy$a.
X X
Notice that fX(f +¢exg)du =a+ eu(E), and so
a<a+eu(E) <a.

Thus we must have ¢ u(E) = 0, but that is impossible since ¢ > 0 and

p(E) > 0, a contradiction. Hence we must have pLA.

Case 2: v and p are both o-finite 2 Since p is o-finite, wma X = |-); A; 2 We shall strict the finite pieces together
and then try paying attention to some of

such that (A;) < oo. Since v is o-finite, wma X = -J; B; such that the technical details.

v(B;) < co. Then we may let X = [-); ;(Ai N Bj), and
ﬁmi,]‘ = {E NA; ﬂB]' :E € i))’t}

would be a o-algebra of subsets of X.

Let us define

[,li,j(Y) = y(Y) VY € Sm,‘,]' and Vi,j(Y) = V(Y) VY € EIJRI-,]'.
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It is clear that all of u;; and v; ; are finite. By Case 1, 3A; j, p; ; mea-
sures and 3f; j : A; N Bj — R, such that

AijLy,  pij(Y) = / fijdupij and  vij=Aij+pi).
Y
Therefore A; N B; = W;; U Z;; such that

Aij(Zij)=0 and p;j(Wij) = 0.

Define f : X — R by f(x) = f; j(x) when x € A; N B;. Notice that

f i a,00) = fij(a, 0] €M,
ij

and thus f is Mi-measurable.

Define A(E) = %; ; Aij(E N A; N Bj). Itis easy to check that A is

indeed a measure.

Let W = J;; Wijand Z = |J; ; Zij. Then

MZ) = Z Aij(Zij) =0,
i

and
u(W) = Z u(Wij) = Z wi,j(Wij) = 0.
ij ij
Thus ALp.
Let
p(E)=/fdyZZ/ ﬁ/jd}l:ij,j(EﬁAiﬂBj).
E ij YENAiNE 07

Check that

/\(E) + p(E) = Z )\,’,]'(E NA;N B]') + Z pi,]‘(E NA;N B/')
ij ij

= Zvi’j(E NA;N B]') = V(E).
ij

This completes the proof. O
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Radon-Nikodym Theorem and The Lebesgue Decomposition The-

orem (Continued 2)

#= Corollary 64 (A Corollary to Radon-Nikodym)

Suppose that (X, ) is a measurable space and i, v are o-finite measures
on the space, such that v << . Then 3f : X — [0, co] M-measurable such
that

v(E) = /Efdy.

& Proof

By the Radon-Nikodym Theorem, we can find positive measures
A,psuchthatv = A +p, ALy and p(E) = /Efdy for some f : X —
[0, oo]. We may then let X = AU B such that A(A) = 0 and u(B) = 0.

Since v < i, we have v(B) = 0.
Let E € 9. Then
v(E)=v(ENA)+v(ENB)=v(ENA)
=AMENA) +/ fdu
ENA

= fdy+/ fdu wp(ENB)=0asp <y
nA ENB

E
s :
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From here on, we shall denote the Lebesgue measure by m, instead of 1,

which we shall reserve for an arbitrary .

Let us take a short detour into derivatives.
Example 25.1.1
1. Let F : R — R such that

0 x <0
F(x) = {x? O<x<1-

x24+3 x>1

Then F is increasing and right continuous. Let

0 x<0 0 x<1
Fi(x) = Fr(x) = )
2 x>0 3 x>1

Then F = Fy + Fo. We may thus define ur = pr, + pr, for B(R).
From our understanding (from a much earlier example), we know

that up, =3 xq1). Let

0 x<0
flx) =

2x x>0

Notice that f is the derivative of F;. By the Agreement of Riemann
Integration and Lebesgue Integration for Bounded Functions, we
know

F1(b) — F1(a) = /[ b]fdm.

Since m is the Lebesgue measure, and by ® Theorem 12, we know

/ fdm= fdm = ur(a,b] = F1(b) — Fi(a).
[a,b] (a,b]

Thus, since we may write any subset of R as a disjoint union of
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intervals, it follows that
[’lFl(B) = /;fdm

Notice that pur, and ur, are one of the decompositions given in
The Lebesgue Decomposition Theorem and The Radon-Nikodym
Theorem, where v = ur, A = ur,, p = pr,, and p = m, where we

note that ur, Lm,
ur (B) = /l;fdmf
and clearly ur, < m.

. Recall the Cantor Function, which here we shall call it F-. Consider

the function F : R — R such that

0 x<0
F(x)={Fc(x) 0<x<1-

1 x>1

Then F is continuous and increasing. Furthermore, F’(x) = 0 when-
ever x ¢ C, where C is the Cantor set. Consider the function ur

constructed by the means of 2 Theorem 12.

Now, notice that we may write R = CUC C. Recall that we showed
that ur(C®) = 0 while ur(C) = 1. Furthermore, under Lebesgue’s
measure, m(C) = 0. In this case, we may consider A = ur and u =0,
and p = 0 to fit the framework of @ Theorem 63. >

We know that give o-finite measures v and u, where v << u, by #= Corol-
lary 64, 3f > 0 such that v(E) = fE f du. Recall from the Midterm

problem that
/hdv:/h-fdy.
E E

We may thus look at dv as something like f du, which then f is some-
thing like g—;.
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Remark 25.1.1

Given o-finite measures v and u, with v << u, if we suppose f,h > 0, and

v = [ fau= [hay

we know that f = h a.e. with respect to . ®

Let v and p be o-finite measures with v < p. If v(E) = fE f du, we say

that

Z—; = f a.e. with respect to .

1. Given vi,..., vy, u all o-finite, with v; < u for all i, we know that by
#= Corollary 64, 3f1, ..., fu such that

vi(E):/ﬁdy, foreach i.
E

Let
V(E) = Zvi(E) = /E(ﬁ +o+ fu)du

1

Then
dv  dwn dv,

@—W-F...-F d‘u

a.e. with respect to .

2. (Chain rule) Suppose v < A < u. Note v < u. Then

/\(E)z/Egdy and v(E)z/Efd/\

for some functions f, g. By our Midterm problem, we have

v(E)=/Ef-gdH-

Then
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Hence
dv._dv dA

du dAdy
. (Change of variables) Suppose v < < v. Then there exists
functions f, g such that

V(E)z‘/Efdy and y(E)z/Egdv.

Then we say
= Z—: and g = 2—5
By the Midterm problem, ! This is the worst measure I've seen.
v(E) = ‘/Ef-gdv VE.
Thus

f-g=lae wrtv and g-f=1ae wrtp.

Thus means that the sets
A={x:f(x)=0} and B :={x:g(x)=0}
both have measure zero. Thus
(&) T
du dv

wherever they are well-defined.
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Non-decreasing Functions

For sanity (of keeping up with notes for the rest of the course), we shall
refer to non-decreasing functions are increasing functions. We shall call

increasing functions are strictly increasing functions.

Let F : R — IR be an increasing function. We shall denote

F(x—) = yli_)r?_ F(y) =sup{F(y): y < x},

and

F(x+) = lim F(y) =inf{F(y) : y > x}.
y—x

& Proposition 65 (Properties of F(x+) and F(x—))
Let F : R — R be an increasing function.
1. x1 <xp = F(x1+) < F(xp—).

2. F(x—)and F(x+) are both increasing.
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3. F(x—) is left continuous, i.e.
F(x—) = lim F(y-).
y—x”

4. F(x+) is right continuous, i.e.

F(x+) = lim F(y+).
y—x-

5. The set of points where F is not continuous is countable.

6. Fis B(R)-measurable.

1. Let x3 € R be such that x; < x3 < x5. Itis clear that
F(x1+) =inf{F(y) : y > x1} < F(x3)

and

F(x3) < sup{F(y) : y < x2} = F(x2—).
2. Let x1 < x2. Then

F(x1=) =sup{F(y): y < x1} <sup{F(y): y < x2} = F(x2—)

because the latter set allows for more choice for a supremum. For

the other case,
F(x1+) =inf{F(y) : y > x1} < inf{F(y) : y > x2} = F(x2+)

because the former set allows for more choice for an infimum.

3. Let ¢ > 0. For any x € IR, since

F(x—) =sup{F(y): y < x},

we know that 3y < x such that |F (x—)—F (y)| < §. Furthermore,

for each y < x, since

F(y-) =sup{F(z) : z < y},
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we can find z < y < x such that |F(y—) - F(z)| <£.
Suppose to the contrary that [F(y—) — F(y)| > £. This means that
sup{F(z):z <y} —-F(y) >0,

and so there must exist some z < y such that F(z) > F(y), but

that contradicts the fact that F is increasing. Thus |F (y-)-F (y)| <

W|m

It follows that 3z < x such that

|F(x=) = F(z)| < |F(x=) = F(y)|+|F(y) - F(y-)| +|F(y-) - F(2)| < e.

. The proof for (4) is similar to that of (3).

. Let

B = {x : F is discontinuous at x}.

Note that F being continuous at a point x means that
F(x—) = F(x) = F(x+).

Since we always have F(x—) < F(x+), if F is discontinuous at x,

then we must have F(x—) < F(x+).
If F has only one point of discontinuity, then our job is done.

Let x1 and x; be 2 points of discontinuity of F on R. WLOG,

suppose x1 < x2. Then by part (1), we have
F(x1—) < F(x1+) < F(xp—) < F(x2+).
This means that if we consider ry,, ry, € Q such that
F(x1—) < ry; < F(x1+) < F(x2—) < 1y, < F(x2+),

we know that we can clearly distinguish 7y, and 7y,. If we then

consider the map

f:B—>Q

X o Ty,
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f must be one-to-one, and so B is at most countable.

6. Leta € R, and consider A = (a,0). WIS F71(A) € B(R). Note
that x € F-1(A) & F(x) > a. Since F is increasing, Vy > x, we
know

a < F(x) < F(y),

which implies that y € F~}(A) as well. It follows that

1]
="
(b,%0)

R

where b € R can be checked, and we note that each of the possi-

ble forms of F~1(A) is a Borel set. o

We shall use the symbol 3 to denote a collection of intervals, which are

possibly open, closed, or half-open, but cannot be singletons.

Let E C R. We say that 3 is a Vitali covering of Eif Ve > 0,Vx € E,
3l € I such that x € Land €(I) < ¢.

Remark 26.2.1

In words, a Vitali covering is defined such that for every positive &, every
point x in E can be covered by an interval of length less than €. So a Vitali

covering is a special kind of cover for E, and also a special kind of ¢-net.
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WP Theorem 66 (Vitali Covering Lemma)

Suppose E € R and m*(E) < oo, where we note that m* is the Lebesgue
outer measure. Suppose 3 is a Vitali covering of E. Let ¢ > 0. Then

HL, ..., I,} €3 adisjoint collection

m (E \ QIH) <e.

First, notice that if we can find a Vitali covering of E where each
interval is closed, such that the above statement holds, then we can
also find intervals of other forms that work. Thus WLOG, assume

every I € Jis closed.
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Vitali Covering Lemma (Continued)

& Definition 42 (D*,D~, D4, D_)
Let f : (a,b) — R. We define

D* f(x) := limsup L0 =)
h—0* h
D™ f(x) = limsup w
h—0- h

= limsup
h—0*

fE - fx-1
h
D:f(x) := lim inf w

D-f(x) = liminf fla+h) - f(x)

h
— liminf LB = =h)
h—0* h

Remark 27.1.1

1. Since all the above are defined using lim inf and lim sup, we know that

these values always exists.

2. However, they are not always equal, since derivatives don’t always exist.
In other words, if all 4 are equal, we know that f'(x) exists and is equal to

the common value. o
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WP Theorem 67 (Partial Fundamental Theorem of Calculus for

Increasing Functions)

Let f : [a,b] — Rincreasing, then f’(x) exists for almost all x, f'(x) is

Lebesgue integrable, and

b
/ fx)ydm < f(b) - f(a).

Example 27.1.1

Consider the Cantor Function F, where we recall
F(0)=0,F(1)=1, and F'(x) =0 Vx ¢ C,

and F is increasing. Notice that

1
0=/ Fdm < f(1)- f(0) = 1. >
0

& Proof (Outline of WP Theorem 67)

Remark 27.1.2

From Example 27.1.1, we know that we cannot have the Fundamental Theo-

rem of Calculus for general measures. ®

However, we are not going down without a fight. We shall now
look into the class of functions that satisfy the Fundamental Theorem

of Calculus for general measures.

Functions of Bounded Variation

& Definition 43 (Functions of Bounded Variation)

Let F : [a,b] — C. * We say that F is of bounded variation if ! Note that we use C here, so that we
allow for the function to map to both
complex and also purely real values.



n

»

i=1

Vrla, b] := sup

|F(x;) = F(xi-1)| : x; € Pla,b]p < oo,
Pla,b]

where Pla, b] is a partition of [a, b]. We also write that F € BV][a, b].
call Vela, b] the of Fon[a,b].
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We

We may extend [a, b] to be the entire real line and consider, instead,

n
Vr(R) := sup
P(R)

|

where in this case, our partition P(R) can be

|F(xi)—F(xi_1)| L X € P(]R)} ,
1

i=

P={xg<x1<...<xy},

where xo and x,, are arbitrary points in R.
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Functions of Bounded Variation (Continued)

& Definition 44 (Total Variation)
Let F be a function of bounded variation. The total variation of F is

defined as

Tr(x) == sup {Z |F(x;)—F(xi—1)] :xo <x1 <...<Xx, = x} .

partition | 521

Remark 28.1.1
1. Tr is increasing (non-decreasing).
2. Vx € R, notice that
0 < Te(x) < VE(R). o
Example 28.1.1

1. Let F : [a,b] — R be increasing, with an arbitrary partition
a=xg<x1<...<x,=b.

Then

Z?:l |F(xj) - F(xj_1)| = 27:1 F(xj) = F(xj-1) - Fisincreasing
= F(xy) — F(x0)
= F(b) — F(ﬂ) < 00,

> Telescope
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Thus F € BV]a, b]. Furthermore
Vela,b] = F(b) — F(a).
2. Consider the function F(x) = x. Then it’s clear that F € BV[a, b].
However, F ¢ BV(R), since F(x) — oo as x — oo and so VF(R) = co.
3. LetF :[a,b] - C € BV[a,b]. Let

F:R—>C
F(b) x=b
X—={F(x) a<x<b.

Fa) x<a
Thus F € BV[a, b] as well, and
Trla,b] = T¢(R).

This means that we can focus on functions that map from the whole

real line.
4. Let F : R — R be increasing and bounded. Then
lim = sup{F(x): x € R} =: F(+00) < o0
X—00

and
lim =inf{F(x):x € R} =: F(-o0) < o0.

X—>—00

Then F € BV(R) and

Tr(R) = F(4+0c0) — F(—00).

5. Suppose h € L1(IR, m) Let

F(x) = / hdm.
(=infty,x)

Then F € BV(R), and

Te(R) S/R|h|dm.
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Let xg < x1 < ... < x;,. Notice that

|F(xj)—F(xj_1)| = / hdm—/ hdm
(=o0,x}) (=00,xj-1)

/ hdm

(xcj-1,%7)

< / |h| dm,
(xj-1,%5)

for each j. Thus

n

Z |F(xj) = F(xj-1)| < / || dm

j=1 X0,%n)
< / |h| dm.
R
It is then clear that
Tr(R) < / || dm. o
R

% Lemma 68 (Total Variation +F)

Let F : R — R € BV(R). Then T + F and Tr — F are both increasing

functions and bounded.

For F € BV(R), we may write

- (157)-{15).
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which is a difference of 2 increasing bounded functions.

WP Theorem 69 (Properties of Functions of Bounded Variation)
1. BV(R) is a vector space.

2.

F e BV(R) & F € BV(R)
— R(F), J(F) € BV(R),

where F is the complex conjugate of F.

3. Let F: R — R. Then
FeBV(R) & F=H;-H,,

where Hy, Hy are increasing and bounded.

4.
F € BV(R)
= lim F(y), lim F(y), lim F(y), lim F(y)
y_>x+ y—ox~ y—0 y——
all exists.

5. Let F € BV(IR). Then the set of points of discontinuity of F is at most

countable.

6. Let F: R — R € BV(R). Then F’(x) exists a.e.

& Definition 45 (Absolutely Continuous Functions)

A function f : R — C is said to be absolutely continuous if Ve > 0,
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36 > 0such that V(a1,b1),...,(an,,by) that are disjoint, if27=1(bj -
aj) <0, then

Z |F(bj) - F(a))| < e.
j=1

We write that f € AC(R).

Remark 28.1.2

Notice if there is only one of (a;, b;) that works, then the above definition is
simply the definition of uniform continuity. Thus, since this € works for all
the intervals, in a sense we may think of absolutely continuous functions as

“uniformly uniform continuous functions”. o
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Functions of Bounded Variation (Continued 2)

é Proposition 70 (Measure Constructed From A Bounded, Abso-

lutely Continuous, Increasing, Right-Continuous Function)

Let H : R — R be a bounded, right-continuous increasing function. Then

ug < m < H e AC(R).

& Proof

% Lemma 71 (Absolutely Continuous Functions are of Bounded

Variation)

Let F : [a,b] — R be absolutely continuous. Then F € BV][a, b].

& Proof
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% Lemma 72 (Total Variation of Absolutely Continuous Func-

tions are Absolutely Continuous)

Let F : [a,b] — R be absolutely continuous. Then Tr(x) is also absolutely

continuous.

& Proof

% Lemma 73 (Building Block for Fundamental Theorem of Cal-

culus for General Measures)

Let f be a bounded measurable function, and a € R. Let

F(x) = fdm.

(a,x)

Then F'(x) = f(x)a.e.

# Proof
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Functions of Bounded Variation (Continued 3)

P Theorem 74 (Anti-Derivative of Bounded Integrable Func-

tions)
Let f € LY([a,b], m). Let

Fx):= [ fdm.

(a,x)

Then F’ exists a.e. and F'(x) = f(x) a.e.

& Proof

®PTheorem 75 (Fundamental Theorem of Calculus (Lebesgue

Version))

LetF :[a,b] —» R. TFAE:
1. F is absolutely continuous.

2. 3f integrable such that

F(x) :F(a)+/ fdm Va<x<b.
@)
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3. F'(x) exists a.e., F" is integrable and

F(x) = F(zz)+/( )P’dm.

& Proof

(2) = (8) This is proven in @ Theorem 74.

The LP-spaces

& Definition 46 (L”-spaces)

Let (X, M, ) be a measure space. Let 1 < p < oo. We define

LP(X, M, p) = {f : X = R, measurable : / IfI" du < oo} .
b

I, = ([ 1)

We set

& Definition 47 (Essentially Bounded)

Let f : X — R, be a measurable function. We say that f is essentially
bounded if

M u{x: |f(x)| > M}) =0,

& Definition 48 (Essential Norm)

Let f : X — R, be a measurable function. We define the essential norm
of f as
Il = inf(M : u(x 2 [ ()] > M}) = 0}.

It is helpful to review some of the
contents from real analysis on metric
spaces, particularly in
e metric;
e convergence;
e Cauchy sequences; and
e completeness.
You may find the material at PMATH
351.

It may also be helpful to review
some of the materials on L” spaces in

the course on Lebesgue measure and
integration (PMATH 450).
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While we call || f ||oo the essential norm, we have not defined what a norm

is. We shall do that later.

& Definition 49 (L£>®-space)

We define the L*-space as

LZ(X,M, u) ={f : X = R, measurable : f is essentially bounded }.

& Definition 50 (H6lder conjugates)

Let1 <p <coand1 < g < co. Wesay that (p,q) is a Holder conjugate
if

where we set

% Lemma 76 (Young’s Inequality)

Let (p, q) be a Hélder conjugate, and a,b > 0. Then

& Proof
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P Theorem 77 (Holder’s Inequality)

Let (p, q) be a Hélder conjugate. If f € LP(X, M, ) and g € LI(X, M, p),
then f - g € LYX, M, u) and

1 - slly < 171l - sl

& Proof
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The LP-spaces (Continued)

& Proposition 78 (L?-spaces are Vector Spaces)

Let 1 < p < oo. LP(X,M, ) is a vector space.

#" Proof
Case:l1 <p <ooletaeRand f,g € LF.

Closure under scalar multiplication Notice that

[last du=tar [ |1f < oo
X X
Thus af € LP.

Closure under addition First, notice that

2|f )] ()] 2 [g)|

|f () +g(x)] < |
2| g(x)| otherwise
Thus

2 f@f [f@)] = [g)]

2° | g(x)|p otherwise

|f(x)+ g < |

<?2? (|f(x)|p +|g(x)|p) .
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Hence

/le +gl du < /XZ” (IF@l + [z} dus < oo.

It follows that f + g € LF. o

WP Theorem 79 (Minkowski’s Inequality)
Let1<p <oco. Iff,g €LV, then

1f -+ ll, < I£ll, + lell, -

Case: 1 < p < oo Let (p, q) be a Holder conjugate. Note that g = ’%

and Ip = (p — 1)g. Then, using Holder’s Inequality at (+), we have
I+l = [ 10+ geof da
= [ 1760+ g0l o+ g
X
< [l + gl du [ gl gf ™ au
X X

® p g (p-1)q d
< ( [ Ir) du) ( [ 1w+ g du)

+ ( /X F{cold du) ,, ( /X [F()+ (] du) q
=1, L1 seor ) <l [ 15+ sor)

= Ul + el [ o+ s )
= (sl + )l + sl

Hence

IF+ sl < A1, + sl -
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Finally, note that

Thus
||f + g”p = ”f”p + ”g“p : a

& Definition 51 (Semi-norm)

Let V be a vector space over C. We call the function ||-|| : V — Ra

semi-norm when ||-|| satisfies
1. YVoevV |v|| =20;
2. YoeV YaeC |lav] =|a|||v]; and

3. (triangle inequality) Yo, w € V |lv+w| < ||o] + ||w].

& Definition 52 (Norm)

Let V be a vector space over C. We call the function ||-|| : V — Ra

norm when ||-|| is a semi-norm such that

[[v]] =0 < v =0.

& Definition 53 (Normed Space)

Let V be a vector space over C and ||-|| be a norm on V. We call the pair

(V, |I-Il) a normed space.

Let ||-|| be a semi-norm for a vector space V. Then the set

N={veV:|o| =0}
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is a subspace. We may then consider the quotient space
VIN ={v+N:veV}={v]:v~w}

wherev ~w &= v—w € N. ! We can show that V' | Nr is a vector

space. We may then set

o]l = [l

which will then be a normonV | /.

Most importantly to us, notice that given f € LF, we know that

I, =0 = [Ifdu=0 = f=0ac

Let (X, M, ) be a measure space. Let 1 < p < oo. Consider the space
LP(X, M, ). Let

NP ={felLl:f=0ae }.
We define

LX) = L7 [ o, m, )

={lfl:f~g & f=gae }.

We define the norm of LP-spaces as we do in the last note, i.e. we define

(LA, = (11,

forany [f] € LP(X, M, u). For 1 < p < oo, Minkowski’s Inequality tells

us that (LP (X, M, w), ||- ||p) is a normed space. We leave the case of p = oo

to be a homework problem for a later date.

1 We shall not show that V /s is a
vector space, but this is not hard, and
those that are familiar with vector
spaces will quickly realize so.
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Remark 31.1.1 (Normed spaces are metric spaces)

It is important that we note the following. 2 A norm a metric, and 2 This requires knowledge from metric

. . . spaces. See PMATH 351.
so normed spaces are also metric spaces. In particular, given a normed vector

space (V, ||-||), the standard metric of the vector space is given by
p(o,w) = |lv-wll,

and we can show that (V, p) is a metric space. ®

A normed vector space (V, ||-||) is called a Banach space if (V, p) is

complete, where p is the induced metric
p(o,w) = [lv-wl.

Note that completeness is in the context of metric spaces, where every

Cauchy sequence converges to a point in the space.

WP Theorem 80 (Riesz-Fischer Theorem)

Let (X, 9, ) be a measure space. For any 1 < p < oo, (LF(X, M, u), ||-Il,,)

is a Banach space.

Case: 1 < p < oo Let {[fu]}n € L? be a Cauchy sequence. We need to
construct an f € L? such that ||[f] - [fn]”p — 0asn — oo.

By the Cauchyness of the arbitrary sequence, inductively define a
subsequence {N7 < Ny < ...} such that Vn, m > N we have

1
=1l < o

Set
81=fni, &2= Ny — N oo 8= N — Ny -
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Notice that

1
”ngp = ||[8k]Hp = fne] - [ka,l]”p < 37

It thus follows that

gngknp <o

LetC =X, |||3k|Hp < oo, Let hy(x) = Xi_, |gk(x)|. It is clear that
hi(x) < ha(x) < hs(x) < ...

Set h(x) = Y12, | gk(x)| = limy, 00 /1, (x) (Which possibly evaluates to

00). Then for any m,

()l =

D lex)
k=1

In other words, Vm, we have

< Y llstol, = .
1% k=1

[ b = o, < 7

3 Furthermore, we know that h,,(x)? 7 h(x)?. By the W Monotone 3 Note that we may drop the absolute

value on h,,(x) since i, (x) > 0.
Convergence Theorem (MCT), we have m() m(¥)

/h(x)p du = lim /hm(x)p du < CP.
X m-—00 X
This means that p({x : h(x) = co}) = 0.

Let Y = X\ {x: h(x) = oo}. Then Yx € Y, we have h(x) < co. This

means that Vx € Y,
h(x) = ) [ge(x)] < o,
k=1

i.e. {Qx}k is absolutely convergent on Y. Hence { gy}« converges on
Y. With that, we define

2o 8k(x) xeY
xe¢Y

fx) =
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Then Vx € Y, we have
K
ﬂm=g&g¥um=ggﬁmn

Finally,

K p P
(/f@—Z&u)W)
X k=1
K P %
=U7m—2&mdﬁ
Y k=1

lmwﬁmﬂ%ﬁp

P P
dy)

o0
< 2, s,
p k=K+1

(]

> gl

k=K+1

(o]

2. 8

k=K+1

where we observe that the final term is the tail of C, and hence goes

to 0 as K — oo. Hence ||f —ka“p — o0, and so

”[f]_[fn]”p—>0 as 1 — oo. .
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The LP-spaces (Continued 2)

©2 Homework (Homework 24)

Let F : R — R be increasing and right continuous. Prove that 3F; :
R — R increasing and right continuous for i = 1,2 so that F = F1 + F»,

ur, < mand pp, Lm.

©2 Homework (Homework 25)

Let f € L®(X, M, ). Prove that
s @ > lIflh =0
and that zf”f”oo > 0, then

I fll. = sup{M : u({x : |f(x)| > M}) > 0}.

©% Homework (Homework 26)

Let f,g € L®(X, M, u). Prove that f + g, f - g € LO(X, M, u) and

If + gl < 171+ llgll
17 8llee = 1A - I8l -
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2 Homework (Homework 27)

Prove (L=(X, M, 1), ||l o) is a Banach space.

©2 Homework (Homework 28)

Let 0 < a, and define f, : [0,1] > Rby fu(x) = x*sin (L). Find and

prove the values of a such that
1. f. € BV[O,1].

2. fa € AC[O,1].

WP Theorem 81 (Density of Simple Functions in £L7)

Let1 <p <oo, fe LP(X,M, u)and e > 0. Then IY € LV (X, M, u)a
simple function such that ||f - l,b”p <&

Case: 1 < p < coWrite f = f* — f~. By ®Theorem 25, there exists

simple functions
ou/ fT and Y S f7

where ¢, v, € LP(X, M, u)since p, < f = fX Qndu <
fX f*du < oo and similarly so for i, with f~.

Let y, = ¢ — . Then
=yl =1 —pu=(f =)

= —pal +[f -l
<[+ = NA, -

\) because of how the pairs alternate
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By the W Monotone Convergence Theorem (MCT),

limflf—ynlde/ lim |f = yu[" du =0.
X X

n—oo n—00

Thus ||f - )/n”z — 0, i.e. Ing such that ||f - yn”p <e. O
Remark 32.1.1
This density extends to LP-spaces. o

& Definition 56 (Bounded Linear Functional)

Let (V, ||-||) be a normed vector space. A linear function T : V — Riis
called a linear functional. It is called a bounded linear functional if

AM such that |T(v)| < M - ||v]| forall v € V.

We define
[T :==inf{M : |T(v)| <M -||v]|, v eV}
Alternatively,

ITIl = sup{|T(v)| : o]l = 1}
=sup{|T(0)] : [lv]| <1}

T
=sup{%:v¢0}.

é Proposition 82 (Bounded Linear Functionals are Continuous)

Let T : V — R be a bounded linear functional. Then T is continuous. ! ! The converse is also true, and we have
seen this in PMATH 351 and PMATH
450.

& Proof

Given e > 0,let 6 = m Then if d(v, w) = ||v — w]| < 6, we have

&

IT@) = T@)| = IT@=w)l < |1 - llo =] < ITl| 7 =

I
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é Proposition 83 (p-norms As Bounded Linear Functionals)

Let (p, q) be a Holder conjugate, and g € L9(X,IN, u). Then the function
Ty : LP(X, M, u) — R defined by To[f] = fX fgdu is a bounded linear
functional with ||Tg|| = ||qu Moreover,

Toy =Ty, & g1=g2ae.

Case: 1 < p < oo That Ty is linear is by linearity of integration.

Furthermore, note that if f; = f, a.e., then f1g = f>g a.e. and so

Telfil = /Xflg du = /szgd# =Tglfl-
Thus Ty is well-defined.

By Holder’s Inequality, Vf € LP(X, 9, u), we have

il = | [ £saa| <17, el = I, il

By definition (the last of the alternatives), we know that Ty is
bounded and ||Tg|| < ||g||q.

2 Consider f(x) = sgn(g(x)) - |g(x)|q_l. Then f(x)g(x) = |g(x)|q.
This means that

Islf = ( [ 7 du) = It < A, Dl

Note that
p_ p _ p(g-1) _ q _ q
I = 15 e = [ 1l = [ ot =gl
Hence ” ”q
|T[F1] 118l y
[Tl = = =gl =lg]l, -
(7 A 7 7

Hence we must have ”Tg“ = ||g||q O

2 We consider one example where
the other inequality is true, and this
is sufficient to show that the other
inequality is true.
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WP Theorem 84 (Riesz Representation Theorem)

Let1 < p < ocoand (X, M, u) be a o-finite measure space. If T
LP(X, M, u) — Ris a bounded linear functional, then 33 € L7 such
that T = Tg and ||g||, = IITI.

Case:1<p < o0

Case: pu(X) < oo Since p is finite, VE € Mt such that

||XE||Z=/XXZ‘1H=/XXEdH=H(E)-

In other words, all characteristic functions of subsets of X are in the

LP-space.
Letv: Mt — Rby v(E) = T(xk).
Claim: v is a finite signed measure

Constructing ¢ € L9 Note that VE € I, u(E) = 0 = ||XE||p =

0 = xr = 0a.e. This means that

u(E) = T([xel) = T([0]) = 0.
Thus v < p.

Taking a Hahn Decomposition, write X = AU B, where A isa
positive set and B a negative set. Let v*(E) = v(ENA) and v (E) =
—v(E N B). By Lemma 59, we know that v*, v~ < p. By the Radon-
Nikodym theorem, 3¢", ¢~ : X — [0, o] such that

v+(E):/g+dy and v‘(E):/g_dy.
E E
Then

V(E) = /E (8"~ g7)du = /X xelg” — g7 du = T(xe).

219
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It follows that for any simple function ¢,

TyD = [ o - ) du (21)

Let g = ¢* — ¢~ Note that ¢* [g=0and ¢~ [4=0.

Since ¢g*, ¢~ > 0,by ®Theorem 25, 3¢, / ¢"and ¢, / ¢ .
Lety, = (pz/p - gbi/p. Then y,(x) — g(x)7Pas n — co. Observe that

for each n, we have
T(lyn]) = / g dp = / (027 - wi”) (8% - 87 du
X X

=/@Z/”g+du+/¢i/”gd#,
X X
alp -

since p,/ "¢~ =0 = lpz/ngf for all x. Note that for (p, q) a Holder
conjugate, we have % +1 = g. Thus, with the W Monotone Conver-
gence Theorem (MCT),

Hm T([y,]) = lim /X PP gt +pilP g dp
) /X<g+wp+l (g dy

= [ Isl"du = sl

Note that this means we have

ITI < [lsl; -

Observe that
lll} = lim T () < I - Lim [ya], - (322)
Note that

tim [l s =tim [ fot+ il "< [ Jof e
noJx noJx X

Thus

1

v
il = { [ 15t )" = sl
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Going back to Equation (32.2), we have

1817 < i figll?”

which implies that

lsll, = llsl; ™" < nir.

We have thus constructed g such that g € £1.
T = Tq Recall that we defined

To(Lf]) = /X fed,

which is a bounded linear functional on L”. By Equation (32.1), we
showed that T¢([¢']) = T([¢]) for any simple function . By the den-
sity of simple functions in L?, and bounded linear functionals being
continuous, we have that V[ f] € L?, To([f]) = T([f]). Furthermore,

note that there is uniqueness for g, for if

V(E)=/g1dy=/gzdu,
E E

then g1 = g2 a.e.

Note that this also shows that || g”q = ||T|| vis-4-vis & Proposi-
tion 83.

This completes the case for p(X) < 0. 4

Case: p is o-finite (sketch proof) We may write X = (-, X, where
p(Xy) < oo for all n. The key idea is to extend each f : X, — R by
defining f : X — R by

f(x)z flx) x eXn'
0 x ¢ X,

JoAPau= 17

Using the one-to-one identification, from L”(X,,, M, ) — L7 (X, M, u)

Then
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given by f — f, we note that
T o, mm: L (X, M, p) — R

remains a bounded linear functional. Then by the last case for when
w(Xy) < oo, for each n, Al[ g, | € LI(X,,, M, p) with g, : X, = R such
that

lealf= [ laldh <o and T = [ fndn
Xﬂ XV!
We can then stitch each g,’s together to get g : X — R given by

g(x) = gn(x) for when x € X,,.

From here, it remains to show that ¢ € L7(X, M, i) and that
To([fD) = T([f]) forall [f] € L. o

Remark 32.1.2
1. Note that Riesz Representation Theorem is false if X is not o-finite.

2. Even when X is o-finite, the theorem is false for when p = oo. In par-
ticular, 3T : L®(X, M, u) — R a bounded linear functional such that

Ag € L' suchthat T([f]) = /X fgdu. This is also the case for when
X =N, and p is the counting measure. o



@ Deep Dives into Proofs

Proving that M is closed under countable unions in Carathéodory’s

Theorem

This section is created in reference to the proof for Carathéodory’s

Theorem.

We have
M ={A C X : Ais y"-measurable }

where 1* is an outer measure. We wanted to show that 9t is a o-
algebra. In particular, the hard problem was to show that Mt is closed

under countable unions.

Consider {A,}, € M. Thinking from behind, WTS VE C X,

A
n

(45
n

C

wi(E) > u* (EﬂUAn +y*(Eﬂ

:y*(EﬂUAn
n

For simplicity, write B = | J,, A,. WTS

+y*(Eﬁ

W' (E) = p*(ENB) + p*(E N BE). (*)

Also thinking from behind, if 9t is a o-algebra, ! then it must be an

algebra (of sets). We showed that 9t is closed under complementation.

If M is closed under finite unions, 2 then for each N € IN,

! Useful links: Algebra of Sets, o-
Algebra of Sets.

? Unproved point 1
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N N €
y*(E)zy*(EnUAn s lEnflJan] |
n=1 n=1
Let By := UN_, A, € M. Then
w(E) = u'(ENBy) + ' (E N BY) ()

for each N € IN.

Notice that

By =| |A, gUAn:B.
n n=1
Consequently,
= B 2B = u'(BC) < u'(BY)

by the monotonicity of the outer measure.

As a result, looking at Equation (+) and Equation (1), we see that

w'(E) = w(ENBy) + u*(ENBY)
> u*(ENBy)+ u*(ENBS)

for each N € IN.

We are in quite the predicament at this point. We need to do some-
thing about p*(E N By) and somehow relate it to u*(E N B). We can try
and see that

N
W(ENBN) < ) w(ENA,).
n=1

Notice that in the case of equality, we would have

N
W(E)2 ) W (ENAy)+ ' (ENBC)
n=1
forall N € IN. Since {21,;’:1 w(E N Ay)}w is an increasing sequence in
R, we have

w(E) 2 ) W (ENAy)+ ' (ENBO),

n=1



PMATHA451 — Measure and Integration 225

and
o0

W (ENA,) > u(ENB)

n=1

by subadditivity since B = |, An.

Unfortunately, the equality does not always hold. But, since u* is an
outer measure, we can make an educated guess 3 that given {A, }, a 3 Unproved point 2

disjoint collection of sets,

‘u*

N
Ja
n=1

N
=" (4.
1

n=

Our work becomes even easier with the realization of Homework 4.
Proving that all of our above argument works for the case of {A,}, €

It being disjoint, is sufficient to prove that 9t is indeed a o-algebra.






m &) Common Themes and Tricks

Re-represent an arbitrary union using disjoint sets

A common trick in measure theory, especially when it comes to a
collection of sets, is to represent its union as a disjoint union of sets.
This is a useful trick because measures simply add over disjoint sets,

instead of just having

Example B.1.1

Given a collection {A, }, of sets, we may define a collection of disjoint

sets whose union is | J,, A, as such:

F1=A;
Fr=A\ A4
F3=A3\(A1UAy)

n-1
Fu=A\| A
i=1
Example B.1.2

Given an increasing collection {A, }, of sets, i.e.

A1 CACA3C...,
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we may represent the countable union of the A,,’s as such: let

Fi=A
Fr=A\ Ay
F3=A3\ Az
Fn=A,\A,

Remark B.1.1

The reason why we simply consider F, = A, \ A1 instead of having to take

a union up to the (n — 1) set in Example B.1.2 is because
n-1
U Aj= Ay (B.1)
i=1

The reader may also notice that Example B.1.2 is an application of Exam-
ple B.1.1 just because of Equation (B.1). 4

When we discuss about a property within the realm of o-algebras, one
should remain aware that one of the options available to them when
working on a proof, is to show that the set that contains elements that

allows the property to hold is itself a o-algebra.

In particular, if P is the property of which we want to show is true,

then we may be able to show that
A ={x:P(x)}

is a g-algebra to complete our proof.
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MCT, 101

Measurable Functions, 76

Measurable Space, 76

measurable space, 76

Measure, 33

Measure Space, 35
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Minkowski’s Inequality, 208

Monotone Class Theorem, 144
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Monotone Convergence Theorem,
101
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Radon-Nikodym Theorem, 174
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Riemann lower integral, 20

Riemann lower sum, 19

Riemann upper integral, 20

Riemann upper sum, 19

Riesz Representation Theorem,
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Riesz-Fischer Theorem, 211

Semi-finite measure, 37
Semi-norm, 209

Signed Measure, 158
Simple Function, 90
standard form, 90

Step Functions, 127

symmetric difference, 110

Total Variation, 195
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sure, 167

Uniform convergence, 131
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variation, 193
Vitali Covering, 188
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Young's Inequality, 205
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