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� Preface

The pre-requisite to this course is Real Analysis. We will use a lot of
the concepts introduced in Real Analysis, at times without explicitly
stating it. Refer to notes on PMATH351.

This course is spiritually broken into 2 pieces:

• Lebesgue Integration; and

• Fourier Analysis,

which is as the name of the course.

In this set of notes, we use a special topic environment called cul-
ture to discuss interesting contents related to the course, but will not
be throughly studied and not tested on exams.

For some unknown reason, mysterious glyphs are replacing com-
mon math characters in an inconsistent way, and I have not the faintest
idea how this is happening, or why this is happening. The dark ver-
sion of the notes does not seem to have this problem. Please use that
version of the notes for a cleaner reference.
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1 � Lecture 1 May 07th 2019

Since many of our results work for both C and R, we shall use K

throughout this course to represent either C or R.

1.1 Riemannian Integration

� Definition 1 (Norm and Semi-Norm)

Let V be a vector space over K. We define a semi-norm on V as a function

ν : V → R

that satisfies

1. (Positive Semi-Definite) v(x) ≥ 0 for all x ∈ V;

2. ν(κx) = |κ| ν(x) for any κ ∈ K and x ∈ V; and

3. (Triangle Inequality) ν(x + y) ≤ ν(x) + ν(y) for all x, y ∈ V.

If ν(x) = 0 =⇒ x = 0, then we say that ν is a norm. In this case, we
usually write ‖·‖ to denote the norm, instead of ν.

� Note 1.1.1

• We sometimes call a semi-norm a pseudo-length.

Remark 1.1.1
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Notice that we wrote ν(x) = 0 =⇒ x = 0 instead of ν(x) = 0 ⇐⇒ x =

0. This is because if z = 0 ∈ V, then

v(z) = v(0z) = 0. �

Exercise 1.1.1

Show that if ν is a semi-norm on a vector space V, then ∀x, y ∈ V,

|ν(x)− ν(y)| ≤ ν(x − y).

� Proof

Notice that by condition (2) and (3), we have

ν(x − y) ≤ ν(x) + ν(−y) = ν(x)− ν(y),

and

ν(x − y) = −ν(y − x) ≥ −(ν(y)− ν(x)) = ν(x)− ν(y).

It follows that indeed

|ν(x)− ν(y)| ≤ ν(x − y). �

Example 1.1.1

The absolute value |·| is a norm on K. �

Example 1.1.2 (p-norms)

Consider N ≥ 1 an integer. We define a family of norms on

KN = K × K × . . . × K︸ ︷︷ ︸
N times

.

1-norm ∥∥∥(xn)
N
n=1

∥∥∥
1

:=
N

∑
n=1

|xn| .
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Infinity-norm, ∞-norm∥∥∥(xn)
N
n=1

∥∥∥
∞

:= max
1≤n≤N

|xn| .

Euclidean-norm, 2-norm

∥∥∥(xn)
N
n=1

∥∥∥
2

:=

(
N

∑
n=1

|xn|2
) 1

2

It is relatively easy to check that the above norms are indeed norms,
except for the 2-form. In particular, the triangle inequality is not as
easy to show 1. 1 See Minkowski’s Inequality.

Less obviously so, but true nonetheless, we can define the following
p-norms on KN :

∥∥∥(xn)
N
n=1

∥∥∥
p

:=

(
N

∑
n=1

|xn|p
) 1

p

,

for 1 ≤ p < ∞. �

� Culture

Consider V = Mn(C), 2 where n ∈ N is fixed. For T ∈ Mn(C), we 2 Note that Mn(C) is the set of n × n
matrices over C.define the singular numbers of T to be

s1(T) ≥ s2(T) ≥ . . . ≥ sn(T) ≥ 0,

where σ(T∗T) = {s1(T)2, s2(T)2, . . . , sn(T)2}, including multiplicity.
Then we can define

‖T‖p :=

(
n

∑
i=1

si(T)p

) 1
p

for 1 ≤ p < ∞, which is called the p-norm of T on Mn(C).

Example 1.1.3

Let
V = C([0, 1], K) = { f : [0, 1] → K | f is continuous }.

https://tex.japorized.ink/PMATH351F18/classnotes.pdf#thm.29
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Then
‖ f ‖sup := sup{| f (x)| | x ∈ [0, 1]}

3 defines a norm on C([0, 1], K). 3 Some authors use ‖ f ‖∞, but we will
have the notation ‖[ f ]‖∞ later on, and so
we shall use ‖ f ‖sup for clarity.A sequence ( fn)n=1)∞ in V converges in this norm to some f ∈ V,

i.e.
lim

n→∞
‖ fn − f ‖sup = 0,

which means that ( fn)∞
n=1 converges uniformly to f on [0, 1]. �

� Definition 2 (Normed Linear Space)

A normed linear space (NLS) is a pair (V, ‖·‖) where V is a vector
space over K and ‖·‖ is a norm on V.

� Definition 3 (Metric)

Given an NLS (V, ‖·‖), we can define a metric d on V (called the metric
induced by the norm) as follows:

d : V × V → R d(x, y) = ‖x − y‖ ,

such that

• d(x, y) ≥ 0 for all x, y ∈ V and d(x, y) = 0 ⇐⇒ x = y;

• d(x, y) = d(y, x); and

• d(x, y) ≤ d(x, z) + d(y, z).

� Note 1.1.2

Norms are all metrics, and so any space that has a norm will induce a
metric on the space.

� Definition 4 (Banach Space)
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We say that an NLS (V, ‖·‖) is complete or is a Banach Space if the cor-
responding (V, d), where d is the metric induced by the norm, is complete
4. 4 Completeness of a metric space is

such that any of its Cauchy sequences
converges in the space.

Example 1.1.4

(C([0, 1], K), ‖·‖sup) is a Banach space. �

Example 1.1.5

We can define a 1-norm ‖·‖1 on C([0, 1], K) via

‖ f ‖1 :=
∫ 1

0
| f | .

Then (C([0, 1], K), ‖·‖1) is an NLS. �

Exercise 1.1.2

Show that (C([0, 1], K), ‖·‖1) is not complete, which will then give us an
example of a normed linear space that is not Banach.

� Proof

Consider the sequence ( fn)∞
n=1 of continuous functions given by

x

y

1
2

1
2 + 1

m
1
2 + 1

n

Figure 1.1: Sequence of functions
( fn)∞

n=1. We show for two indices n < m.
fn(x) =


0 0 ≤ x < 1

2

n
(

x + 1
2

)
1
2 ≤ x ≤ 1

2 + 1
n

1 otherwise

Note that the sequence ( fn)∞
n=1 is indeed Cauchy: let ε > 0 and

|n − m| < ε∣∣∣x− 1
2

∣∣∣ , and then we have

| fn(x)− fm(x)| =
∣∣∣∣n(x − 1

2

)
− m

(
x − 1

2

)∣∣∣∣
=

∣∣∣∣(n − m)

(
x − 1

2

)∣∣∣∣ = |n − m|
∣∣∣∣x − 1

2

∣∣∣∣ < ε.

However, it is clear that the sequence ( fn)∞
n=1 converges to the piece-
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wise function (in particular, a non-continuous function)

f (x) =

0 0 ≤ x < 1
2

1 x ≥ 1
2

. �

Example 1.1.6

If (X, ‖·‖X) and (Y, ‖·‖Y) are NLS’s, and if T : X → Y is a linear map,
we define the operator norm of T to be

‖T‖ := sup{‖T(x)‖Y | ‖x‖X ≤ 1}.

We set
B(X,Y) := {T : X → Y | T is linear , ‖T‖ < ∞}.

Note that for any such linear map T, ‖T‖ < ∞ ⇐⇒ T is continuous.
Thus B(X,Y) is the set of all continuous functions from X into Y.

Then (B(X,Y), ‖·‖) is an NLS. �
It is likely that we have seen this in Real
Analysis.

Exercise 1.1.3

Show that (B(X,Y), ‖·‖) is complete iff (Y, ‖·‖Y) is complete.

� Note 1.1.3

One example of the last example is when (Y, ‖·‖Y) = (K, |·|). In this
case, B(X, K) is known as the dual space of X, or simple the dual of X.

We are interested in integrating over Banach spaces.

� Definition 5 (Partition of a Set)

Let (X, ‖·‖X) be a Banach space and f : [a, b] → X a function, where
a < b ∈ R. A partition P of [a, b] is a finite set

P = {a = p0 < p1 < . . . < pN = b}
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for some N ≥ 1. The set of all partitions of [a, b] is denoted by P [a, b].

� Definition 6 (Test Values)

Let (X, ‖·‖X) be a Banach space and f : [a, b] → X a function, where
a < b ∈ R. Let P ∈ P [a, b]. A set

P∗ := {p∗k}
N
k=1

satisfying
pk−1 ≤ p∗k ≤ pk, for 1 ≤ k ≤ n

is called a set of test values for P.

� Definition 7 (Riemann Sum)

Let (X, ‖·‖X) be a Banach space and f : [a, b] → X a function, where
a < b ∈ R. Let P ∈ P [a, b] and P∗ its corresponding set of test values.
We define the Riemann sum as

S( f , P, P∗) =
N

∑
k=1

f (p∗k )(pk − pk−1).

Remark 1.1.2

1. Note that because � Definition 5, pk − pk−1 > 0.

2. When (X, ‖·‖) = (R, |·|), then this is the usual Riemann sum from
first-year calculus.

3. In general, note that

1
b − a

S( f , P, P∗) =
N

∑
k=1

λk f (p∗k ),

where 0 < λk =
pk−pk−1

b−a < 1 and 5 5 via the fact that the λk’s form a tele-
scoping sum

N

∑
k=1

λk = 1.
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So 1
b−a S( f , P, P∗) is an averaging of f over [a, b]. We call 1

b−a S( f , P, P∗)

the convex combination of the f (p∗k )’s. �

Example 1.1.7 (Silly example)

Let (X = C([−π, π], K), ‖·‖sup). Let

f : [0, 1] → X such that x 7→ e2πx sin 7θ + cos x cos(12θ),

where θ ∈ [−π, π]. Now if we consider the partition

P =

{
−π,

1
10

,
1
2

, π

}
and its corresponding test value

P∗ =

{
0,

1
3

, 2
}

,

then

S( f , P, P∗) = f (0)
(

1
10

+ π

)
+ f

(
1
3

)(
1
2
− 1

10

)
+ f (2)

(
π − 1

2

)
= (sin 7θ + cos 12θ)

(
π +

1
10

)
+

(
e

2π
3 sin 7θ + cos

1
3

cos 12θ

)(
2
5

)
+ (e4π sin 7θ + cos 2 cos 12θ)

(
π − 1

2

)
�

� Definition 8 (Refinement of a Partition)

Let a < b ∈ R, and P ∈ P [a, b]. We say Q is a refinement of P is
Q ∈ P [a, b] and P ⊆ Q.

� Note 1.1.4

In simpler words, Q is a “finer” partition that is based on P.

� Definition 9 (Riemann Integrable)
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Let a < b ∈ R, (X, ‖·‖X) be a Banach space and f : [a, b] → X be a
function. We say that f is Riemann integrable over [a, b] if ∃x0 ∈ X

such that
∀ε > 0 ∃P ∈ P [a, b],

such that if Q is any refinement of P, and Q∗ is any set of test values of Q,
then

‖x0 − S( f , Q, Q∗)‖X < ε.

In this case, we write ∫ b

a
f = x0.

� Proposition 1 (Uniqueness of the Riemann Integral)

If f is Riemann integrable over [a, b], then the value of
∫ b

a f is unique.

� Proof

Suppose not, i.e. ∫ b

a
f = x0 and

∫ b

a
f = y0

for some x0 6= y0. Then, let

ε =
‖x0 − y0‖

2
,

which is > 0 since ‖x0 − y0‖ > 0. Let Px0 , Py0 ∈ P [a, b] be par-
titions corresponding to x0 and y0 as in the definition of Riemann
integrability.

Then, let R = Px0 ∪ Py0 , so that R is a common refinement of
Px0 and Py0 . If Q is any refinement of R, then Q is also a common
refinement of Px0 and Py0 . Then for any test values Q∗ of Q, we have

2ε = ‖x0 − y0‖

≤ ‖x0 − S( f , Q, Q∗)‖+ ‖S( f , Q, Q∗)− y0‖ < ε + ε = 2ε,

which is a contradiction.
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Thus x0 = y0 as required. �

�Theorem 2 (Cauchy Criterion of Riemann Integrability)

Let (X, ‖·‖X) be a Banach space, a < b ∈ R and f : [a, b] → X be a
function. TFAE:

1. f is Riemann integrable over [a, b];

2. ∀ε > 0, R ∈ P [a, b], if P, Q is any refinement of R, and P∗ (respec-
tively Q∗) is any test values of P (respectively Q), then

‖S( f , P, P∗)− S( f , Q, Q∗)‖X < ε.

� Proof

=⇒ This is a rather straightforward proof. Suppose P, Q ∈ P [a, b]

is some refinement of the given partition R ∈ P [a, b], and P∗, Q∗ any
test values for P, Q, respectively. Then by assumption and � Propo-
sition 1, ∃x0 ∈ X such that

‖x0 − S( f , P, P∗)‖X <
ε

2
and ‖x0 − S( f , Q, Q∗)‖X <

ε

2
.

It follows that

‖S( f , P, P∗)− S( f , Q, Q∗)‖X
≤ ‖x0 − S( f , P, P∗)‖X + ‖x0 − S( f , Q, Q∗)‖X
<

ε

2
+

ε

2
= ε.

⇐= By hypothesis, wma ε = 1
n for some n ≥ 1, such that if P, Q

are any refinements of the partition Rn ∈ P [a, b], and P∗, Q∗ are the
respective arbitrary test values, then

‖S( f , P, P∗)− S( f , Q, Q∗)‖X <
1
n
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Now for each n ≥ 1, define

Wn :=
n⋃

k=1

Rk ∈ P [a, b],

so that Wn is a common refinement for R1, R2, . . . , Rn. For each
n ≥ 1, let W∗

n be an arbitrary set of test values for Wn. For simplicity,
let us write

xn = S( f , Wn, W∗
n ), for each n ≥ 1.

6 6 Note that it would be nice if for the
finer and finer partitions that we have
constructed, i.e. the Wn’s, give us a
convergent sequence of Riemann sums,
since it makes sense that this conver-
gence will give us the final value that we
want.

Claim: (xn)∞
n=1 is a Cauchy sequence If n1 ≥ n2 > N ∈ N, then

‖xn1 − xn2‖X =
∥∥S( f , Wn1 , W∗

n1
)− S( f , Wn2 , W∗

n2
)
∥∥ <

1
N

by our assumption, since Wn1 , Wn2 are refinements of RN . Then by
picking N = 1

ε for any ε > 0, we have that (xn)∞
n=1 is indeed a

Cauchy sequence in X.

Since X is a Banach space, it is complete, and so ∃x0 := lim
n→∞

xn ∈
X. It remains to show that, indeed,

x0 =
∫ b

a
f .

Let ε > 0, and choose N ≥ 1 such that

• 1
N < ε

2 ; and

• k ≥ N implies that ‖xk − x0‖ < ε
2 .

Then suppose that V is any refinement of WN , and V∗ is an arbitrary
set of test values of V. Then we have

‖x0 − S( f , V, V∗)‖X ≤ ‖x0 − xN‖X + ‖xN − S( f , V, V∗)‖X
<

ε

2
+ ‖S( f , WN , W∗

N)− S( f , V, V∗)‖X

<
ε

2
+

1
N

≤ ε

2
+

ε

2
= ε.

It follows that ∫ b

a
f = x0,

as desired. �
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In first-year calculus, all continuous functions over R are integrable.
A similar result holds in Banach spaces as well. In the next lecture, we
shall prove the following theorem.

�Theorem (Continuous Functions are Riemann Integrable)

Let (X, ‖·‖) be a Banach space and a < b ∈ R. If f : [a, b] → X is
continuous, then f is Riemann integrable over [a, b].
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2.1 Riemannian Integration (Continued)

We shall now prove the last theorem stated in class.

�Theorem 3 (Continuous Functions are Riemann Integrable)

Let (X, ‖·‖) be a Banach space and a < b ∈ R. If f : [a, b] → X is
continuous, then f is Riemann integrable over [a, b].

� Strategy

This is rather routine should one have gone through a few courses on analysis,
and especially on introductory courses that involves Riemannian integration.

We shall show that if PN ∈ P [a, b] is a partition of [a, b] into 2N subinter-
vals of equal length b−a

2N , and if we use P∗
N = Pn \ {a} as the set of test values

for PN , which consists of the right-endpoints of each the subintervals in PN ,
then the sequence (S( f , PN , P∗

N))
∞
N=1 converges in X to

∫ b
a f .

Note that this choice of partition is a valid move, since any of these PN’s,
for different N’s, is a refinement of some other partition of [a, b], and if we
choose a different set of test values, then we may as well consider an even finer
partition.

� Proof

First, note that since [a, b] is closed and bounded in R, it is compact.
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Also, we have that X is a metric space (via the metric induced by
the norm). This means that any continuous function f on [a, b] is
uniformly continuous on [a, b]. In other words,

∀ε > 0 ∃δ > 0 ∀x, y ∈ [a, b]

|x − y| < δ =⇒ ‖ f (x)− f (y)‖ <
ε

2(b − a)
.

Claim: (S( f , PN , P∗
N))

∞
N=1 is Cauchy Now by picking PN ∈ P [a, b]

and set of test values P∗
N as described in the strategy above, we

proceed by picking M > 0 such that b−a
2M < δ. Then for any K ≥

L ≥ M, since each of the subintervals have length b−a
2L and b−a

2K for
PL and PK respectively, if we write

PL = {a = p0 < p1 < . . . < p2L = b}

and
PK = {a = q0 ≤ q1 < . . . < q2K = b},

then pj = qj2K−L 1 for all 0 ≤ j ≤ 2L. By uniform continuity, for 1 This is not immediately clear on first
read. Think of a as 0.

1 ≤ j ≤ 2L, wma∥∥∥ f (p∗j )− f (q∗s )
∥∥∥ <

ε

2(b − a)
, where (j − 1)2K−L < s ≤ j2K−L.

We can see that

‖S( f , PL, P∗
L )− S( f , PK, P∗

K)‖

=

∥∥∥∥∥∥
2L

∑
j=1

j2K−L

∑
s=(j−1)2K−L+1

( f (pj)− f (qs))(qs − qs−1)

∥∥∥∥∥∥
≤

2L

∑
j=1

j2K−L

∑
s=(j−1)2K−L+1

∥∥ f (pj)− f (qs)
∥∥ (qs − qs−1)

≤
2L

∑
j=1

j2K−L

∑
s=(j−1)2K−L+1

ε

b − a
(qs − qs−1)

=
ε

b − a

2K

∑
s=1

(qs − qs−1)

=
ε

2(b − a)
(b − a) =

ε

2
.

This proves our claim.
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Since X is a Banach space, and hence complete, we have that the
sequence (S( f , PN , P∗

N))
∞
N=1 has a limit x0 ∈ X.

It remains to show that
∫ b

a f = x0. 2 2 The rest of this proof is similar to the
above proof.

Let ε > 0, and choose T ≥ 1 such that b−a
2T < δ 3, so that we have 3 Note that this is still the same δ as in

the first δ in this entire proof.

‖x0 − S( f , PT , P∗
T)‖ <

ε

2
.

Now let R = {a = r0 < r1 < . . . < rJ = b} ∈ P [a, b] such that
PT ⊆ R. Then there exists a sequence

0 = j0 < j1 < . . . < j2T = J

such that
rjk = pk, where 0 ≤ k ≤ 2T .

Let R∗ be any set of test values of R. Note that for jk−1 ≤ s ≤ jk, it is
clear that

|p∗k − r∗s | ≤ |pk − pk−1| =
b − a

2T < δ.

Thus

‖S( f , PT , P∗
T)− S( f , R, R∗)‖

≤
2T

∑
k=1

jk

∑
sjk−1+1

‖ f (p∗k )− f (r∗s )‖ (rs − rs−1)

<
ε

2(b − a)

2T

∑
k=1

jk

∑
sjk−1+1

(rs − rs−1)

=
ε

2(b − a)
(b − a) =

ε

2
.

Putting everything together, we have

‖x0 − S( f , R, R∗)‖

≤ ‖x0 − S( f , PT , P∗
T)‖+ ‖S( f , PT , P∗

T)− S( f , R, R∗)‖

<
ε

2
+

ε

2
= ε.

We can also find another refinement of PT , say Q, that works
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similarly as in the case of R. It follows from �Theorem 2 that

x0 =
∫ b

a
f ,

i.e. that f is indeed Riemann integrable over [a, b]. �

The following is a corollary whose proof shall be left as an exercise.

�Corollary 4 (Piecewise Functions are Riemann Integrable)

A piecewise continuous function is also Riemann integrable: if f :

[a, b] → X is piecewise continuous, then f is Riemann integrable.

Exercise 2.1.1

Prove �Corollary 4.

Let us exhibit a function that is not Riemann integrable.

� Definition 10 (Characteristic Function)

Given a subset E of a set R, we define the characteristic function of E as
a function χE : R → R given by

χE(x) =

1 x ∈ E

0 x /∈ E
.

Example 2.1.1

Consider the set E = Q ∩ [0, 1] ⊆ R. Let P ∈ P [0, 1] such that

P = {0 = p0 < p1 < . . . < pN = 1},

and let
P∗ = {p∗k}

N
k=1 and P∗∗ = {p∗∗k }N

k=1
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be 2 sets of test values for P, such that we have

p∗k ∈ Q and p∗∗k ∈ R \ Q.

Then we have

S(χE, P, P∗) =
N

∑
k=1

χE(p∗k )(pk − pk−1)

=
N

∑
k=1

1 · (pk − pk−1)

= pN − p0 = 1 − 0 = 1,

and

S(χE, P, P∗∗) =
N

∑
k=1

χE(p∗∗k )(pk − pk−1)

=
N

∑
k=1

0 · (pk − pk−1)

= 0.

It is clear that the Cauchy criterion fails for χE. This shows that χE is
not Riemann integrable. �

Remark 2.1.1

Let us once again consider E = Q ∩ [0, 1]. Note that E is denumerable 4. 4 This means that E is countably infinite.

We may thus write
E = {qn}∞

n=1.

Now, for k ≥ 1, define

fk(x) =
k

∑
n=1

χ{qn}(x).

In other words, fk = χ{q1,...,qk}. Furthermore, we have that

f1 ≤ f2 ≤ f3 . . . ≤ χE.

Moreover, we have that ∀x ∈ [0, 1],

χE(x) = lim
k→∞

fk(x),
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and ∫ 1

0
fk = 0 for all k ≥ 1.

And yet, we have that
∫ 1

0 χE does not exist! �

We want to develop a different integral that will ‘cover’ for this
‘pathological’ behavior of where the Riemann integral fails.

The rough idea is as follows.

In Riemann integration, when integrating over an interval [a, b], we
partitioned [a, b] into subintervals. This happens on the x-axis.

a bp1 p2 pN−1
. . .

× ×
×p∗0 p∗1

p∗N−1

Figure 2.1: Rough illustration of how
Riemann’s integration worksIn each of the subintervals of the partition, we pick out a test value

p∗i , and basically draw a rectangle with base at [pi, pi+1] and height
from 0 to p∗i .

What we shall do now is that we partition the range of f on the
y-axis, instead of the x-axis as we do in Riemannian integration.

In particular, given a function f : [a, b] → R, we first partition the
range of f into subintervals [yk−1, yk], where 1 ≤ k ≤ N. Then, we set

Ek = {x ∈ [a, b] : f (x) ∈ [yk−1, yk]} for 1 ≤ k ≤ N.

This will then allow us to estimate the integral of f over [a, b] by the
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Figure 2.2: A sketch of what’s happening
with the construction of the Ek’s

expression
N

∑
k=1

ykmEk,

where each of the ykmEk are called simple functions. In the expres-
sion, mEk denotes a “measure” 5 of Ek. 5 Note that a measure is simply a gener-

alization of the notion of ‘length’.

Figure 2.3: Drawing out the rectangles of
ykmEk from Figure 2.2.We observe that Ek need not be a particularly well-behaved set.

However, note that we may rearrange the possibly scattered pieces of
each Ek together, so as to form a ‘continuous’ base for the rectangle.
We need our definition of a measure to be able to capture this.

The following is an analogy from Lebesgue himself on comparing
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Lebesgue integration and Riemann integration 6: 6 Siegmund-Schultze, R. (2008). Henri
Lesbesgue, in Timothy Gowers, June
Barrow-Green, Imre Leader (eds.), Princeton
Companion to Mathematics. Princeton
University Press

I have to pay a certain sum, which I have collected in my pocket. I take
the bills and coins out of my pocket and give them to the creditor in
the order I find them until I have reached the total sum. This is the
Riemann integral.
But I can proceed differently. After I have taken all the money out of
my pocket I order the bills and coins according to identical values and
then I pay the several heaps one after the other to the creditor. This is
my integral.

The insight here is that one can freely arrange the values of the
functions, all the while preserving the value of the integral.

• This requires us to have a better understanding of what a measure
is.

• This process of rearrangement converts certain functions which
are extremely difficult to deal with, or outright impossible, with
the Riemann integral, into easily digestible pieces using Lebesgue
integral.

2.2 Lebesgue Outer Measure

Goals of the section

1. Define a “measure of length” on as many subsets of R as possible.

2. The definition should agree with our intuition of what a ‘length’ is.

� Definition 11 (Length)

For a ≤ b ∈ R, we define the length of the interval (a, b) to be b − a, and
we write

`((a, b)) := b − a.

We also define

• `(∅) = 0; and

• `((a, ∞)) = `((−∞, b)) = `((−∞, ∞)) = ∞.
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� Definition 12 (Cover by Open Intervals)

Let E ⊆ R. A countable collection {In}∞
n=1 of open intervals is said to be a

cover of E by open intervals if E ⊆ ⋃∞
n=1 In.

� Note 2.2.1

In this course, the only covers that we shall use are open intervals, and so
we shall henceforth refer to the above simply as covers of E.

Before giving what immediately follows from the above, I shall
present the following notion of an outer measure.

� Definition 13 (Outer Measure)

Let ∅ 6= X be a set. An outer measure µ on X is a function

µ : P(X) → [0, ∞] := [0, ∞) ∪ {∞}

which satisfies

Figure 2.4: Idea of the outer measure

1. µ∅ = 0;

2. (monotone increment or monotonicity) E ⊆ F ⊆ X =⇒ µE ≤
µF; and

3. (countable subadditivity or σ-subadditivity) {En}∞
n=1 ⊆ P(X)

µ

(
∞⋃

n=1

En

)
≤

∞

∑
n=1

µEn.

� Note 2.2.2

Note that by the monotonicity, the σ-subadditivity condition is equivalent
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to: given {En}∞
n=1 ⊆ P(X) and F ⊆ ⋃∞

n=1 En, we have that

µ(F) ≤
∞

∑
n=1

µ(En).

� Definition 14 (Lebesgue Outer Measure)

We define the Lebesgue outer measure as a function m∗ : P(X) → R

such that

m∗E := inf

{
∞

∑
n=1

`(In) : E ⊆
∞⋃

n=1

In

}
.

We cheated a little bit by calling the above an outer measure, so let
us now justify our cheating.

� Proposition 5 (Validity of the Lebesgue Outer Measure)

m∗ is indeed an outer measure.

� Proof

µ∅ = 0 We consider a sequence of sets {In}∞
n=1 such that In = ∅ for

each n = 1, . . . , ∞. It is clear that ∅ ⊆ ⋃∞
n=1 In. Also, we have that

`(In) = 0 for all n = 1, . . . , ∞. It follows that

0 ≤ m∗(∅) ≤
∞

∑
n=1

m∗(In) =
∞

∑
n=1

0 = 0,

where the inequality is simply by the definition of m∗ being an
infimum, not to be confused with σ-subadditivity. We thus have
that

m∗(∅) = 0.

Monotonicity Suppose E ⊆ F ⊆ R, and {In}∞
n=1 a cover of F. Then

E ⊆ F ⊆
∞⋃

n=1

In.
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In particular, all covers of F are also covers of E, i.e.{
{Jm}∞

m=1 : E ⊆
∞⋃

m=1

Jm

}
⊆
{
{In}∞

n=1 : F ⊆
∞⋃

n=1

In

}
.

It follows that
m∗E ≤ m∗F.

σ-subaddivitity Consider {En}∞
n=1 ⊆ P(X) such that E ⊆ ⋃∞

n=1 En.
WTS

m∗E ≤
∞

∑
n=1

m∗En.

Now if the sum of the RHS is infinite, i.e. if any of the m∗En is
infinite, then the inequality comes for free. Thus WMA ∑∞

n=1 En <

∞, and in particular that m∗En < ∞ for all n = 1, . . . , ∞.

To do this, let ε > 0. Since m∗En < ∞ for all n, we can find covers{
I(n)k

}∞

k=1
for each of the En’s such that

∞

∑
k=1

`
(

I(n)k

)
< m∗En +

ε

2n .

Then, we have that

E ⊆
∞⋃

n=1

En ⊆
∞⋃

n=1

∞⋃
k=1

I(n)k .

Then by m∗E being the infimum of the sum of lengths of the cover-
ing intervals, we have that

m∗E ≤
∞

∑
n=1

∞

∑
k=1

`
(

I(n)k

)
≤

∞

∑
n=1

(
m∗En +

ε

2n

)
=

∞

∑
n=1

m∗En +
∞

∑
n=1

ε

2n

=
∞

∑
n=1

m∗En + ε.

Since ε was arbitrary, we have that

m∗En ≤
∞

∑
n=1

m∗En,
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as desired. �

�Corollary 6 (Lebesgue Outer Measure of Countable Sets is
Zero)

If E ⊆ R is countable, then m∗E = 0.

� Proof

We shall prove for when E is denumerable, for the finite case follows
a similar proof. Let us write E = {xn}∞

n=1. Let ε > 0 and

In =
(

xn −
ε

2n+1 , xn +
ε

2n+1

)
.

Then it is clear that {In}∞
n=1 is a cover of E.

It follows that

0 ≤ m∗E ≤
∞

∑
n=1

`(In) =
∞

∑
n=1

ε

2n = ε.

Thus as ε → 0, we have that

m∗E = 0,

as expected. �

�Corollary 7 (Lebesgue Outer Measure of Q is Zero)

We have that m∗Q = 0.

In the proofs above that we have looked into, and based on the
intuitive notion of the length of an open interval, it is compelling to
simply conclude that

m∗(a, b) = `(a, b) = b − a.



PMATH450 — Lebesgue Integration and Fourier Analysis 39

However, looking back at � Definition 14, we know that that is not
how m∗(a, b) is defined.

This leaves us with an interesting question:

how does our notion of measure m∗(a, b) of an interval compare with
the notion of the length of an interval?

By taking I1 = (a, b) and In = ∅ for n ≥ 2, it is rather clear that
{In}∞

n=1 is a cover of (a, b), and so we have

m∗(a, b) ≤ `(a, b) = b − a. (2.1)

However, the other side of the game is not as easy to confirm: we
would have to consider all possible covers of (a, b), which is a lot.

Another question that we can ask ourselves seeing Equation (2.1) is
why can’t m∗(a, b) be something that is strictly less than the length to
give us an even more ‘precise’ measurement?

To answer these questions, it is useful to first consider the outer
measure of a closed and bounded interval, e.g. [a, b], since these inter-
vals are compact under the Heine-Borel Theorem. This will give us a
finite subcover for every infinite cover of the compact interval, which
is easy to deal with.

We shall see that with the realization of the outer measure of a
compact interval, we will also be able to find the outer measure of
intervals that are neither open nor closed.

We shall prove the following proposition in the next lecture. Note
that for the sake of presentation, I shall abbreviate the Lebesgue Outer
Measure as LOM.

� Proposition (LOM of Arbitrary Intervals)

Suppose a < b ∈ R. Then

1. m∗([a, b]) = b − a; and therefore

2. m∗((a, b]) = m∗([a, b)) = m∗((a, b)) = b − a.
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3.1 Lebesgue Outer Measure Continued

� Proposition 8 (LOM of Arbitrary Intervals)

Suppose a < b ∈ R. Then

1. m∗([a, b]) = b − a; and therefore

2. m∗((a, b]) = m∗([a, b)) = m∗((a, b)) = b − a.

� Proof

1. Consider a < b ∈ R. Let ε > 0, and let

I1 =
(

a − ε

2
, b +

ε

2

)
and In = ∅ for n ≥ 2. Then {In}∞

n=1 is a cover of [a, b]. This
means that

m∗([a, b]) ≤
∞

∑
n=1

`(In) = b − a + ε.

So for all ε → 0, we have that

m∗([a, b]) ≤ b − a.

1 Conversely, if [a, b] is covered by open intervals {In}∞
n=1, then by 1 For the converse, we know that

m∗([a, b]) = inf � , where � is
just a placeholder for you-know-what.
So m∗([a, b]) is one of the sums. So if we
can show that for an arbitrary sum, ≥
holds, our work is done.

compactness of [a, b] (via the Heine-Borel Theorem), we know
that we can cover [a, b] by finitely many of these intervals, and let
us denote these as {In}N

n=1, for some 1 ≤ N < ∞.
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WTS
N

∑
n=1

`(In) ≥ b − a.

If LHS = ∞, then our work is done. Thus wlog, WMA each
In = (an, bn) is a finite interval. Note that we have

[a, b] ⊆
N⋃

n=1

(an, bn).

In particular, a ∈ ⋃N
n=1 In. Thus, ∃1 ≤ n2 ≤ N such that a ∈ In1 .

Now if bn1 > b, we shall stop this process for our work is done,
since then [a, b] ⊆ In1 . Otherwise, if bn1 ≤ b, then bn1 ∈ [a, b] ⊆⋃N

n=1 In, which means that ∃1 ≤ n2 ≤ N such that bn1 ∈ In2 .

a b

an1 bn1an2 bn2 . . . ank bnk

Figure 3.1: Our continual picking of
In1 , In2 , . . . , InkNotice that n1 6= n2, since bn1 /∈ In1 but bn1 ∈ In2 .

Now once again, if bn2 > b, then we shall stop this process since
our work is done. Otherwise, we have a < bn2 ≤ b, and so
∃1 ≤ n3 ≤ N, n3 6= n1, n2, such that bn2 ∈ I3...

We continue with the above process for as long as bnk ≤ b.
We can thus find, for each k, Ink+1 , where nk+1 ∈ {1, . . . , N} \
{n1, n2, . . . , nk}, such that bnk ∈ Ink+1 .

However, since each of the Ink ’s are different, and since we only
have N such intervals, there must exists a K ≤ N such that

bnK−1 ≤ b and bnK > b.

It now suffices for us to show that

K

∑
j=1

`(Inj) ≥ b − a.

Observe that

K

∑
j=1

`(Inj) = (bnK − anK ) + (bnK−1 − anK−1) + . . .
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+ (bn2 − an2) + (bn1 − an1)

= bnK + (bnK−1 − anK )
≥0

+ (bnK−2 − anK−1)
≥0

+ . . .

+ (bn1 − an2)
≥0

− an1

≥ bnK − an1 ≥ b − a.

Thus
∞

∑
n=1

`(In) ≥
N

∑
n=1

`(In) ≥
K

∑
j=1

`(Inj) ≥ b − a,

whence
m∗([a, b]) ≥ b − a.

It follows that, indeed,

m∗([a, b]) = b − a.

2. First, note that

m∗((a, b)) ≤ m∗([a, b]) ≤ b − a.

On the other hand, notice that ∀0 < ε < b−a
2 , we have that

[a + ε, b − ε] ⊆ (a, b),

and so by monotonicity,

(b − a)− 2ε = m∗([a + ε, b − ε]) ≤ m∗((a, b)).

As ε → 0, we have that

b − a ≤ m∗((a, b)) ≤ b − a.

So
m∗((a, b)) = b − a

as desired.

Finally, we have that

b − a = m∗((a, b)) ≤ m∗((a, b]) ≤ m∗([a, b]) = b − a,
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and similarly

b − a = m∗((a, b)) ≤ m∗([a, b)) ≤ m∗([a, b]) = b − a.

Thus
m∗((a, b)) = m∗((a, b]) = m∗([a, b)) = b − a

as required. �

� Proposition 9 (LOM of Infinite Intervals)

We have that ∀a, b ∈ R,

m∗((a, ∞)) = m∗([a, ∞))

= m∗((−∞, b)) = m∗((−∞, b])

= m∗R = ∞.

� Proof

Observe that
(a, a + n) ⊆ (a, ∞)

for all n ≥ 1. Thus

n = m∗((a, a + n)) ≤ m∗((a, ∞))

for all n ≥ 1. Hence
m∗((a, ∞)) = ∞

by definition.

All other cases follow similarly. �

�Corollary 10 (Uncountability of R)

R is uncountable.
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� Proof

We have that
m∗R = ∞ 6= 0,

and so it follows from �Corollary 6, we must have that R is un-
countable. �

� Definition 15 (Translation Invariant)

Let µ be an outer measure on R. We say that µ is translation invariant
if ∀E ⊆ R,

µ(E) = µ(E + κ)

for all κ ∈ R, where

E + κ := {x + κ : x ∈ E}.

� Proposition 11 (Translation Invariance of the LOM)

The Lebesgue outer measure is translation invariant.

� Proof

Let E ⊆ R and κ ∈ R. Note that E is covered by open intervals
{In}∞

n=1 iff E + κ is covered by {In + κ}∞
n=1.

Claim: ∀n ≥ 1, `(In + κ) = `(In) Write

In = (an, bn).

Then
In + κ = (an + κ, bn + κ).
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Observe that

`(In + κ) = bn + κ − (an − κ) = bn − an = `(In),

as claimed. a

By the claim, it follows that

m∗(E) = inf

{
∞

∑
n=1

`(In) : E ⊆
∞⋃

n=1

}

= inf

{
∞

∑
n=1

`(In + κ) : E + κ ⊆
∞⋃

n=1

(In + κ)

}
= m∗(E + κ). �

Remark 3.1.1

Suppose E ⊆ R and E =
⋃∞

n=1 En, where

Ei ∩ Ej = ∅ if i 6= j.

Now by σ-subadditivity of m∗, we have that

m∗E ≤
∞

∑
n=1

m∗En.

However, equality is not guaranteed. Consider the following case: if
E = [0, 1], we may have En = [0, 1] for all n >= 1, in which case
E =

⋃∞
n=1 En = [0, 1], but

m∗E = m∗[0, 1] = 1 < ∞ =
∞

∑
n=1

m∗En.

It would be desirable to have

m∗E =
∞

∑
n=1

m∗En,

when the Ei’s are pairwise disjoint, i.e. E = ·⋃∞
n=1 En. In fact, this would

agree with our intuition, that if the outer measure is going to be our ‘length’.
Consider the example A = [0, 2] ∪ [5, 7]. Then we would expect m∗A =

2 + 2 = 4.
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However, this is actually impossible for an arbitrary number of collec-
tions. �

�Theorem 12 (Non-existence of a sensible Translation Invariant
Outer Measure that is also σ-additive)

There does not exist a translation-invariant outer measure µ on R that
satisfies

1. µ(R) > 0;

2. µ[0, 1] < ∞; and

3. µ is σ-additive; i.e. if {En}∞
n=1 is a countable collection of disjoint

subsets of R that covers E ⊆ R, then

µE =
∞

∑
n=1

µEn.

Consequently, the Lebesgue outer measure m∗ is not σ-additive.

� Proof

Suppose to the contrary that such a µ exists.

Step 1 Consider the relation ∼ on R such that x ∼ y if x − y ∈ Q.

Claim: ∼ is an equivalence relation

• (reflexivity) We know that 0 ∈ Q and x − x = 0. Thus x ∼ x.

• (symmetry) Since Q is a field, it is closed under multiplication,
and −1 ∈ Q. Thus if x ∼ y, then x − y ∈ Q, and so (−1)(x − y) =

y − x ∈ Q, which means y ∼ x.

• (transitivity) Again, since Q is a field, it is closed under (this
time) addition. Thus

x ∼ y ∧ y ∼ z =⇒ (x − y), (y − z) ∈ Q

=⇒ (x − y) + (y − z) = x − z ∈ Q.
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Thus x ∼ z.

This proves the claim. a

Let
[x] := x + Q := {x + q : q ∈ Q}

denote the equivalence class of x wrt ∼. Note that the set of equiva-
lence classes, which we shall represent as

F := {[x] : x ∈ R},

partitions R, i.e.

• [x] = [y] ⇐⇒ x − y ∈ Q; and

• [x] ∩ [y] = ∅ otherwise.

Note that since Q is dense in R, we have that [x] = x + Q is also
dense in R, for all x ∈ R. Then for each 2 F ∈ F , ∃xF ∈ F such that 2 Notice that here, we have invoked the

Axiom of Choice.

0 ≤ xF ≤ 1.

Now consider the set

V := {xF : F ∈ F} ⊆ [0, 1],

which is called Vitali’s Set.

Step 2 Since F partitions R, we have that

R = ·
⋃

F∈F
F = ·

⋃
F∈F

[xF]

= ·
⋃

F∈F
xF + Q

= V + Q := {x + q : q ∈ Q, x ∈ V}.

Step 3 Claim: p 6= q ∈ Q =⇒ (V + p) ∩ (V + q) = ∅ Suppose not,
and suppose ∃y ∈ (V + p) ∩ (V + q). Then ∃F1, F2 ∈ F such that

y = xF1 + p = xF2 + q. (3.1)
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Then we may rearrange the above equation to get

xF1 − xF2 = q − p ∈ Q.

This implies that
[xF1 ] = [xF2 ] =⇒ F1 = F2

since V consists of one unique representative from each of the
equivalence classes. However, this would mean that

xF1 = xF2 .

Since p 6= q, we have that

xF1 + p 6= xF2 + q,

which contradicts Equation (3.1). Thus

(V + p) ∩ (V + q) = ∅,

as claimed. a

This in turn means that the V + q, for each q ∈ Q, also partitions
R. In other words, if we write Q = {pn}∞

n=1, then

R = V + Q =
∞·
⋃

n=1

V + pn.

Now, note that

0 6= µR
(1)
=

∞

∑
n=1

µ(V + pn)
(2)
=

∞

∑
n=1

µ(V),

where (1) is by µ being σ-additive and (2) is by µ being translation
invariant, both directly from our assumptions. This means that

µV > 0.

Step 4 Now consider S = Q ∩ [0, 1] such that S is denumerable.
Write

S = {sn}∞
n=1.
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Note that for all n ≥ 1,

V ⊆ [0, 1] =⇒ V + sn ⊆ [0, 2],

and as proven above

i 6= j =⇒ (V + si) ∩ (V + sj) = ∅.

Thus it follows that

µ

(
∞·
⋃

n=1

V + sn

)
=

∞

∑
n=1

µ(V + sn) =
∞

∑
n=1

µ(V) = ∞.

Also,

µ

(
∞·
⋃

n=1

V + sn

)
=

∞

∑
n=1

µ(V + sn)

≤ µ([0, 2]) = µ([0, 1] ∪ ([0, 1] + 1))

≤ µ[0, 1] + µ([0, 1] + 1)

= 2µ([0, 1]) = 2 < ∞,

contradicting what we have right above.

Therefore, no such µ exists. �

With the realization of �Theorem 12, we find ourselves facing a
losing dilemma: we may either

1. be happy with the Lebesgue outer measure m∗ for all subsets E ⊆
R, which would agree with our intuitive notion of length, at the
price of σ-additivity; or

2. restrict the domain of our function m∗ to some family of subsets of
R, where m∗ would have σ-additivity.

We shall adopt the second approach. We shall call the collection of
sets where m∗ has σ-additivity as the collection of Lebesgue measur-
able sets.
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3.2 Lebesgue Measure

We shall first introduce Carathéodory’s definition of a Lebesgue mea-
surable set.

� Definition 16 (Lebesgue Measureable Set)

A set E ⊆ R is said to be Lebesgue measurable if, ∀X ⊆ R,

m∗X = m∗(X ∩ E) + m∗(X \ E).

We denote the collection of all Lebesgue measurable sets asM(R).

Remark 3.2.1

Since we shall almost exclusively focus on the Lebesgue measure, we shall
hereafter refer to “Lebesgue measurable sets” as simply “measurable sets”. �

� Note 3.2.1

I shall quote and paraphrase this remark from our course notes 3: 3 Marcoux, L. W. (2019). PMath 450
Introduction to Lebesgue Measure and
Fourier Analysis. (n.p.)Informally, we see that a set E ⊆ R is measurable provided that

it is a “universal slicer”, that it “slices” every other set X into
two disjoint sets, into where the Lebesgue outer measure is σ-
additive.

Also, note that we get the following inequality for free, simply from
σ-subadditivity of m∗:

m∗X ≤ m∗(X ∩ E) + m∗(X \ E).

Thus, it suffices for us to check if the reverse inequality holds for all sets
X ⊆ R.

Before ploughing forward to getting out hands dirty with exam-
ples, let us first study a result on a structure of M(R) that is rather
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interesting. 4 4 For those who has dirtied themselves
in the world of probability and statistics,
especially probability theory, get ready
to get excited!

� Definition 17 (Algebra of Sets)

A collection Ω ⊆ P(R) is said to be an algebra of sets if

1. R ∈ Ω;

2. (closed under complementation) E ∈ Ω =⇒ EC ∈ Ω; and

3. (closed under finite union) given N ≥ 1 and {En}N
n=1 ⊆ Ω, then

N⋃
n=1

En ∈ Ω.

We say that Ω is a σ-algebra of sets if

1. Ω is an algebra of sets; and

2. (closed under countable union) if {En}∞
n=1 ⊆ Ω, then

∞⋃
n=1

En ∈ Ω.

� Note 3.2.2

We often call a σ-algebra of sets as simply a σ-algebra.

�Theorem 13 (M(R) is a σ-algebra)

The collectionM(R) of Lebesgue measurable sets in R is a σ-algebra.

Due to time constraints, we shall prove the first 2 requirements in
this lecture and prove the last requirement next time (which is also
really long).

� Proof
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R ∈ M(R) Observe that ∀X ⊆ R,

m∗X = m∗X + 0 = m∗X + m∗∅ = m∗(X ∩ R) + m∗(X \ R) �

E ∈ M(R) =⇒ EC ∈ M(R) Observe that ∀X ⊆ R, since E ∈
M(R), we have

m∗X = m∗(X ∩ E) + m∗(X \ E)

= m∗(X ∩ (EC)C) + m∗(X ∩ EC)

= m∗(X \ EC) + m∗(X ∩ EC)

= m∗(X ∩ EC) + m∗(X \ EC)

A \ B = A ∩ BC

rearrangement

Thus EC ∈ M(R).
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4.1 Lebesgue Measure (Continued)

Recalling the last theorem we were in the middle of proving, it re-
mains for us to prove that M(R) is closed under arbitrary unions of its
elements.

But before we dive in, let’s first have a little pep talk.

� Strategy

Since m∗ is σ-subadditive, given {En}∞
n=1, we need only prove that ∀X ⊆ R,

m∗X ≥ m∗
(

X ∩
∞⋃

n=1

En

)
+ m∗

(
X \

∞⋃
n=1

En

)
.

Recall our discussion near the end of Section 3.1. We want σ-additivity,
especially when we are given a set of disjoint intervals. However, our En’s are
arbitrary, and so they are not necessarily disjoint.

It helps if one has seen how we can slice R up into disjoint unions, and
consequently we can do so for any of its subsets. We shall not take that for
granted and immediately use it, but we shall work through this proof in the
spirit of that. We shall see how we can slice R up in A1.

Once we can, in some way, express
⋃∞

n=1 En as a disjoint union of in-
tervals, we will then show that, indeed, we have σ-additivity instead of σ-
subadditivity on this disjoint union.

� Proof
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M(R) is closed under arbitrary unions Suppose {En}∞
n=1 ⊆ M(R).

To show that
⋃∞

n=1 En ∈ M(R), WTS

m∗X = m∗
(

X ∩
∞⋃

n=1

En

)
+ m∗

(
X \

∞⋃
n=1

En

)
.

Since m∗ is σ-subadditive, it suffices for us to show that

m∗X ≥ m∗
(

X ∩
∞⋃

n=1

En

)
+ m∗

(
X \

∞⋃
n=1

En

)
. (4.1)

Step 1 Consider

Hn =
n⋃

i=1

Ei, ∀n ≥ 1.

Claim: Hn ∈ M(R), ∀n ≥ 1 We shall prove this by induction on n.

When n = 1, we have H1 = E1 ∈ M(R) by assumption, and so
we are done. Suppose that Hk ∈ M(R) for some k ∈ N. Consider
n = k + 1.

Since we will need the piece X ∩ Hk+1, first, notice that

X ∩ Hk+1 = X ∩ (Hk ∪ Ek+1) = (X ∩ Hk) ∪ ((X \ Hk) ∩ Ek+1),

and in particular that

X ∩ Hk+1 = X ∩ (Hk ∪ Ek+1) ⊆ (X ∩ Hk) ∪ ((X \ Hk) ∩ Ek+1). (4.2)

This may be (will be) useful later on, and we can guess that we will
be using σ-subadditivity on this.

By the IH, since Hk ∈ M(R), we have

m∗X = m∗(X ∩ Hk) + m∗(X \ Hk).

Notice the similarity between the above equation and Equation (4.2),
where we are just off by that ∩Ek+1.

Since Ek+1 ∈ M(R), we have

m∗(X \ Hk) = m∗(X \ Hk ∩ Ek+1) + m∗(X \ Hk \ Ek+1).

To clean the above equation up a little bit, notice that by De Mor-
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gan’s Law,

X \ Hk \ Ek+1 = X ∩
k⋃

i=1

EC
i ∩ EC

k+1 = X \ Hk+1.

So
m∗(X \ Hk) = m∗(X \ Hk ∩ Ek+1) + m∗(X \ Hk+1).

Thus

m∗X = m∗(X ∩ Hk) + m∗(X \ Hk ∩ Ek+1) + m∗(X \ Hk+1).

Using Equation (4.2) and σ-subadditivity, we have that

m∗X ≥ m∗(X ∩ Hk+1) + m∗(X \ Hk+1),

which is what we need. Thus ∀k ≥ 1, Hk ∈ M(R). a

Step 2 Consider F1 = H1 = E1 ∈ M(R), and for k ≥ 2,

Fk = Hk \ Hk−1 = Hk ∩ HC
k−1.

1 Claim: ∀k ≥ 2, Fk ∈ M(R) First, notice that 1 Note that we cannot assume that M(R)
is closed under finite intersections
because that is part of what we want to
prove.FC

k =
(

Hk ∩ HC
k+1

)C
= HC

k ∪ Hk+1.

By step 1 2, we have that FC
k ∈ M(R), and thus by closure under 2 I need to get this clarified.

complementation, Fk ∈ M(R).

Also, note that the Fi’s are pairwise disjoint. Suppose not, i.e. that
∃x ∈ Fa ∩ Fb for some a, b ≥ 1 and a 6= b. Wlog, wma a < b. Note
that Ha ⊆ Hb, since

Ha =
a⋃

i=1

Ei (
b⋃

i=1

Ei = Hb.

Since Fb = Hb \ Hb−1,

x ∈ Fb =⇒ x /∈
b−1⋃
i=1

Ei ⊇
a⋃

i=1

Ei,
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and so x /∈ Ei for 1 ≤ i ≤ a ≤ b − 1. But we assumed that

x ∈ Fa = Ha \ Ha−1,

i.e. it must be that x ∈ Ea, a contradiction.

Step 3 We now have

E =
∞⋃

i=1

Ei =
∞⋃

i=1

Hi =
∞·
⋃
i=1

Fi.

Equation (4.1) becomes 3 3 I refrained from changing the second
term to the disjoint union. Retrospec-
tively (i.e. once you’re done with the
proof), it makes sense to not consider
this move, since there is no point look-
ing at X take away a bunch of disjoint
intervals.

m∗X ≥ m∗
(

X ∩
(

∞·
⋃
i=1

Fi

))
+ m∗ (X \ E) .

Since the Fi’s are disjoint, we expect

m∗
(

X ∩ ∞·
⋃
i=1

Fi

)
=

∞

∑
i=1

m∗(X ∩ Fi).

i.e. for every n,

m∗
(

X ∩ n·
⋃
i=1

Fi

)
=

n

∑
i=1

m∗(X ∩ Fi).

Let’s prove this inductively. It is clear that case n = 1 is trivially true.
Suppose that this is true up to some k ∈ N. Consider case n = k + 1.
Since Fk+1 ∈ M(R), we have that 4 4 This is quite a smart trick!

m∗
(

X ∩
k+1⋃
i=1

Fi

)
= m∗

(
X ∩

k+1⋃
i=1

Fi ∩ Fk+1

)
+ m∗

((
X \

k=1⋃
i=1

Fi

)
\ Fk+1

)
= m∗(X ∩ Fk+1) + m∗

(
X ∩

k⋃
i=1

Fi

)
= m∗(X ∩ Fk+1) + ∑k

i=1 m∗(X ∩ Fi)

=
k+1
∑

i=1
m∗(X ∩ Fi).

IH

Our claim is complete by induction.
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Step 4 With Step 3, Equation (4.1) has become

m∗X ≥
∞

∑
i=1

m∗(X ∩ Fi) + m∗(X \ E).

5 Since Hk ∈ M(R) for each k ≥ 1, we have 5 This is a reward for the clear-minded,
cause I certainly did not find it an
obvious step to take.

m∗X = m∗(X ∩ Hk) + m∗(X \ Hk). (∗)

Since

Hk =
k⋃

i=1

Ei =
∞⋃

i=1

Ei = E,

we have that
X \ Hk ⊇ X \ E,

for each k ≥ 1. Thus by monotonicity, Equation (∗) becomes

m∗X ≥ m∗(X ∩ Hk) + m∗(X \ E)

= m∗
(

X ∩
(

∞⋃
i=1

Fi

))
+ m∗(X \ E)

=
k

∑
i=1

m∗(X ∩ Fi) + m∗(X \ E),

for each k ≥ 1.

By letting k → ∞, we have that

m∗X ≥
∞

∑
i=1

m∗(X ∩ Fi) + m∗(X \ E).

Note that
X ∩ E = X ∩

∞⋃
i=1

Fi =
∞⋃

i=1

(X ∩ Fi).

By σ-subadditivity, we have that

m∗(X ∩ E) ≤
∞

∑
i=1

m∗(X ∩ Fi).

Therefore
m∗X ≥ m∗(X ∩ E) + m∗(X \ E),

which is what we want! �
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� Note 4.1.1 (Post-mortem for proof of �Theorem 13)

In steps 1 - 3, we try to slice
⋃∞

n=1 En into disjoint measurable intervals
Fi’s. Along the process of constructing them, it is the showing of them being
measurable that takes up most of the proof, since we require induction.

� Proposition 14 (Some Lebesgue Measurable Sets)

1. If E ⊆ R and m∗E = 0, then E is Lebesgue measurable.

2. ∀b ∈ R, (−∞, b) ∈ M(R).

3. Every open and every closed set is Lebesgue measurable.

� Proof

1. Let X ⊆ R. Note that X \ E ⊆ X, and so σ-subadditivity gives

m∗X ≥ m∗(X \ E). (4.3)

On the other hand, X ∩ E ⊆ E, and so

m∗(X ∩ E) ≤ m∗E = 0 =⇒ m∗(X ∩ E) = 0.

Thus, from Equation (4.3),

m∗X ≥ ml ∗ (X \ E) = m∗(X ∩ E) + m∗(X \ E).

Hence E ∈ M(R) as required.

2. Let b ∈ R and X ⊆ R be arbitrary. WTS

m∗X ≥ m∗(X ∩ (−∞, b)) + m∗(X \ (−∞, b)).

6 Let E = (−∞, b). Note that if m∗X = ∞, then there is nothing to 6 We will look at X ∩ (∞, b) and X \
(−∞, b) more closely, and then realize
that since we can cover X, we can
“extend” this cover for these disjoint
pieces by taking intersections and set
removals on each of the covering sets.

show. Thus WMA m∗X < ∞. In this case, let ε > 0, and {In}∞
n=1 a
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cover of X by open intervals, where we write

In = (an, bn)

for each n ≥ 1, so that 7 7 Note that this is legitimate because
m∗X is the infimum of such sums on the
LHS, and we can definitely find such a
cover as a result. Also, there is no harm
in assuming that each of the In’s are
non-empty, since we may simply remove
all the empty In’s from the cover.

∞

∑
n=1

`(In) < m∗X + ε.

For each n ≥ 1, consider the sets

Jn = In ∩ E + In ∩ (−∞, b)

and
Kn = In \ E = In \ (∞, b) = In ∩ [b, ∞).

The following table captures all possible Jn’s and Kn’s:

Case 1 2 3
b > bn ∈ In < an

Jn In (an, b) ∅
Kn ∅ [b, bn) In

Table 4.1: Possible outcomes of Jn and
Kn, for each n ≥ 1

b
an bn

b
an bn

b
an bn

Figure 4.1: Three possible scenarios of
where b stands for different In’s

Notice that {Jn}∞
n=1 is an open cover for X ∩ E. {Kn}∞

n=1 is also a
cover of X \ E but it is not an open cover (the only covers of which
we consider in this course). Thus, we consider a small extension
Ln of Kn such that

• if Kn = ∅, then Ln = ∅;

• if Kn = In, then Ln = In; and

• if Kn = [b, bn), then Ln =
(
b − ε

2n , bn
)
.

Then {Ln}∞
n=1 is a cover of X \ E. By σ-subadditivity of m∗, we

have that
m∗(X ∩ E) ≤

∞

∑
n=1

`(Jn)

and
m∗(X \ E) ≤

∞

∑
n=1

`(Ln).

Thus
m∗(X ∩ E) + m∗(X \ E) ≤

∞

∑
n=1

(`(Jn) + `(Ln)) .
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Now, notice that in cases 1 and 3,

`(Jn) + `(Ln) = `(In).

In case 2, we have that

(`(Jn) + `(Ln))− `(In) <
ε

2n

and so
`(Jn) + `(Ln) < `(In) +

ε

2n .

Therefore

m∗(X ∩ E) + m∗(X \ E)

≤
∞

∑
n=1

(`(Jn) + `(Ln))

≤
∞

∑
n=1

(
`(In) +

ε

2n

)
=

∞

∑
n=1

`(In) + ε

< (m∗X + ε) + ε

= m∗X + 2ε.

Since ε > 0 is arbitrary, we have that

m∗X ≥ m∗(X ∩ E) + m∗(X \ E),

and since X is arbitrary, we have that E = (−∞, b) ∈ M(R).

3. Wlog, suppose a < b ∈ R. By part 2, we have that

(−∞, b) ∈ M(R),

and similarly, for n ≥ 1,(
∞, a +

1
n

)
∈ M(R).

Since M(R) is a σ-algebra, we have that[
a +

1
n

, ∞
)
=

(
−∞, a +

1
n

)C
∈ M(R),
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for each n ≥ 1. Consequently,

(a, ∞) =
∞⋃

n=1

[
a +

1
n

, ∞
)
∈ M(R).

Therefore, we have that

(a, b) = (−∞, b) ∩ (a, ∞) ∈ M(R).

8 Since every open set G ⊆ R is a countable disjoint union of 8 We shall prove this in A1.

open intervals in R, it follows that G ∈ M(R) since M(R) is a
σ-algebra. If F ⊆ R is closed, notice that

FC = G ∈ M(R)

since G is open, and so by closure under complementation of
σ-algebras, F ∈ M(R). �

� Definition 18 (Lebesgue Measure)

Let m∗ denote the Lebesgue outer measure on R. We define the Lebesgue
measure m to be

m = m∗ �M(R),

i.e. ∀E ∈ M(R), we have that

mE = m∗E = inf

{
∞

∑
n=1

`(In) | E ⊆
∞⋃

n=1

In

}
.

In A2, we shall prove that

�Theorem 15 (σ-additivity of the Lebesgue Measure on Lebesgue
Measurable Sets)

The Lebesgue measure is σ-additive onM(R), i.e. if {En}∞
n=1 ⊆ M(R)

with Ei ∩ Ej = ∅ for all i 6= j, then

m
∞⋃

n=1

En =
∞

∑
n=1

mEn.



64 Lecture 4 May 16th 2019 Lebesgue Measure (Continued)

�Corollary 16 (Existence of Non-Measurable Sets)

There exists non-measurable sets.

� Proof

Suppose not, i.e. M(R) = P(R). Then m = m∗ is a translation
invariant outer measure on R, with m∗R = ∞ > 0, m∗[0, 1] = 1 <

∞, and m∗ is σ-additive, which contradicts �Theorem 12. Thus
M(R) 6= P(R). �

The following proposition is left as an exercise.

� Proposition 17 (Non-measurability of the Vitali Set)

The Vitali set V, defined in �Theorem 12, is not measurable.

Exercise 4.1.1
Prove � Proposition 17.

� Definition 19 (σ-algebra of Borel Sets)

The σ-algebra of sets generated by the collection

G := {G ⊆ R : G is open }

is called the σ-algebra of Borel sets of R, and is denoted by

Bor(R).

� Note 4.1.2

SinceBor(R) is generated by open sets in R and all open subsets of R are
Lebesgue measurable (cf. � Proposition 14), we have that

Bor(R) ⊆ M(R).



PMATH450 — Lebesgue Integration and Fourier Analysis 65

Remark 4.1.1

SinceBor(R) is a σ-algebra, and it is, in particular, generated by open sub-
sets of R, it also contains all of the closed subsets of R. Thus, we could have
instead definedBor(R) to be the σ-algebra of subsets of R generated by the
collection

F := {F ⊆ R : F is closed },

and in turn conclude that Bor(R) contains G. �

Remark 4.1.2

Let A ⊆ P(R), with ∅, R ∈ A. Let

Aσ :=

{
∞⋃

n=1

An : An ∈ A, n ≥ 1

}

Aδ :=

{
∞⋂

n=1

An : An ∈ A, n ≥ 1

}
.

We call the elements of Aσ as A-sigma sets, and elements of Aδ as A-delta
sets.

Recalling our definitions

G = {G ⊆ R | G is open }

F = {F ⊆ R | F is closed }

from above, notice that

Gδ =

{
∞⋂

n=1

Gn | Gn ∈ G, n ≥ 1

}
,

which is a countable intersection of open subsets of R, and

Fσ =

{
∞⋃

n=1

Fn | Fn ∈ F, n ≥ 1

}
,

which is a countable union of closed subsets of R, are both subsets of
Bor(R). �

As mentioned before, the definition of which we provided for a
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Lebesgue measurable set is from Carathéodory, which is not the most
intuitive definition. We shall now show that it is equivalent to the
original definition of which Lebesgue himself has provided.

�Theorem 18 (Carathéodory’s and Lebesgue’s Definition of
Measurability)

Let E ⊆ R. TFAE:

1. E is Lebesgue measurable (Carathéodory).

2. ∀ε > 0, there exists an open G ⊇ E such that

m∗(G \ E) < ε.

3. There exists a Gδ-set H such that E ⊆ H and

m∗(H \ E) = 0.

� Proof

(1) =⇒ (2) If we can find such a G that is open, then since E is
Lebesgue measurable, we have

mG = m(G ∩ E) + m(G \ E) = mE + m(G \ E),

and so
m(G \ E) = mG − mE. (4.4)

So if we can construct such a G, that is particularly small enough
(within ε-bigger) to contain E, our statement is good as done.

Case 1: mE < ∞ In this case, we may consider a cover {In}∞
n=1 of E

such that
∞

∑
n=1

`(In) < mE + ε.

Then we may simply let G =
⋃∞

n=1 In. Note that since M(R) is a
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σ-algebra, G ∈ M(R). Thus by monotonicity,

mG = m

(
∞⋃

n=1

In

)
≤

∞

∑
n=1

mIn =
∞

∑
n=1

`(In) < mE + ε.

With this, Equation (4.4) becomes

m(G \ E) < mE + ε − mE = ε.

Case 2: ∀r ∈ R, mE > r Consider

Ek = [−k, k] ∩ E

9for each k ≥ 1. By � Proposition 14, closed sets are Lebesgue 9 I should get clarification for my
understanding of this approach. We
picked closed intervals instead of open
ones so that we deal with the possible
quirkiness of E.

measurable, and so for each k ≥ 1, Ek ∈ M(R). Note that

E =
⋃
k≥1

Ek.

10 Note that Ek ⊆ [−k, k], and so 10 It would be a quick job if we take the
union of the Ek’s but note that the Ek’s
are not necessarily open!

mEk ≤ m[−k, k] = 2k < ∞.

Using a similar approach as in Case 1, we can construct an open set
Gk such that Gk ⊇ Ek, and

m(Gk \ Ek) <
ε

2k ,

for each k ≥ 1. Now let

G :=
⋃
k≥1

Gk ⊇
⋃
k≥1

Ek = E.

Note that if x ∈ G \ E, then x /∈ Ek for all k ≥ 1, and ∃N ≥ 1 such
that x ∈ GN . In particular, we have that

x ∈ GN \ EN ,

and so
G \ E ⊆

⋃
k≥1

Gk \ Ek

11. Therefore 11 It is, however, true that equality holds,
and it is not difficult to prove so.
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m(G \ E) ≤ ∑
k≥1

m(Gk \ Ek) ≤ ∑
k≥1

ε

2k = ε.

(2) =⇒ (3) By (2), for each n ≥ 1, let Gn ⊇ E such that

m(Gn \ E) <
1
n

.

Let H :=
⋂

n≥1 Gn, which then H ∈ Gδ. Also, since E ⊆ Gn for all
n ≥ 1, we have E ⊆ H. Also, H ⊆ Gn for each n. Thus

H \ E ⊆ Gn \ E,

for each n ≥ 1. By monotonicity,

m(H \ E) ≤ m(Gn \ E) <
1
n

for each n ≥ 1. Therefore

m(H \ E) = 0.

(3) =⇒ (1) Notice that Gδ ⊆ Bor(R) ⊆ M(R). Suppose G ∈ Gδ,
and E ⊆ H such that

m(H \ E) = 0.

By � Proposition 14, H \ E ∈ M(R). Since M(R) is a σ-algebra,
notice that

E = H \ (H \ E) = H ∩ (H ∩ EC)C = H ∩ HC ∪ E ∈ M(R). �
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5.1 Lebesgue Measure (Continued 2)

Recall from �Corollary 6 that any countable subset E ⊆ R has
zero Lebesgue outer measure. From � Proposition 14, we have that
E ∈ M(R) and so mE = m∗E = 0. This shows that every countable set
is Lebesgue measurable with Lebesgue measure zero.

But is the converse true? I.e., is every Lebesgue measurable set with
Lebesgue measure zero countable?

We shall show that this is not true by giving a counterexample. We
shall now construct an uncountable set C that has measure zero.

Example 5.1.1 (The Cantor Set)

Let C0 = [0, 1]. Note that C0 is compact and

m∗C0 = 1 < ∞.

0 11
9

2
9

1
3

2
3

7
9

8
9

Figure 5.1: Cantor set showing up to
n = 2, with the excluded interval in
n = 3 shown.

Let
C1 = C0 \

(
1
3

,
2
3

)
.

Then C1 is closed 1 and C0 ⊇ C1. 1 C1 is an intersection of 2 closed sets.

Let
C2 = C1 \

((
1
9

,
2
9

)
∪
(

7
9

,
8
9

))
.
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Figure 5.2: An illustration of the Cantor
Set from https://mathforum.org/
mathimages/index.php/Cantor_
Set.

Then C2 is closed and C1 ⊇ C2.

We continue this process indefinitely, and construct Cn for each
n ≥ 1, where

Cn =
1
3

Cn−1 ∪
(

2
3
+

1
3

Cn−1

)
.

Then Cn will consist of 2n disjoint closed intervals. Thus each Cn is
compact and measurable. Moreover,

m(Cn) =

(
2
3

)n
,

for each n ≥ 1.

Also, we have that
C0 ⊇ C1 ⊇ C2 ⊇ . . .

is a descending chain of measurable sets. Note that the sequence
{Cn}∞

n=0 has the finite intersection property, and since R is compact,
the set

C :=
∞⋂

n=1

Cn,

which we shall call it the Cantor Set, is non-empty 2. 2 See FIP and Compactness from
PMATH 351

Now from A2, we have that

mC = lim
n→∞

mCn = lim
n→∞

(
2
3

)n
= 0.

We shall now show that C is uncountable. To do this, we shall use
the ternary representation for each x ∈ [0, 1]. In particular, for each
x ∈ [0, 1], we write

x = 0.x1x2x3 . . . ,

where each xi ∈ {0, 1, 2} for all i ≥ 1. Note that in base 10, we can

https://mathforum.org/mathimages/index.php/Cantor_Set
https://mathforum.org/mathimages/index.php/Cantor_Set
https://mathforum.org/mathimages/index.php/Cantor_Set
https://tex.japorized.ink/PMATH351F18/classnotes.pdf#thm.74
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express

x =
∞

∑
k=1

xk

10k = 0.x1 + 0.0x2 + 0.00x3 + . . .

Thus, we can similarly express I shall paraphrase the professor here
because I like how the analogy brings
good intuition, for me at least.

Suppose there’s this person that
had only 3 fingers and is not aware
of the existence of the base-10
system, and in turn invented the
ternary system. Then, instead of
having 10 regular intervals on
[0, 1], it had 3 regular intervals.

x =
∞

∑
k=1

xk

3k ,

in ternary representation. However, just as

0.99999 . . . and 1.00000 . . .

are indistinguishable, in ternary representation,

0.22222 . . . and 1.00000 . . .

are indistinguishable. Fortunately, we can find out who exactly are the
culprits that cannot be uniquely represented, which shall be left as an
exercise.

Exercise 5.1.1

Show that the ternary expansion of x ∈ [0, 1) is unique except when ∃N ≥ 1

such that
x =

r
3N ,

for some 0 < r < 3N , where 3 - r.

In the cases where we have the above x, we have that 3 3 Note that the representation terminates
somewhere, since it is a fraction, i.e. a
rational number.

x = 0.x1x2x3 . . . xN ,

where xN ∈ {1, 2}.

• If xN = 2, we shall keep this expression; otherwise

• if xN = 1, then we write

x = 0.x1x2x3 . . . xN−2xN−11000 . . .

= 0.x1x2x3 . . . xN2 xN−10222 . . . ,

and we shall use the second expression.
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Also, we shall also use the convention that

1 = 0.22222 . . . .

With this, we have obtained a unique ternary expansion for each
x ∈ [0, 1].

0 11
9

2
9

1
3

2
3

7
9

8
9

0.010 . . . = 0.0022 . . .
0.020 . . .

0.022 . . .

0.1 . . .

0.20 . . .

Figure 5.3: Some values on [0, 1] in
ternary representation

Now, observe that

C1 = [0, 1] \
(

1
3

,
2
3

)
= {x ∈ [0, 1] : x = 0.x1x2x3 . . . , x1 6= 1},

i.e. whichever x ∈ [0, 1] with x1 = 1 sits in
(

1
3 , 2

3

)
. Similarly,

C2 = {x ∈ [0, 1] : x = 0.x1x2x3 . . . , x1 6= 1, x2 6= 1}.

In general, we have that

CN = {x ∈ [0, 1] : x = 0.x1x2x3 . . . , xi 6= 1, 1 ≤ i ≤ N}.

Therefore,

C =
∞⋂

n=1

Cn

= {x ∈ [0, 1] : x = 0.x1x2x3 . . . , xn 6= 1, n ≥ 1}

= {x ∈ [0, 1] : x = 0.x1x2x3 . . . , xn ∈ {0, 2}, n ≥ 1}

Now, consider the bijection

ϕ : C → [0, 1]

given by
x = 0.x1x2x3 . . . 7→ y = 0.y1y2y3 . . . ,
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where xn ∈ {0, 2}, for n ≥ 1, and x is the ternary expansion, while
yn = xn

2 for each n ≥ 1, and so y is a binary expansion. Then ϕ is a
bijection between C and [0, 1], and therefore

|C| = |[0, 1]| = |R| = c = 2ℵ0 . �

� Note 5.1.1

The lesson here is that the Lebesgue measure is not a measure on the car-
dinality of the set. Rather, it measures the distribution of points in the
set.

5.2 Lebesgue Measurable Functions

� Note 5.2.1

We used
M(R) = {E ⊆ R | E is measurable }

to denote the set of measurable subsets of R.

In general, for H ⊆ R, set shall denote by M(H) the collection of all
Lebesgue measurable subsets of H, i.e.

M(H) = {E ⊆ H | E ∈ M(R)}.

In particular, for E ∈ M(R), we also have

M(E) = {F ⊆ E | F ∈ M(R)}.

Exercise 5.2.1

Prove that the aboveM(E) is a σ-algebra of sets.

� Definition 20 (Lebesgue Measurable Function)
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Let E ∈ M(E) and (X, d) a metric space. We say that a function

f : E → X

is Lebesgue measurable (or simply measurable) if

f−1(G) ::= {x ∈ E : f (x) ∈ G} ∈ M(E)

for every open set G ⊆ X.

We write

L(E, X) = { f : E → X | f measurable }

for the set of measurable functions from E to X.

Exercise 5.2.2

Show that we can equivalently define that a function f is Lebesgue measur-
able if

f−1(F) ∈ M(E)

for all closed subsets F ⊆ X.

� Note 5.2.2

Note that we required that the domain of the function is a measurable
set in � Definition 20. Part of the reason is because we want constant
functions to be measurable, and this happens iff the domain of the function
is measurable 4. 4 Why?

� Proposition 19 (Continuous Functions on a Measurable Set is
Measurable)

Let E ∈ M(R) and (X, d) a metric space. If f : E → X is continuous,
then f ∈ L(E, X).
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� Proof

Since f is continuous in a metric space, it implies that for all open
G ⊆ X, f−1(G) is open in E 5. This means that f−1(G) = UG ∩ E 5 We say that f−1(G) is relatively open

in E.for some open UG ⊆ R. Since UG is open, by � Proposition 14,
UG ∈ M(R). Since E ∈ M(R), we have that

f−1(G) = UG ∩ E ∈ M(E),

and so
f ∈ L(E, X). �

Example 5.2.1

Let E ∈ M(R) and H ⊆ E. Consider the characteristic function of H,
which is

χH : E → R given by x 7→

1 x ∈ H

0 x /∈ H
.

Let G ⊆ R be open. Then

χ−1
H (G) =



∅ G ∩ {0, 1} = ∅

E G ⊇ {0, 1}

E \ H G ∩ {0, 1} = {0}

H G ∩ {0, 1} = {1}

,

in which case we observe that all the possible outcomes are measur-
able subsets of R. Thus χH is measurable iff H ∈ M(R). �

� Proposition 20 (Composition of a Continuous Function and a
Measurable Function is Measurable)

Let E ∈ M(R) and (X, dX), (Y, dY) be metric spaces. Suppose that

f : E → X is measurable and g : X → Y is continuous.

Then
g ◦ f : E → Y is measurable.
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The idea is simple: (g f )−1(G) =

f−1g−1(G) and continuity of G means
that g−1(G) is open in X.

� Proof

Let G ⊆ Y be open. Then since g is continuous, we have that

g−1(G) ⊆ X is open.

Then since f measurable, we have that

(g ◦ f )−1(G) = f−1(g−1(G)) ∈ M(E).

Thus g ◦ f ∈ L(E, Y). �

Example 5.2.2

Let E ∈ M(E) and f ∈ L(E, K). Let g : K → R be given by z 7→ |z|.
Then g is continuous. By � Proposition 20, we have that

g ◦ f = | f | is measurable. �

Example 5.2.3

Note that the converse to the above is not true, i.e. that if we have that
| f | is measurable, it is not necessary that f is measurable.

Consider E = R = K. If we take H ⊆ R that is not measurable,
which we know exists, and then consider the function

f : E → R given by f (x) =

1 x ∈ H

−1 x /∈ H
,

which is constructed by summing up two characteristic functions over
H and then minus 1. Then | f | = 1, but

f−1({1}) = H /∈ M(R). �

� Proposition 21 (Component-wise Measurability)
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Let E ∈ M(R) and f , g : E → K. Then TFAE:

1. f , g ∈ L(E, K);

2. h : E → K2 given by x 7→ ( f (x), g(x)) is measurable.

� Proof

(2) =⇒ (1) 6 Let 6 Awareness about projective maps is a
plus here.

π1 : K2 → K given by (w, z) 7→ w

π2 : K2 → K given by (w, z) 7→ z

so that π1, π2 are continuous. Then by � Proposition 20, we have
that

π1 ◦ h = f and π2 ◦ h = g

are both measurable.

(1) =⇒ (2) Let G ⊆ K2 be open. We can write G as a countable
union of open sets 7, i.e. 7 If you are unsure about this, think

ε − δ.

G =
∞⋃

n=1

An × Bn,

where An, Bn ⊆ K are open. Then

h−1(G) = h−1

(
∞⋃

n=1

An × Bn

)

=
∞⋃

n=1

f−1(An)︸ ︷︷ ︸
∈M(K)

∩ g−1(Bn)︸ ︷︷ ︸
∈M(K)

∈ M(K)

Thus h ∈ L(E, K2). �

� Proposition 22 (L(E, K) is a Unital Algebra)

Let E ∈ M(R). Then L(E, K) is a unital algebra, i.e. if f , g ∈ L(E, K),
then

1. f + g ∈ L(E, K);
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2. f g ∈ L(E, K) 8; 8 Here, it’s multiplication of two func-
tions, not compositions

3. g(x) 6= 0, ∀x ∈ E =⇒ f
g ∈ L(E, K); and

4. if h : E → K is constant, then h ∈ L(E, K).

In particular, L(E, K) is an algebra.

� Proof

We shall make use of this clever trick 9. Let µ : E → K2 given by 9 ”Clever trick” = ”Trick you should
learn”.

x 7→ ( f (x), g(x)). Note that since f , g ∈ L(E, K), by � Proposi-
tion 21, µ ∈ L(E, K2).

1. Consider the function

σ : K2 → K given by (w, z) 7→ w + z.

It is clear that σ is continuous. Then

σ ◦ µ : x 7→ f (x) + g(x)

is measurable by � Proposition 20.

2. Consider the function

σ : K2 → K given by (w, z) 7→ wz.

Again, we see that σ is continuous. Then

σ ◦ µ : x 7→ f (x)g(x)

is measurable by � Proposition 20.

3. Consider the function

σ : K × (K \ {0}) → K given by (w, z) 7→ w
z

.

Again, σ is continuous. Thus

σ ◦ µ : x 7→ f (x)
g(x)
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is measurable by � Proposition 20.

4. Suppose h : E → K is a constant, and we have h(x) = α0 for all
x ∈ E. Then for any G ⊆ K that is open, we have that

h−1(G) =

∅ a0 /∈ G

E a0 ∈ G
,

both of which are measurable sets. Thus h is indeed measurable.

�

� Warning (Composition of Measurable Functions Need Not be
Measurable)

It is important to note that compositions of measurable functions do not
have to be measurable. Here is a counterexample 10. 10 Source: Mirjam 2013

Let f : [0, 1] → [0, 1] be the Cantor-Lebesgue Function 11. Note 11 Seen in A2Q5.

that f is a monotonic and continuous function, and the image f (C) of the
Cantor set C is all of [0, 1]. Let g(x) = x + f (x). It is clear that g :

[0, 1] → [0, 2] is a strictly monotonic and continuous map. In particular,
h = g−1 is also continuous.

Remark 5.2.1

Note that (C, d), where d(w, z) = |w − z|, is a metric space. Moreover, the
map

γ : C → R2 given by x + iy 7→ (x, y),

where x, y ∈ R is a homeomorphism, which, in particular, is continuous.
Then given a E ∈ M(R) with a measurable f ∈ E → C, then

γ ◦ f : E → R2 ∈ L(E, R2).

Also, notice that
γ ◦ f = (< f ,= f ).
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By � Proposition 21, < f ,= f ∈ L(E, R). This also means that

h : x 7→ (< f (x),= f (x)) ∈ L(E, R2).

Conversely, if < f ,= f ∈ L(E, R), then

f = γ−1 ◦ h ∈ L(E, C)

by � Proposition 21.

This means that a complex-valued function is measurable iff its real
and imaginary parts are both measurable. Consequently, to study about
complex-valued functions, it is sufficient for us to study about real-valued
functions. �

� Proposition 23 (Measurable Function Broken Down into an
Absolute Part and a Scaling Part)

Let E ∈ M(R) and suppose that f : E → C is measurable. Then there
exists a measurable function Θ : E → T, where

T := {z ∈ C | |z| = 1},

such that
f = Θ · | f | .

� Proof

Since {0} ⊆ C is closed and f is measurable, we have that

K := f−1({0}) ∈ M(E).

Since χK is a measurable function, we have that f + χK is also mea-
surable (cf. � Proposition 22).

Claim: f + χK 6= 0 over E.

• If x ∈ E such that f (x) = 0, then x ∈ K, and so χK(x) = 1.
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• If x ∈ E such that χK(x) = 0, then x /∈ K, which means f (x) 6= 0.

Therefore, consider the function

Θ =
f + χK

| f + χK|
: E → T.

By � Proposition 22, Θ is measurable, and clearly

f = Θ · | f | . �

Remark 5.2.2

As of now, given a set E ∈ M(R), to verify that a function f ∈ L(E, R), we
need to check that

∀G ⊆ R open , f−1(G) ∈ M(E).

Since there is an obscene amount of open (respectively closed) subsets of R, we
want to be able to reduce our workload. This shall be the first thing we do in
the next lecture. �
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6.1 Lebesgue Measurable Functions (Continued)

� Proposition 24 (Function Measurability Check)

Let E ∈ M(R) and f : E → R be a function. TFAE:

1. f is measurable, i.e. ∀G ⊆ R that is open, f−1(G) ∈ M(E).

2. ∀a ∈ R, f−1((a, ∞)) ∈ M(E).

3. ∀b ∈ R, f−1((−∞, b]) ∈ M(E).

4. ∀b ∈ R, f−1((−∞, b)) ∈ M(E).

5. ∀a ∈ R, f−1([a, ∞)) ∈ M(E).

� Proof

(1) =⇒ (2) This is trivially true since ∀a ∈ R, (a, ∞) is open in
R, and so since f is measurable, we must have that f−1((a, ∞)) ∈
M(E).

(2) =⇒ (3) Notice that ∀b ∈ R,

f−1((−∞, b]) = f−1(R \ (b, ∞)) = E \ f−1((b, ∞))

and f−1((b, ∞)) ∈ M(E) by assumption. Since M(E) is a σ-algebra,
f−1((−∞, b]) ∈ M(E).
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(3) =⇒ (4) Notice that ∀b ∈ R,

f−1((−∞, b)) =
∞⋃

n=1

f−1
((

−∞, b − 1
n

])
,

and by assumption, for each n ≥ 1, f−1
((

−∞, b − 1
n

])
∈ M(E). It

follows that f−1((−∞, b)) ∈ M(E).

(4) =⇒ (5) Observe that ∀a ∈ R, we have

f−1([a, ∞)) = f−1(R \ (−∞, a)) ∈ M(E)

by assumption.

(5) =⇒ (1) 1 Notice that ∀a ∈ R, 1 This uses the same idea as in
� Proposition 14.

f−1((a, ∞)) =
∞⋃

n=1

f−1
([

a +
1
n

, ∞
))

∈ M(E)

by assumption. Furthermore, we have that ∀b ∈ R,

f−1((−∞, b)) = E \ f−1([b, ∞)) ∈ M(E),

also by assumption. Thus

f−1((a, b)) = f−1((a, ∞)) ∩ f−1((−∞, b)) ∈ M(E),

for any a, b ∈ R.

Since for any open G ⊆ R can be written as a countable union of
open intervals, i.e.

G =
∞⋃

n=1

In,

where each In is an open interval, we have that

f−1(G) =
∞⋃

n=1

f−1(In) ∈ M(E).

Thus f is measurable. �

The proof of the following result is left to A2.
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�Corollary 25 (Measurability Check on the Borel Set)

If E ∈ M(R) and f : E → R is a function, then TFAE:

1. f is measurable.

2. ∀B ∈ Bor(R), f−1(B) ∈ M(E).

Remark 6.1.1

Let E ∈ M(R) and f : E → R. Define

f+(x) = max{ f (x), 0}, x ∈ E

f−(x) = max{− f (x), 0}, x ∈ E

Then f+, f− ≥ 0, and

f = f+ − f− and | f | = f+ + f−.

Moreover,
f+ =

| f |+ f
2

and f− =
| f | − f

2
,

and so both f+ and f− are measurable.

By Remark 5.2.1, every complex-valued measurable function is a linear
combination of 4 non-negative, real-valued measurable functions. �

We shall now examine a number of results dealing with pointwise
limits of sequences of measurable, real-valued functions. We shall
include the case where the limit of a given point is allowed to be an
extended real number; i.e. the sequence diverges either to ∞ or −∞.

� Definition 21 (Extended Real Numbers)

We define the extended real numbers to be the set

R := R ∪ {−∞, ∞}.

We also write R = [−∞, ∞].

By convention, we shall define
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• ∞ + ∞ = ∞, −∞ − ∞ = −∞;

• ∀α ∈ R ∪ {∞}, α + ∞ = ∞ = ∞ + α;

• ∀α ∈ R, α + (−∞) = −∞ = −∞ + α;

• ∀0 < α ∈ R, a · ∞ = ∞ · α = (−∞) · (−α) = (−α) · (−∞) = ∞;

• ∀α < 0 ∈ R, a · ∞ = ∞ · α = (−∞) · (−α) = (−α) · (−∞) = −∞;
and

• 0 = 0 · ∞ = ∞ · 0 = 0 · (−∞) = (−∞) · 0.

� Warning

Notice that we do not define ∞ − ∞ and −∞ + ∞.

� Note 6.1.1

While the space of extended real numbers is useful for treating measure-
theoretic and analytic properties of sequences of functions, it has poor
algebraic properties. In particular, it is no longer a vector space, since ∞

and −∞ do not have their additive inverses.

� Definition 22 (Extended Real-Valued Function)

Given H ⊆ R, the function f : H → R is called an extended real-
valued function.

� Definition 23 (Measurable Extended Real-Valued Function)

If E ∈ M(R) and f : E → R is an extended real-valued function, we say
that f is Lebesgue measurable (or simply measurable) if

1. ∀G ⊆ R open, f−1(G) ∈ M(E) ; annd

2. f−1({−∞}), f−1({∞}) ∈ M(E).
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We denote the set of Lebesgue measurable extended real-valued functions
on E by

L(E, R) = { f : E → R : f is measurable }.

Since we shall often refer to only the non-negative elements of L(E, R), we
also define the notation

L(E, [0, ∞]) = { f ∈ L(E, R) : ∀x ∈ E, 0 ≤ f (x)}.

� Note 6.1.2

Note that we can also replace the first condition of Lebesgue measurability
of extended real-valued functions by

∀F ⊆ R closed , f−1(F) ∈ M(E).

Just as in the case with regular real-valued measurable functions,
we have the following shortcuts in testing whether an extended real-
valued function is measurable.

� Notation

We write

• (a, ∞] = (a, ∞) ∪ {∞}; and

• [−∞, b) = (−∞, b) ∪ {−∞},

for all a, b ∈ R.

� Proposition 26 (Measurability Check for Extended Real-
Valued Functions)

Let E ∈ M(R) and suppose f : E → R is a function. Then TFAE:

1. f is Lebesgue measurable.
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2. ∀a ∈ R, f−1((a, ∞]) ∈ M(E).

3. ∀b ∈ R, f−1([−∞, b)) ∈ M(E).

Exercise 6.1.1

Prove � Proposition 26.

� Proposition 27 (Measurability of Limits and Extremas)

Let E ∈ M(R) and suppose that ( fn)∞
n=1 is a sequence in L(E, R). Then

the following extended real-valued functions are also measurable:

1. g1 := supn≥1 fn;

2. g2 := infn≥1 fn;

3. g3 := lim supn≥1 fn; and

4. g4 := lim infn≥1 fn.

� Proof

1. Let a ∈ R. Then

g−1
1 ((a, ∞]) =

⋃
n≥1

f−1
n ((a, ∞])︸ ︷︷ ︸
∈M(E)

∈ M(E).

It follows from � Proposition 26 that g1 ∈ L(E, R).

2. 2 For any b ∈ R, we have 2 Both notes and lecture notes used
union, but should it not be intersec-
tion?

g−1
2 ([−∞, b)) =

⋂
n≥1

f−1
n ([−∞, b)) ∈ M(E).

Thus by � Proposition 26, g2 ∈ L(E, R).

3. Let hn = supk≥n fn for each n ≥ 1. Then by part (1), hn ∈ L(E, R)

for each n ≥ 1. Also, notice that h1 ≥ h2 ≥ h3 ≥ . . ., i.e. {hn}∞
n=1
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is an increasing sequence of functions. Then by part (2),

g3 = lim
n→∞

hn = inf
n≥1

hn ∈ L(E, R).

4. Let hn = infk≥n fn for each n ≥ 1. Then by part (2), each hn ∈
L(E, R). Also, {hn}∞

n=1 is a decreasing sequence of functions.
Then by part (1), we have that

g4 = lim
n→∞

hn = sup
n≥1

hn ∈ L(E, R). �

�Corollary 28 (Extended Limit of Real-Valued Functions)

Let E ∈ M(R) and suppose that ( fn)∞
n=1 is a sequence of real-valued

functions such that f (x) = limn→∞ fn(x) exists as an extended real-
valued number for all x ∈ E. Then

f ∈ L(E, R).

� Proof

By A2, when the said limit exists, we have that

f = lim sup
n≥1

fn = lim inf
n≥1

fn,

and so f ∈ L(E, R) by � Proposition 27. �

� Definition 24 (Simple Functions)

Let E ∈ M(R) and ϕ : E → R. We say that ϕ is simple if range ϕ is fi-
nite. Furthermore, we denote the set of all simple, real-valued, measurable
functions on E as

SIMP(E, R).
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� Definition 25 (Standard Form)

Let E ∈ M(R) and ϕ : E → R. Suppose that

range ϕ = {α1 < α2 < . . . < aN},

and set
En := ϕ−1({αn}), for 1 ≤ n ≤ N.

We say that

ϕ =
N

∑
n=1

αnχEn

is the standard form of ϕ.

� Warning (Step Functions are Simple, but the Converse is False)

Recall that a step function is a function that can be written as a finite
linear combination of indicator functions of intervals. This means that
step functions are simple functions. However, simple functions are not
necessarily step functions. For example, χC, where C is the Cantor set, is a
simple function since C is measurable, but it is clearly not a step function,
as it would require infinitely many indicator functions of infinitely small
intervals.

� Proposition 29 (Measurability of Simple Functions with Mea-
surable Support)

Let E ∈ M(R). Suppose ϕ : E → R is simple with

range ϕ = {α1 < α2 < . . . < αN}.

TFAE:

1. ϕ is measurable.

2. If ϕ = ∑N
n=1 αnχEn is the standard form of ϕ, then En ∈ M(E), for all

n ∈ {1, . . . , N}.
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� Proof

( =⇒ ) Since ϕ is measurable, notice that for each n ∈ {1, . . . , N},

• if αn ∈ R, then {αn} is closed, and so

E = ϕ−1({αn}) ∈ M(E); and

• if α1 = −∞, and similarly if αN = ∞, then by � Definition 23,
ϕ−1({α1}), ϕ−1({αN}) ∈ M(E).

( ⇐= ) By Example 5.2.1, ∀n ≥ 1, En ∈ M(E) =⇒ ∀n ≥ 0χEn ∈
M(E). Notice that ∀a ∈ R,

ϕ−1((a, ∞]) =
⋃
{En : a < αn},

and so ϕ−1((a, ∞]) is a finite (or empty) union of measurable sets,
and is hence measurable. �

The standard form is not a unique way of expressing a simple
function as a finite linear combination of characteristic functions.

Example 6.1.1

Consider the function ϕ : R → R given by

ϕ = χQ + 9χ[2,6].

Then range ϕ = {0, 1, 9, 10}; we see that

x 7→



0 x ∈ QC ∩ [2, 6]C

1 x ∈ Q ∩ [2, 6]C

9 x ∈ QC ∩ [2, 6]

10 x ∈ Q ∩ [2, 6]

.

Then we may write ϕ as

ϕ = 0χQC∩[2,6]C + 1χQ∩[2,6]C + 9χQC∩[2,6] + 10χQ∩[2,6]. �
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� Definition 26 (Real Cone)

Let V be a vector space over K. A subset C ⊆ V is said to be a (real) cone
is

C

−C

Figure 6.1: Typical figure of a cone

1. C ∩−C = {0}, where −C = {−w : w ∈ C}; and

2. y, z ∈ C and 0 ≤ κ ∈ R imply that

κy + z ∈ C.

Example 6.1.2

1. Let V = R3 and

C = {(x, y, z) ∈ R3 : 0 ≤ x, y, z}.

Then C is a (real) cone.

2. Let V = C and

C =

{
w ∈ C : w = reiθ ,

π

6
≤ θ ≤ 2π

6
, 0 ≤ r < ∞

}
.

The C is a cone in C. Note that in both the above examples, C is not
closed.

3. Let V = C([0, 1], C), and

C = { f ∈ V : 0 ≤ f (x), ∀x ∈ [0, 1]} ,

where we note that the condition means that we only look at those
functions that return real positive values. Then C is a (real) cone in
V . �

Exercise 6.1.2

Show that SIMP(E, R) is an algebra, and hence a vector space over R.

Remark 6.1.2
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1. Note that

SIMP(E, R) = { f : E → R : f is simple and measurable }.

is not a vector space. In fact, it is neither a field nor a ring.

2. We shall adopt the following notation:

SIMP(E, [0, ∞)) := {ϕ ∈ SIMP(E, R) : 0 ≤ ϕ(x) for all x ∈ E} .

Observe that this is a real cone in SIMP(E, R). �

In A3, we will show the following proposition.

� Proposition 30 (Increasing Sequence of Simple Functions that
Converges to a Measurable Function)

Let E ∈ M(E) and f ∈ L(E, [0, ∞]). Then there exists an increasing
sequence

ϕ1 ≤ ϕ2 ≤ ϕ3 ≤ . . . ≤ f

of simple, real-valued functions ϕn such that

f (x) = lim
n→∞

ϕn(x)

for all x ∈ E.





7 � Lecture 7 May 28th 2019

7.1 Lebesgue Integration

We shall first begin by defining integration over simple, non-negative,
extended real-valued functions. We shall then use this definition to
define the integral of f ∈ L(E, [0, ∞]), and derive several consequences
of our definition. Furthermore, we shall also build the Lebesgue in-
tegral such that it is linear, which will require us to impose certain
conditions to the range of functions which will retain this desirable
property.

� Definition 27 (Integration of Simple Functions)

Let E ∈ M(R) and ϕ ∈ SIMP(E, [0, ∞]), such that its standard form is
denoted as

ϕ =
N

∑
n=1

αnχEn .

We define ∫
E

ϕ :=
N

∑
n=1

αnmEn ∈ [0, ∞].

If F ⊆ E is measurable, we define

∫
F

ϕ =
∫

E
ϕ · χF =

N

∑
n=1

αnm(F ∩ En).

� Note 7.1.1

Note that since ϕ is measurable, so is each En for 1 ≤ n ≤ N.
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Example 7.1.1

1. Let ϕ = 0χ[4,∞) + 17χQ∩[0,4) + 29χ[2,4)\Q. Then

∫
[0,∞)

ϕ = 0m[4, ∞) + 17m(Q ∩ [0, 4)) + 29m([2, 4) \ Q)

= 0 + 17 · 0 + 29(2) = 58.

2. Let C ⊆ [0, 1] be the Cantor set from Example 5.1.1 and ϕ = 1χC +

2χ[5,9]. Then∫
[0,6]

ϕ = 1m(C ∩ [0, 6]) + 2m([5, 9] ∩ [0, 6])

= 1 · 0 + 2m([5, 6])

= 2. �

Since our definition is fairly limited since it requires that our simple
function be in standard form, let us try to relax that condition.

� Definition 28 (Disjoint Representation)

Let E ∈ M(E) and ϕ ∈ SIMP(E, [0, ∞]). Suppose

ϕ =
N

∑
n=1

αnχHn ,

where Hn ⊆ E is measurable and αn ∈ R for each 1 ≤ n ≤ N. 1 We 1 Note that we did not require that
the αn’s be distinct, nor do we require
that they be written in any particular
order, nor do we require that E =⋃N

n=1 Hn, unlike in the definition of
simple functions.

shall say that the above decomposition of ϕ is a disjoint representation of
ϕ if

Hi ∩ Hj = ∅, for 1 ≤ i 6= j ≤ N.

� Lemma 31 (Common Disjoint Representation of Simple Func-
tions over a Common Domain)

Let E ∈ M(R) and suppose that ϕ, ψ ∈ L(E, R). Then there exists

1. N ∈ N ;
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2. H1, H2, . . . , Hn ∈ M(E) with Hi ∩ Hj = ∅ for all i 6= j; and

3. α1, . . . , αN , β1, . . . , βN such that

ϕ =
N

∑
n=1

αnχHn and ψ =
N

∑
n=1

βNχHn

are disjoint representations of ϕ and ψ.

� Proof

Since ϕ and ψ are simple, from � Definition 25, if we write

ϕ =
M1

∑
m=1

amχEm and ψ =
M2

∑
m=1

bmχFm

in their standard forms, we have that the Em’s and Fm’s are respec-
tively pairwise disjoint 2. Then 2 It is important to note here that the

Em’s and Fm’s are pairwise disjoint on E,
which is why the next step is a sensible
and correct one.{Ei ∩ Fj : 1 ≤ i ≤ M1, 1 ≤ j ≤ M2}

is also a pairwise disjoint family of measurable sets, which we shall
relabel them as

{Hn}N
n=1, where N = M1M2.

Then

ϕ =
N

∑
n=1

αnχHn ,

where αn = ai if Hn = Ei ∩ Fj for some 1 ≤ j ≤ M2, and

ψ =
N

∑
n=1

βNχHn ,

where βn = bj if Hn = Ei ∩ Fj for some 1 ≤ i ≤ M1. �

� Lemma 32 (Integral of a Simple Funciton Using Its Disjoint
Representation)
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Let E ∈ M(R) and suppose ϕ ∈ SIMP(E, [0, ∞]). If

ϕ =
N

∑
n=1

αnχHn

is any disjoint representation, then

∫
E

ϕ =
n

∑
n=1

αnmHn.

� Proof

3 If
⋃N

n=1 Hn 6= E, then we set 3 One of the problems here is that the
disjoint Hn’s may not cover the entire
domain ϕ, but we can fill it up with
zeros.HN+1 = E \

N⋃
n=1

Hn and αN+1 = 0.

Then
N

∑
n=1

αnmHn =
N+1

∑
n=1

αnmHn.

Thus, wlog, wma
N⋃

n=1

Hn = E.

Now since the Hn’s are mutually disjoint, wma

range ϕ = {α1, . . . , αN},

where we note that the above set may contain repeated elements, i.e.
some αi = αj. We may thus rewrite this set such that

{α1, . . . , αN} = {β1 < β2 < . . . < βM}

and set
Ei =

⋃
{Hj : αj = βi}.

Note that since Hi ∩ Hj = ∅ for 1 ≤ i 6= j ≤ N, for 1 ≤ k ≤ M, we
have

mEk = ∑
αj=βk

m(Hj).
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Then by definition,

∫
E

ϕ =
M

∑
k=1

βkξEk

=
M

∑
i=1

βi ∑
αj=βi

mHj

=
N

∑
n=1

αjmHj,

as desired. �

� Proposition 33 (Linearity and Monotonicity of the Integral of
Simple Functions)

Let E ∈ M(R). If ϕ, ψ ∈ SIMP(E, [0, ∞]) and κ ∈ [0, ∞), then

1.
∫

E κϕ + ψ = κ
∫

E ϕ +
∫

E ψ; and

2. ϕ ≤ ψ on E implies ∫
E

ϕ ≤
∫

E
ψ.

� Proof

1. By Lemma 31, we can find a common disjoint representation of ϕ

and ψ, say

ϕ =
N

∑
n=1

anχHn and ψ =
N

∑
n=1

bnχHn ,

where the Hn’s are pairwise disjoint. Then

κϕ + ψ =
N

∑
n=1

(κan + bn)χHn .

Thus by Lemma 32,

∫
E
(κϕ + ψ) =

N

∑
n=1

(κan + bn)mHn

= κ
N

∑
n=1

anmHn ∗
N

∑
n=1

bnmHn
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= κ
∫

E
ϕ +

∫
E

ψ.

2. Using the disjoint representation, if ϕ ≤ ψ, then an ≤ bn for all
1 ≤ n ≤ N, and so by Lemma 32,

∫
E

ϕ =
N

∑
n=1

anmHn ≤
N

∑
n=1

bnmHn = ψ. �

We are now ready to define the Lebesgue integral for arbitrary
measurable functions.

� Definition 29 (Lebesgue Integral)

Let E ∈ M(R) and f ∈ L(E, [0, ∞]). We define the Lebesgue integral of
f as

∫ NEW

E
f = sup

{∫
E

ϕ : ϕ ∈ SIMP(e, [0, ∞)), 0 ≤ ϕ ≤ f
}

.

� Note 7.1.2

• We can actually allow ϕ ∈ SIMP(E, [0, ∞]).

• We put “NEW” in the above integral because we now have “two”
definitions for the integral of ϕ ∈ SIMP(E, [0, ∞]). Writing ϕ =

∑N
n=1 αnχHn in its standard form, by � Definition 27,

∫
E

ϕ =
N

∑
n=1

αnmHn,

while � Definition 29 gives us

∫ NEW

E
ϕ = sup

{∫
E

ψ : ψ ∈ SIMP(E, [0, ∞)), 0 ≤ ψ ≤ ϕ

}
.

Remark 7.1.1

Let us try reconciling these two definitions, which will allow us to drop the
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dumb-looking “NEW” notation. First, note that

ϕ ∈ {ψ ∈ SIMP(E, [0, ∞]) : 0 ≤ ψ ≤ ϕ},

and so by � Definition 29, then

∫
E

ϕ ≤
∫ NEW

E
ϕ.

On the other hand, by � Proposition 33, if ϕ ∈ SIMP(E, [0, ∞]) and
0 ≤ ψ ≤ ϕ, we have that ∫

E
ψ ≤

∫
E

ϕ,

and so∫ NEW

E
ϕ = sup

{∫
E

ψ : ψ ∈ SIMP(E, 0, ∞]), ψ ≤ ϕ

}
≤
∫

E
ϕ.

Thus ∫ NEW

E
ϕ =

∫
E

ϕ. �

With that we shall drop the “NEW” notation from here on.

� Definition 30 (Almost Everywhere (a.e.))

Let E ∈ M(R). We say that a property (P) holds almost everywhere
(a.e.) on E if the set

B := {x ∈ E : (P) does not hold }

has Lebesgue measure zero.

Example 7.1.2

Let E ∈ M(R). Given f , g ∈ L(E, R), we say that f = g a.e. on E if

B := {x ∈ E : f (x) 6= g(x)}

has measure zero, i.e. mB = 0.

An example of this is
χQ = 0 = χC
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a.e. on R, where C is the Cantor set. �

� Lemma 34 (Monotonicity of the Lebesgue Integral and Other
Lemmas)

Let E ∈ M(R) and let f , g, h : E → [0, ∞] be functions. Suppose that g

and h are measurable.

1. Suppose further that E = X ·⋃Y, where X, Y ∈ M(E). Set f1 := f �X

and f2 := f �Y. Then f ∈ L(E, [0, ∞]) iff f1 and f2 are measurable.
When this is the case, then∫

E
f =

∫
X

f1 +
∫

Y
f2.

2. If g ≤ h, then ∫
E

g ≤
∫

E
h.

3. If H ∈ M(E), then ∫
H

g =
∫

E
g · χH ≤

∫
E

g.

Exercise 7.1.1

Prove Lemma 34.

� Proof

1. f is measurable ⇐⇒ f1 and f2 are measurable ( =⇒ ) Note that

f1 = f · χX and f2 = f · χY,

and since X, Y are measurable, by � Proposition 20, we have that
f1 and f2 are measurable.

( ⇐= ) Suppose f1 and f2 are measurable and X ·⋃Y. We have
that

f = f1 + f2.
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I will spare the details, but it is not difficult to see that ∀a ∈ R,
breaking (a, ∞] into disjoint pieces if necessary, f−1((a, ∞]) is
measurable, and hence f is indeed measurable.

The integral 4 By � Definition 27 and � Proposition 33, we 4 This proof is iffy.

have∫
E

f = sup
{∫

E
ϕ : ϕ ∈ SIMP(E, [0, ∞]), ϕ ≤ f

}
= sup

{∫
E

ϕ · χX + ϕ · χY : ϕ ∈ SIMP(E, [0, ∞]), ϕ ≤ f
}

= sup
{∫

X
ϕ +

∫
Y

ϕ : ϕ ∈ SIMP(E, [0, ∞]), ϕ ≤ f
}

≤ sup
{∫

X
ϕ : ϕ ∈ SIMP(X, [0, ∞]), ϕ ≤ f1

}
+ sup

{∫
Y

ψ : ψ ∈ SIMP(Y, [0, ∞]), ψ ≤ f2

}
=
∫

X
f1 +

∫
Y

f2.

On the other hand, since f1 = f on X and f2 = f on Y, and X and
Y are disjoint,∫

X
f1 +

∫
Y

f2

= sup
{∫

X
ϕ : ϕ ∈ SIMP(X, [0, ∞]), ϕ ≤ f1 = f �X

}
+ sup

{∫
Y

ψ : ψ ∈ SIMP(Y, [0, ∞]), ψ ≤ f2 = f �Y

}
= sup

{ ∫
X

ϕ +
∫

Y
ψ : ϕ ∈ SIMP(X, [0, ∞]),

ψ ∈ SIMP(Y, [0, ∞]), ϕ ≤ f �X , ψ ≤ f �Y

}

= sup

{ ∫
E

ϕ · χX + ψ · χY : ϕ, ψ ∈ SIMP(E, [0, ∞]),

ϕ + ψ ≤ f �X + f �Y= f

}

=
∫

E
f .

2. By � Proposition 30, there exists sequences {ϕn}n and {ψn}n
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such that
lim

n→∞
ϕn = g ≤ h = lim

n→∞
ψn.

In particular,
sup
n≥1

ϕn = g ≤ h = sup
n≥1

ψn.

Since the leftmost and rightmost terms are simple functions, by
� Proposition 33,

∫
E

g = sup
{∫

E
ϕ : ϕ ∈ SIMP(E, [0, ∞]), ϕ ≤ g

}
≤ sup

{∫
E

ψ : ψ ∈ SIMP(E, [0, ∞]), ψ ≤ h
}

=
∫

E
h.

3. 5 For the first equality, by � Definition 27, we have that 5 This is also iffy.

∫
H

g = sup
{∫

H
ϕ : ϕ ∈ SIMP(H, [0, ∞]), ϕ ≤ g

}
= sup

{∫
E

ϕ · χH : ϕ ∈ SIMP(E, [0, ∞]), ϕ ≤ g
}

=
∫

E
g · χH .

Note that we have g · χH ≤ g, and so by part (2),∫
E

g · χH ≤
∫

E
g. �

� Proposition 35 (Integration over Domains of Measure Zero and
Integration of Functions Agreeing Almost Everywhere)

Let E ∈ M(R) and f , g ∈ L(E, [0, ∞]).

1. If mE = 0, then
∫

E f = 0.

2. If f = g a.e. on E, then
∫

E f =
∫

E g.

� Proof
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1. ∀ϕ ∈ SIMP(E, [0, ∞]) written in its standard form

ϕ =
N

∑
n=1

αnχEn ,

by monotonicity,

0 ≤
∫

E
ϕ =

N

∑
n=1

αnmEn ≤
N

∑
n=1

αnmE = 0,

and so ∫
E

ϕ = 0.

Thus∫
E

f = sup
{∫

E
ϕ : ϕ ∈ SIMP(E, [0, ∞]), ϕ ≤ f

}
= sup{0} = 0.

2. Let B := {x ∈ E : f (x) 6= g(x)} so that mB = 0. Then by
Lemma 34 and part (1), we have∫

E
f =

∫
E\B

f +
∫

B

=
∫

E\B
f + 0

=
∫

E\B
g +

∫
B

g

=
∫

E
g. �

We are now in a position to prove the following important theorem,
which we shall do so next lecture.

�Theorem (The Monotone Convergence Theorem)

Let E ∈ M(R) and ( fn)n be a sequence in L(E, [0, ∞]) such that fn ≤
fn+1 a.e. on E. Suppose further that

f : E → [0, ∞]

is a function such that f (x) = limn→∞ fn(x) a.e. on E. Then f ∈
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L(E, [0, ∞]) and ∫
E

f = lim
n→∞

∫
E

fn.
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8.1 Lebesgue Integration (Continued)

�Theorem 36 (�The Monotone Convergence Theorem)

Let E ∈ M(R) and ( fn)n be a sequence in L(E, [0, ∞]) such that fn ≤
fn+1 a.e. on E. Suppose further that

f : E → [0, ∞]

is a function such that f (x) = limn→∞ fn(x) a.e. on E. Then f ∈
L(E, [0, ∞]) and ∫

E
f = lim

n→∞

∫
E

fn.

� Strategy

1. Argue why we can proof for the case where we do not have the “a.e.” as-
sumption. There are 2 places here where have an “a.e.” assumption:

(a) fn ≤ fn+1 on E; and

(b) f (x) = limn→∞ fn(x) a.e. on E.

2. Look at where good things happen and bad things happen, and we’ll be able
to show that f is measurable.

3. Having gotten rid of the place where nasty things happen and showing that
f is measurable. We will find that we need to show that∫

H
f = lim

n→∞

∫
H

fn,
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where H is where our hopes and dreams live in.

4. One direction is easy, since fn < f for all n, on H. For the other direction,
we look at a simple function ϕ ≤ f , which is then arbitrary. Then since
limn→∞ fn = f (pointwise), we want to be able to show something along
the lines of ∫

H
fn −

∫
H

ϕ ≥ 0.

Instead of trying to do this over the entire H, we can look at where
this happens on H for each n. Since the fn’s are increasing, and
ϕ arbitrarily fixed, fn − ϕ should give us more and more places
where they are positive on H.

� Proof

Step 1 Let
Z =

{
x ∈ E : f (x) 6= lim

n→∞
fn(x)

}
.

By hypothesis, mZ = 0 and Z ∈ M(E).

Now by Lemma 34, fn ∈ L(E, [0, ∞]) and so fn �E\Z∈ L(E \
Z, [0, ∞]). Since by hypothesis we have ∀x ∈ E \ Z,

f (x) = lim
n→∞

fn(x),

f �E\Z∈ L(E \ Z, [0, ∞]) by �Corollary 28.

Step 2 For each n ≥ 1, let

Yn := {x ∈ E : fn(x) > fn+1(x)}.

Then by hypothesis, mYn = 0 and Yn ∈ M(E). Let

Y =
∞⋃

n=1

Yn.

Then since M(E) is a σ-algebra, Y ∈ M(E) and

0 ≤ mY ≤
∞

∑
n=1

mYn = 0 =⇒ mY = 0.

1 1 Up till here, we have showed that
we can, instead, turn our focus on
wherever nice things happen, and that f
is measurable as desired.



PMATH450 — Lebesgue Integration and Fourier Analysis 109

At this point, by Lemma 34,∫
E

f =
∫

E\(Y∪Z)
f +

∫
Y∪Z

f =
∫

E\(Y∪Z)
f

and for each n ≥ 1,∫
E

fn =
∫

E\(Y∪Z)
fn +

∫
Y∪Z

fn =
∫

E\(Y∪Z)
fn.

Thus, it remains for us to show that∫
E\(Y∪Z)

f = lim
n→∞

∫
E\(Y∪Z)

fn.

Step 3 Let X = Y ∪ Z, which then X ∈ M(E) and

0 ≤ mX ≤ mY + mZ = 0 =⇒ mX = 0.

Let H = E \ X. Note that we then have H ∈ M(E) and ∀x ∈ H,

∀n ≥ 1 fn(x) ≤ fn+1(x) (8.1)

and
f (x) = lim

n→∞
fn(x). (8.2)

For notational convenience, let

gn = fn �H

and
g = f �H .

By Equation (8.1) and Equation (8.2), we have that

g1 ≤ g2 ≤ . . . ≤ gn ≤ gn+1 ≤ . . . ≤ g.

By Lemma 34, ∀x ∈ H

lim
n→∞

gn(x) = sup
n≥1

gn(x) ≤ g(x),

and so
lim

n→∞

∫
H

gn = sup
n≥1

∫
H

gn ≤
∫

H
g.
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It remains to show that∫
H

g ≤ lim
n→∞

∫
H

gn.

If we can show that for any ϕ ∈ SIMP(H, [0, ∞]), we have

lim
n→∞

∫
H

gn ≥
∫

H
ϕ,

then our proof is done, since it would mean that∫
H

f =
∫

H
g = lim

n→∞

∫
H

gn = lim
n→∞

∫
H

fn.

Step 4 2 Let ϕ ∈ SIMP(H, [0, ∞]) such that ϕ ≤ g. 3 Let 0 < r < 1, so

2 Here, we do something like a race-
check. We know that the gn’s grow to
be arbitrarily close to g, and the set
{ϕ ∈ SIMP(H, [0, ∞]) : ϕ ≤ g} also has
elements arbitrarily close to g. It would
suffice to show that for every ϕ, the limit
of the integral of the gn’s is greater than
the integral of ϕ.

3 Note that we require this scaling factor,
because we cannot allow ϕ = g, for
otherwise our increasing sequence of
gn’s will never be able to ‘catch up’ to ϕ,
which is what we want.

that either

• rϕ = 0 ≤ g; 4 or
4 In the case where g = 0, we have that
rϕ = 0 and not something bigger.• rϕ < g = limn→∞ gn.

Then, consider
Hk = (gk − rϕ)−1[0, ∞].

Notice that since gkk is a sequence of increasing functions, we have 5 5 The increasing-ness of the gk’s guar-
antees that if (gk − rϕ)(x) ≥ 0, then
(gk+1 − rϕ)(x) ≥ 0. This is sort of like a
rising water level scenario.H1 ⊆ H2 ⊆ H3 ⊆ . . .

rϕ

gk

gk+1

Figure 8.1: Increasing levels of gk ‘cov-
ers’ more and more parts of rϕ

Also, note that

H =
∞⋃

k=1

Hk.
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6 WTS 6 By this construction, we have that
rϕ ≤ gk in Hk for each k. So we already
have

lim
k→∞

∫
Hk

rϕ ≤ lim
k→∞

∫
Hk

gk

in our bag. Notice that since ϕ is a
simple function, by � Definition 27, we
have ∫

Hk

ϕ =
∫

H
ϕ · χHk .

Since the Hk’s is an ‘increasing se-
quence’ of sets, and especially since
H =

⋃∞
k=1 Hk , we expect

lim
k→∞

∫
Hk

ϕ =
∫

H
ϕ.

∫
H

ϕ = lim
k→∞

∫
Hk

ϕ.

Since ϕ ∈ SIMP(H, [0, ∞]), let us write

ϕ =
N

∑
k=1

αkχJk

in its standard form, where Jk ∈ M(H). Then

∫
H

ϕ =
N

∑
k=1

αkmJk,

while ∫
Hn

ϕ =
N

∑
k=1

αkm(Jk ∩ Hn)

for each n ≥ 1.

By the continuity of the Lebesgue measure (A1), notice that

lim
n→∞

m(Jk ∩ Hn) = m

(
Jk ∩

(
∞⋃

n=1

Hn

))
= m(Jk ∩ H) = m(Jk)

Thus

lim
n→∞

∫
Hn

ϕ =
N

∑
k=1

αkm(Jn) =
∫

H
ϕ,

as claimed.

Then in particular, we have that∫
H

rϕ = lim
k→∞

∫
Hk

ϕ ≤ lim
k→∞

∫
Hk

gk ≤ lim
k→∞

∫
H

gk,

where the last inequality follows from Lemma 34.

This is exactly the final piece that we have set out to prove, and so
we have completed the proof. �

Example 8.1.1

Recall our “pathological” sequence of Riemann integral functions
earlier on, where E = Q ∩ [0, 1] = {qn}∞

n=1, and sequence of functions

fn = χ{q1,...,qn}, for n ≥ 1,
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and their limit
f = cQ∩[0,1].

We have that
0 ≤ f1 ≤ f2 ≤ . . . ≤ f ,

and each 7 7

Exercise 8.1.1
Show that fn ∈ L([0, 1], [0, ∞)).

fn ∈ L([0, 1], [0, ∞)).

By the Monotone Convergence Theorem (MCT), f is measurable and∫
[0,1]

f = lim
n→∞

∫
[0,1]

fn = lim
n→∞

0 = 0.

This agrees with what we saw much earlier on, i.e.

0 ≤
∫
[0,1]

f =
∫
[0,1]

χE = mE ≤ mQ = 0.

Note that fn is Riemann integrable, but f is not, but it is Lebesgue
integrable. In other words, this function f is an example of a Lebesgue
integrable function that is not Riemann integrable. �

�Corollary 37 (Linearity of the Lebesgue Integral and Other
Results)

Let E ∈ M(R).

1. If f , g ∈ L(E, [0, ∞]) and κ ≥ 0, then∫
E

κ f + g = κ
∫

E
f +

∫
E

g.

2. If (hn)∞
n=1 is a sequence in L(E, [0, ∞]) and

h(x) := lim
N→∞

N

∑
n=1

hn(x), ∀x ∈ E,

then h ∈ L(E, [0, ∞]) and

∫
E

h =
∞

∑
n=1

∫
E

hn.

3. Let f ∈ L(E, [0, ∞]). If (Hn)∞
n=1 is a sequenceM(E) with Hi ∩ Hj =
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∅ when 1 ≤ i 6= j ≤ ∞ and H = ·⋃∞
n=1 Hn, then

∫
H

f =
∞

∑
n=1

∫
Hn

f .

� Proof

1. By A3, there exists a sequence of simple, measurable functions
(ϕn)n, (ψn)n in L(E, [0, ∞]) such that

0 ≤ ϕ1 ≤ ϕ2 ≤ . . . ≤ f

0 ≤ ψ1 ≤ ψ2 ≤ . . . ≤ g

such that ∀x ∈ E,

lim
n→∞

ϕn(x) = f (x)

lim
n→∞

ψn(x) = g(x)

By � Proposition 33, we have that for each n, for any κ ∈ E, we
have ∫

E
κϕn + ψn = κ

∫
E

ϕn +
∫

E
ψn.

Furthermore, note that

lim
n→∞

(κϕ + ψ)(x) = (κ f + g)(x),

and (κϕn + ψn)n is an increasing 8 sequence of non-negative, sim- 8 If you are second-guessing yourself like
I did, notice that that n is fixed for both
of them, not just one of them.ple, measurable functions converging pointwise to the function

κ f + g.

Thus, by the MCT, we see that∫
E
(κ f + g) = lim

N→∞
(κϕN + ψN)

= lim
N→∞

κ
∫

E
ϕN +

∫
E

ψN = κ
∫

E
f +

∫
E

g.

2. 9 Let 9 Since range hn ⊆ [0, ∞], the partial
sums form an increasing sequence of
functions. Then, we can make use of the
MCT.

gN =
N

∑
n=1

hn

for each N ≥ 1.
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Showing that gN ∈ L(E, [0, ∞]) Let (a, ∞], for any α ∈ [0, ∞).
Then since gN is a finite sum of functions, we have that

gN((a, ∞]) = h1((a, ∞]) ∪ h2((a, ∞]) ∪ . . . ∪ hN((a, ∞]),

which is a countable union of measurable sets, and is hence mea-
surable.

Then
0 ≤ g1 ≤ g2 ≤ . . . ≤ h

and ∀x ∈ E

lim
N→∞

gN(x) = h(x),

both of which are from our assumptions.

By the MCT and part (1), we have that∫
E

h = lim
N→∞

∫
E

gN

= lim
N→∞

∫
E

N

∑
n=1

hn

= lim
N→∞

N

∑
n=1

∫
E

hn

=
∞

∑
n=1

∫
E

hn

as required.

3. 10 Let 10 Since the RHS of the goal integrates
over Hn ⊆ H, and the Hi’s are disjoint,
we can break f down by where Hn is
defined.

hn = f · χHn

for each n ≥ 1. Since each Hn ∈ M(E), each χHn , and f being
measurable implies that each hn is measurable. Since Hi ∩ Hj = ∅

for all 1 ≤ i 6= j ≤ ∞, we have that

f =
∞

∑
n=1

hn.

By part (2), we have that

∫
E

f =
∞

∑
n=1

∫
E

hn =
∞

∑
n=1

∫
E

f · χHn =
∞

∑
n=1

∫
Hn

f . �
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� Definition 31 (Lebesgue Integrable)

Let E ∈ M(R) and f ∈ L(E, R). We say that f is Lebesgue integrable
on E if 11 11 Recall Remark 6.1.1.∫

E
f+ < ∞ and

∫
E

f− < ∞,

in which case we set ∫
E

f :=
∫

E
f+ −

∫
E

f−.

We denote by L1(E, R) the set of all Lebesgue integrable functions from E

to R, and L1(E, R) all Lebesgue integrable functions from E to R.

Remark 8.1.1

Let E ∈ M(R).

1. By definition, every Lebesgue integrable function on E is Lebesgue measur-
able.

2. A measurable function f is Lebesgue integrable iff | f | is Lebesgue inte-
grable. Notice that ∫

E
f =

∫
E

f+ −
∫

E
f−

while ∫
E
| f | =

∫
E

f+ + f− =
∫

E
f+ +

∫
E

f−,

and so if either of these are integrable, then∫
E

f+ < ∞ and
∫

E
f− < ∞,

which then the other must also be integrable.

It is important to note that this is a distinguishing feature of Lebesgue
integration, in comparison to Riemann integration. For instance, if we
consider the function

f (x) =
sin x

x
, for x ≥ 1,

improper Riemann integration gives us that
∫ ∞

1 f (x) dx = π
2 . But from
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the POV of Lebesgue integration, notice that

∫
[π,(N+1)π]

∣∣∣∣ (sin x)+

x

∣∣∣∣
=

N

∑
k=1

∫
[πk,π(k+1)]

∣∣∣∣ (sin x)+

x

∣∣∣∣
=

N

∑
k=1

∫
[0,π]

|sin(t + kπ)|
t + kπ

=
N

∑
k=1

∫
[0,π]

|sin t|
t + kπ

≥
N

∑
k=1

1
(k + 1)π

∫
[0,π]

sin t.

Assuming we know some of the upcoming results, in particular, assuming
that we know that for bounded functions the Lebesgue integral is the same
as the Riemann integral, we see that the above is

=
2
π

N

∑
k=1

1
k + 1

,

which is a harmonic series and hence divergent.

3. If f ∈ L1(E, R), then

m f−1({−∞}) = 0 = m f−1({∞}).

Exercise 8.1.2

Prove that the above is indeed the case.

4. Following the above, if we set

H = f−1({−∞, ∞}),

then H ∈ M(E) and mH = 0. Letting

g = f · χE\H .

Then
g = f a.e. and g ∈ L1(E, R).
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This will prove itself more useful than it seems, especially since L1(E, R)

is that it is not a vector space!!!

5. Suppose that g : E → C is measurable. Let us write

g = (g1 − g2) + i(g3 − g4),

where g1 = (<g)+, g2 = (<g)−, g3 = (=g)+) and g4 = (=g)−. Then
we say that g is Lebesgue integrable, and write

g ∈ L1(E, C),

if ∫
E

gk < ∞ ∀1 ≤ k ≤ 4,

and we write∫
E

g =

(∫
E

g1 −
∫

E
g2

)
+ i
(∫

E
g3 +

∫
E

g4

)
. �

� Proposition 38 (Linearity of Lebesgue Integral for Lebesgue
Integrable Functions)

let E ∈ M(R). Suppose that f , g ∈ L1(E, R) and κ ∈ R.

1. κ f ∈ L1(E, R) and
∫

E κ f = κ
∫

E f .

2. f + g ∈ L1(E, R) and
∫

E( f + g) =
∫

E f +
∫

E g.

3. Finally, ∣∣∣∣∫E
f
∣∣∣∣ ≤ ∫

E
| f | .

� Proof

Note that �Corollary 37 covers for the cases where f , g ∈ L(E, [0, ∞])

and κ ≥ 0 for (1) and (2). This is, unfortunately, insufficient for the
entire proposition

1. Let f = f+ − f−.
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Case 1: κ = 0 We have that∫
E

κ f =
∫

E
0 = 0 = κ

∫
E

f .

Case 2: k > 0 We have

κ f = (κ f )+ − (κ f )−.

Note
(κ f )+ = κ f+ and (κ f )− = κ f−.

So, since f+,− f− ∈ L(E, [0, ∞]), by �Corollary 37,∫
E

κ f =
∫

E
κ f+ −

∫
E

κ f−

= κ
∫

E
f+ − κ

∫
E

f−

= κ

(∫
E

f+ − f−
)

= κ
∫

E
f .

Case 3: κ < 0 Similar to the above, we first observe that

(κ f )+ = −κ f− and (κ f )− = −κ f+.

Then by the same reason as in the last case, we have∫
E

κ f =
∫

E
−κ f− −

∫
E
−κ f+

= −κ

(∫
E

f− −
∫

E
f+
)

= −κ

(
−
∫

E
f
)

= κ
∫

E
f .

2. f + g ∈ L1(E, R) For convenience, let

h = f + g = f+ − f− + g+ − g−.

Notice that

h+, h− ≤ |h| = | f + g| ≤ | f |+ |g| = f+ + f− + g+ + g−.
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Thus by �Corollary 37,∫
E

h+ ≤
∫

E
f+ + f− + g+ + g−

=
∫

E
f+ +

∫
E

f− +
∫

E
g+ +

∫
E

g− < ∞.

Similarly,
∫

E h− < ∞.∫
E( f + g) =

∫
E f +

∫
E g Notice that

h+ − h− = h = f + g = f+ − f− + g+ − g−,

and so
h+ + f− + g− = h− + f+ + g+.

Then by �Corollary 37,∫
E

h+ +
∫

E
f− +

∫
E

g− =
∫

E
h− +

∫
E

f+ +
∫

E
g+,

and so ∫
E
( f + g) =

∫
E

h =
∫

E
h+ −

∫
E

h−

=
∫

E
f+ −

∫
E

f− +
∫

E
g+ −

∫
E

g−

=
∫

E
f +

∫
E

g.

3. First, notice that f ∈ L1(E, R), by our previous remark, | f | ∈
L1(E, R). Now since | f | = f+ + f−, and

∣∣∫
E f+

∣∣ ,
∣∣∫

E f−
∣∣ ≥ 0,∣∣∣∣∫E

f
∣∣∣∣ = ∣∣∣∣∫E

f+ −
∫

E
f−
∣∣∣∣

≤
∣∣∣∣∫E

f+
∣∣∣∣+ ∣∣∣∣∫E

f−
∣∣∣∣

=
∫

E
f+ +

∫
E

f−

=
∫

E
| f | . �
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9.1 Lebesgue Integration (Continued 2)

Thus far, we’ve only integrated simple functions, and never even did
so for, say, f (x) = x. Trying to do that will lead to intense swearing,
rising of blood pressure, heavy signs of nausea and mental pain. Why?
Well just try doing it.

Exercise 9.1.1 (How a slime became one heck of a monster to deal
with)

Calculate
∫
[0,1] x.

We hate pain, and now we want to crawl back to Riemann integra-
tion and ask for forgiveness. Fortunately, the nice world of Riemann
integration is kind enough to give us a bridge. We shall now study
this bridge. In particular, we shall see that for bounded functions on
closed, bounded intervals, Riemann integrability implies Lebesgue in-
tegrability, and, in fact, they coincide on these functions. In particular,
this opens up the Fundamental Theorem of Calculus (for Riemann
integration) to us.

� Lemma 39 (Riemann Integrability and Lebesgue Integrability
of Step Functions)

Let a < b ∈ R and ϕ : [a, b] → R be a step function. Then ϕ is both
Riemann integrable and Lebesgue integrable, and

∫
[a,b]

ϕ =
∫ b

a
ϕ.
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� Proof

Let P = {a = p0 < p1 < p2 < . . . pN = b} ∈ P([a, b]), where the
pn’s are chosen such that [pn−1, pn) do not contain a ‘jump’. Since ϕ

is a step function, let

ϕ =
N

∑
n=1

αnχ[pn−1,pn),

where αn = ϕ(x) for all x ∈ [pn−1, pn), 1 ≤ n ≤ N.

Then

∫
[a,b]

ϕ =
N

∑
n=1

αnm[pn−1, pn)

=
N

∑
n=1

αn(pn − pn−1)

=
N

∑
n=1

∫ pn

pn−1

αn

=
∫ b

a

N

∑
n=1

αnχ[pn−1, pn)

=
∫ b

a
ϕ. �

�Theorem 40 (Bounded Riemann-Integrable Functions are
Lebesgue Integrable)

Let a < b ∈ R and f : [a, b] → R be a bounded, Riemann-integrable
function. Then f ∈ L1([a, b], R) and

∫
[a,b]

f =
∫ b

a
f ,

i.e. the Lebesgue and Riemann integrals of f over [a, b] coincide.

� Strategy

Here is my understanding of the idea that motivates this proof.



PMATH450 — Lebesgue Integration and Fourier Analysis 123

1. It is important that the function is bounded both on its domain and its
range. A bound on the domain allows us to do finite sums, and a bound on
the range puts a cap on how high our rectangles can be.

2. We need to reduce the problem to deal only with step functions, using step
functions as close to f as possible, and then use our earlier results and
intuition to forge forward.

� Proof

First, since f is bounded, wma | f | < M ∈ R. Let g = Mχ[a,b], which
is a step-function and is hence integrable by Lemma 39. Then, notice
that f + g is Riemann integrable. Furthermore, observe that

∫ b

a
( f + g) =

∫ b

a
f + M(b − a).

So f + g ∈ L1([a, b], R) iff f ∈ L1([a, b], R).

Now, by �Theorem 2, for each n ≥ 1, ∃Rn ∈ P [a, b] partition
such that ∀X, Y ⊇ Rn refinements, ∀X∗, Y∗ test values of X and Y

respectively, we have

|S( f , X, X∗)− S( f , Y, Y∗)| < 1
N

.

1 Now, let QN =
⋃N

n=1 Rn, so that it is a common refinement of 1 Get finer and finer refinements.

R1, R2, . . . , RN . Write

QN =
{

a = q0,N < q1,N < . . . < qmN ,N
}

.

2 Let 2 Look at each subinterval of each
refinement.

Hk,N = [qk,N , qk+1,N ] for 1 ≤ k ≤ mN − 1,

and
HmN ,N = [qmN−1,N , qmN ,N ].

3 Define for each 1 ≤ k ≤ mN , 3 Get the sup and inf of each interval
under f .

αk,N := inf{ f (t) : t ∈ Hk,N} ≤ −M

βk,N := sup{ f (t) : t ∈ Hk,N} ≤ M.
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4 For each N ≥ 1, let 4 Use the above α’s and β’s to construct
simple functions, which are step-like
functions.

ϕN :=
mN

∑
k=1

αk,NχHk,N

ψN =
mN

∑
k=1

βk,NχHk,N .

Since each ϕN , ψN is simple, they are all measurable and Lebesgue
integrable (cf. Lemma 39).

Now, notice that

Q1 ⊆ Q2 ⊆ . . . ⊆ QN ⊆ QN+1 ⊆ . . .

since it is a sequence of finer and finer refinements, we have

ϕ1 ≤ ϕ2 ≤ ϕ3 ≤ . . . ≤ f ≤ . . . ≤ ψ3 ≤ ψ2 ≤ ψ1. (9.1)

Thus, by Lemma 39 and Lemma 34, we have

∫
[a,b]

ϕN =
∫ b

a
ϕN ≤

∫ b

a
f ≤

∫ b

a
ψN =

∫
[a,b]

ψN

for each N. Since QN is a refinement of RN , we have that

|S( f , QN , Q∗
N)− S( f , QN , Q∗∗

N )| < 1
N

,

which implies ∣∣∣∣∫
[a,b]

ϕN −
∫
[a,b]

ψN

∣∣∣∣ < 1
N

,

for N ≥ 1.

Due to Equation (9.1), let

ϕ := lim
N≥1

ϕN and ψ := lim
N≥1

ψN .

Then by the MCT, we have that

∫
[a,b]

ϕ = lim
N→∞

∫
[a,b]

ϕN = lim
N→∞

∫ b

a
ϕN

=
∫ b

a
f

= lim
N→∞

∫ b

a
ψN = lim

N→∞
ψN =

∫
[a,b]

ψ.
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Then
∫
[a,b] ϕ − ψ = 0. Since ϕ ≤ ψ, we must thus have ϕ = ψ a.e. on

[a, b]. Since ϕ ≤ f ≤ ψ, we have that ϕ = f = ψ a.e. on [a, b]. Since
ϕ, ψ are measurable, so is f , and thus

∫
[a,b]

f =
∫
[a,b]

ϕ =
∫ b

a
f < ∞. �

�Corollary 41 (Bounded Riemann-Integrable Functions are
Lebesgue Integrable – Complex Version)

Let a < b ∈ R and f : [a, b] → C be a bounded, Riemann-integrable
function. Then g ∈ L1([a, b], C) and

∫
[a,b]

f =
∫ b

a
f .

Our earlier demon-level slime has been reduced back to being a,
well, slime-level monster.

Example 9.1.1

Let f (x) = x and x ∈ [0, 1]. Then by the Fundamental Theorem of
Calculus, ∫

[0,1]
f =

∫ 1

0
f =

x2

2

∣∣∣1
0
=

1
2
− 0 =

1
2

. �

Example 9.1.2

Let f (x) = 1
x2 where x ∈ E := [1, ∞). We want to calculate

∫
[1,∞) f .

For each n ≥ 1, set fn := f · χ[1,n]. Then f is measurable, since it is
continuous except at one point on E, and

0 ≤ f1 ≤ f2 ≤ . . . ,

with
lim

n→∞
fn(x) = f (x) ∀x ≥ 1.

By �Theorem 40, for all n ≥ 1,∫
[1,n]

fn =
∫ n

1
fn =

∫ n

1

1
xn = − 1

x

∣∣∣n
1
= 1 − 1

n
.
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By the MVT, ∫
[1,∞)

f = lim
n→∞

∫
[1,n]

fn

= lim
n→∞

(
1 − 1

n

)
= 1. �

� Note 9.1.1

In the above example, the Lebesgue integral of f returns the value of the
improper Riemann integral of f over [1, ∞), which is not what happened in
another function that we looked at earlier. There are 2 things to note here:

• it is possible for an improper Riemann integral of a measurable function
f : [1, ∞) → R to exist, even though the Lebesgue integral

∫
[1,∞) f does

not exist!

• There is no notion of an “improper” Lebesgue integral. The domain of f ,
[1, ∞), is just another measurable set.

In the Monotone Convergence Theorem, if the “increasing” assump-
tion is dropped, then the result may not hold.

Example 9.1.3 (The MCT needs an increasing/decreasing sequence
of functions)

Consider the sequence ( fn)n given by

fn : [1, ∞) → R

where

x 7→


1

nx 1 ≤ x ≤ en

0 x > en
.

Then ( fn)n converges uniformly to f = 0 on [1, ∞). Note that for all
n ≥ 1, fn is Riemann integrable, and bounded on [1, en], and so∫

[1,∞)
fn =

∫
[1,en ]

1
nx

=
∫ en

1

1
nx
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=
1
n

ln x
∣∣∣en

1

=
1
n
(n − 0) = 1,

for each n ≥ 1. However,∫
[1,∞)

f =
∫
[1,∞)

f = 0. �
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10.1 Lebesgue Integration (Continued 3)

�Theorem 42 (Fatou’s Lemma)

Let E ∈ M(R) and fn ∈ L(E, [0, ∞]), for n ≥ 1. Then∫
E

lim inf
n≥1

fn ≤ lim inf
n≥1

∫
E

fn.

� Proof

For each N ≥ 1, set gN = inf{ fn : n ≥ N}. Then by � Proposi-
tion 27, each gN is measurable, and clearly

g1 ≤ g2 ≤ g3 ≤ . . . .

Then by the MCT, we have∫
E

lim inf
n≥1

fn =
∫

E
lim

N→∞
gN = lim

N→∞

∫
E

gN .

Since gN ≤ fn for all n ≥ N (by construction), we have∫
E

gN ≤
∫

E
fn

for all n ≥ N, whence ∫
E

gN ≤ lim inf
n≥1

∫
E

fn.
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Since this holds for all N ≥ 1, we have that∫
E

lim inf
n≥1

fn = lim
N→∞

∫
E

gN ≤ lim inf
n≥1

∫
E

fn. �

An example where the inequality in Fatou’s Lemma is strict is the
following.

Example 10.1.1

Consider a sequence of functions fn = nχ(
0, 1

n

], n ≥ 1. It’s clear that for

any x ∈ [0, 1], limn→∞ fn(x) = 0. Thus∫
[0,1]

lim inf
n≥1

fn =
∫
[0,1]

0 = 0.

On the other hand ∫
[0,1]

fn = nm
((

0,
1
n

])
= 1

for all n ≥ 1, and so lim infn≥1
∫
[0,1] fn = 1. �

Example 10.1.2

Suppose E ∈ M(R), f ∈ L(E, R). Recall that f ∈ L1(E, R) ⇐⇒ | f | ∈
L1(E, R).

Suppose g ∈ L1(E, R), f ∈ L(E, R) and suppose 0 ≤ | f | ≤ g

a.e. on E, and that
∫

E g < ∞. Then
∫

E | f | ≤
∫

E g < ∞, which thus
f ∈ L1(E, R). �

�Theorem 43 (Lebesgue Dominated Convergence Theorem)

Let E ∈ M(R) and ( fn)n in L1(E, R). Suppose that there exists g ∈
L1(E.R) such that | fn| ≤ g a.e. on E, for n ≥ 1. Suppose furthermore
that f : E → R is a function, and that

f (x) = lim
n→∞

fn(x), a.e. on E.
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Then f ∈ L1(E, R) and ∫
E

f = lim
n→∞

∫
E

fn.

� Proof

Isolating “bad” points Consider, for each n ≥ 1, the set

Yn := {x ∈ E : | fn(x)| > g(x)}.

By assumption, mYn = 0 for each n ≥ 1. Letting

Y :=
∞⋃

n=1

Yn = {x ∈ E : | fn(x)| > g(x), n ≥ 1},

we have that
0 ≤ mY ≤

∞

∑
n=1

mYn = 0,

and so mY = 0.

Furthermore, consider

Z := {x ∈ E : f (x) 6= lim
n→∞

fn(x)}.

By assumption, mZ = 0.

Let
B := Y ∪ Z.

Then ∀x ∈ B, we have

f (x) 6= lim
n→∞

fn(x) and | fn(x)| > g(x) for each n ≥ 1.

Most importantly, we have that

0 ≤ mB ≤ mY + mZ = 0,

and so mB = 0.

Let H = E \ B. Then ∀x ∈ H,

f (x) = lim
n→∞

fn(x) and | fn(x)| ≤ g(x) for each n ≥ 1.
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It follows that if we can prove the statement for

fn �H and f �H ,

then we obtain the result that we desire. Thus, wlog, we may replace
E with H.

Proving the statement Since f (x) = limn→∞ fn(x), by A2, we have
that

lim sup
n≥1

fn(x) = lim inf
n≥1

fn(x) = lim
n→∞

fn(x) = f (x),

and so in particular we have∫
E

f =
∫

E
lim inf

n≥1
fn(x).

From Fatou’s Lemma and A2, we have that∫
E

f ≤ lim inf
n≥1

∫
E

fn ≤ lim sup
n≥1

∫
E

fn.

Now, notice that g − fn ≥ 0 1, and we have 1 This is required to invoke Fatou’s
Lemma∫

E
(g − f ) =

∫
E
(g − lim sup

n≥1
fn)

=
∫

E
lim inf

n≥1
(g − fn)

≤ lim inf
n≥1

∫
E
(g − fn) ∵ Fatou′s

=
∫

E
g − lim sup

n≥1

∫
E

fn.

Thus ∫
E

f ≥ lim sup
n≥1

∫
E

fn.

Therefore

lim sup
n≥1

∫
E

fn ≤
∫

E
f ≤ lim inf

n≥1

∫
E

fn ≤ lim sup
n≥1

∫
E

fn.

By the Squeeze Theorem, we obtain∫
E

f = lim
n→∞

∫
E

fn. �
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10.2 Lp Spaces

Functional analysis is the study of normed linear spaces and the con-
tinuous linear maps between them. Amongst the most important ex-
amples are the so-called Lp-spaces, and we will now turn our attention
towards them. . You may wish to refresh your memory

on the definition of a semi-norm.

Example 10.2.1

Let E ∈ M(K) and mE > 0. Recall that

L1(E, K) =

{
f ∈ L(E, K) :

∫
E
| f | < ∞

}
.

Define the map

ν1 : L1(E, K) → K

f 7→
∫

E
| f | .

Observe that

• ν1( f ) ≥ 0 for all f ∈ L1(E, K);

• ν1(0) =
∫

E |0| = 0;

• κ ∈ K =⇒

ν1(κ f ) =
∫

E
|κ f | = |κ|

∫
E
| f | = |κ| ν1( f );

and

• ∀ f , g ∈ L1(E, K)

ν1( f + g) =
∫

E
| f + g| ≤

∫
E
| f |+

∫
E
|g| = ν1( f ) + ν1(g).

However, it is important to notice that for any x0 ∈ E,

ν1(χ{x0}) =
∫
{x0}

1 = 0.

Thus ν1 is not a norm since χ{x0} 6= ∅. �

� Proposition 44 (Kernel of a Vector Space is a Linear Manifold)
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Let W be a vector space over the field K, and suppose that ν is a seminorm
on W . Let

N := {w ∈ W : ν(w) = 0}.

Then N is a linear manifold 2 in W and so W/N is a vector space over 2 A subspace M of a Hilbert space,
which is a vector space with an inner
product such that its induced norm,
which in turn induces a metric on the
space, makes the space a complete
metric space, is called a linear manifold
if it is closed under addition and scalar
multiplication. (Source: Stover (nd))
Here, we can safely talk about Hilbert

spaces because K is endowed with an
inner product. Furthermore, the check is
to simply show that M is a subspace of
the original space.

K, whose elements we denote by

[x] := x +N .

Furthermore, the map

‖·‖ : W/N → K

[x] 7→ ν(x)

is well-defined, and defines a norm on W/N .

� Proof

N is a linear manifold Firstly, note that ν(0) = 0 =⇒ 0 ∈ N . Thus
N 6= ∅. Let x, y ∈ N and κ ∈ K. Then

0 ≤ ν(κx + y) ≤ |κ| ν(x) + ν(y) = 0,

which implies
ν(κx + y) = 0.

Thus κx + y ∈ N .

W/N is a vector space over K This is a result from elementary linear
algebra theory, but let’s do it for revision. It is clear that N ∈ W/N ,
so W/N 6= ∅. Notice that for any [x], [y] ∈ W/N and κ ∈ K, we
define the operations

[κx + y] = κ[x] + [y].

By the commutativity of addition,

[x + y] = x + y +N = y + x +N = [y + x].

The additive identity is [0] = 0 + N , multiplicative identity is
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[1] = 1 +N , and additive inverse of [x] is [−x].

We note that W/N is normally referred to as the quotient space
of W by N .

‖·‖ is well-defined Let [x1] = [x2] ∈ W/N . Then [x1 − x2] = [0] and
so x1 − x2 ∈ N . Then

ν(x1 − x2) = 0,

which then since

0 ≤ |ν(x1)− ν(x2)| ≤ ν(x1 − x2) = 0,

we have that ν(x1) = ν(x2). Hence

‖[x1]‖ = ‖[x2]‖ ,

and so ν(·) is well-defined.

‖·‖ is a norm Let [x], [y] ∈ W/N and κ ∈ K. Then

• ‖[x]‖ = ν(x) ≥ 0;

• ‖κ[x]‖ = ‖[κx]‖ = ν(κx) = |κ| ν(x) = |κ| ‖[x]‖;

• ‖[x] + [y]‖ = ‖[x + y]‖ = ν(x + y) ≤ ν(x) + ν(y) = ‖[x]‖+ ‖[y]‖;
and

• ‖[x]‖ = 0 =⇒ ν(x) = 0 =⇒ x ∈ N ⇐⇒ [x] = [0] ∈ W/N .

Thus ‖·‖ is indeed a norm.

Hence, W/N is a normed linear space. �

Example 10.2.2

In our last example, we determined that ν1(·) is a seminorm on L1(E, K).
Suppose

g ∈ N1(E, K) := { f ∈ L1(E, K) : ν1( f ) = 0}.

Then
∫

E |g| = 0. Since mE > 0, this happens if and only if g = 0 a.e. on
E.
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Since g = 0 a.e. on E iff
∫

E |g| = 0, we can also define

N1(E, K) = {g ∈ L1(E, K) : g = 0 a.e. on E}.

Setting
L1(E, K) = L1(E, K)/N1(E, K),

we have that [ f ] = [g] iff f − g ∈ N1(E, K), i.e. f = g a.e. on E. �

� Definition 32 (L1-space)

Let E ∈ M(K) with mE > 0. We define the L1-space as

L1(E, K) := L1(E, K)/N1(E, K),

with the norm

‖·‖ : L1(E, K) → R

‖[ f ]‖ :=
∫

E
f .

� Definition 33 (Lp(E, K))

Let E ∈ M(K) with mE > 0. If 1 < p < ∞ in R, we define

Lp(E, K) := { f ∈ L(E, K) :
∫

E
| f |p < ∞}

= { f ∈ L(E, K) : | f |p ∈ L1(E, K)}.

We need to show that Lp(E, K) is a vector space for all 1 < p < ∞,
and that

νp( f ) :=
(∫

E
| f |p

) 1
p

defines a semi-norm on Lp(E, K). If we can establish these results, we
can then appeal to � Proposition 44 and take the quotient space wrt
to a similar kernel.

However, the proof of the triangle inequality of νp is a non-trivial
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exercise.

� Definition 34 (Lebesgue Conjugate)

Let 1 ≤ p ≤ ∞. We associate to p the number 1 ≤ q ≤ ∞ as follows:

• if p = 1, then q = ∞ ;

• if p = ∞, then q = 1 ; and finally

• 1 < p < ∞ =⇒

q =

(
1 − 1

p

)−1
.

We say that q is the Lebesgue conjugate of p. With the convention that
1
∞ := 0, and we see that in all cases,

1
p
+

1
q
= 1.

� Note 10.2.1

When 1 < p < ∞, we see that the above equation is equivalent to each of
the equations:

• p(q − 1) = q and

• (p − 1)q = p.

� Lemma 45 (Young’s Inequality)

If 1 < p < ∞ and q is the Lebesgue conjugate of p, then for 0 < a, b ∈ R,

1. ab ≤ ap

p + bq

q ; and

2. equality in the above holds iff ap = bq.

There’s another proof that I prefer over
this construction here that feels like we
just lucked out. See PMATH351.

� Proof

https://tex.japorized.ink/PMATH351F18/classnotes.pdf#lemma.27
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Let g : (0, ∞) → R be such that

x 7→ 1
p

xp+
1
q
− x.

Notice that g is differentiable on (0, ∞), and we have

g′(x) = xp−1 − 1.

Furthermore,

• g′(x) < 0 for x ∈ (0, 1);

• g′(1) = 0; and

• g′(x) > 0 for x ∈ (1, ∞).

Also, note that g(1) = 1
p +

1
q − 1 = 0. Thus by the above observation,

we know that g attains its minimum at 1. Let x0 = a
bq−1 > 0. Then

we have

0 ≤ g(x0) =
1
p

(
ap

b(q−1)p

)
+

1
q
− a

bq−1

=
1
p

ap

bq +
1
q
− a

bq−1 .

Thus
a

bq−1 ≤ 1
p

ap

bq +
1
q

.

Multiplying both sides by bq, we get

ab ≤ 1
p

ap +
1
q

bq.

Furthermore, we notice that

g(x0) = 0 ⇐⇒ x0 = 1 ⇐⇒ a = bq−1 ⇐⇒ ap = bp(q−1) = bq. �
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11.1 Lp Spaces Continued

�Theorem 46 (Hölder’s Inequality)

Let E ∈ M(R), 1 < p < ∞ in R, and let q be the Lebesgue conjugate of p.
Then

1. If f ∈ Lp(E, K) and g ∈ Lq(E, K), then f g ∈ L1(E, K) and

ν1( f g) ≤ νp( f )νq(g),

where

νp( f ) =
(∫

E
| f |p

) 1
p
and νq(g) =

(∫
E
|g|q

) 1
q

2. Suppose that H := {x ∈ E : f (x) 6= 0} has positive measure. If

f ∗ := νp( f )1−pΘ | f |p−1 ,

which is called the Lebesgue conjugate function, then f ∗ ∈ Lq(E, K),
νq( f ) = 1, and

ν1( f f ∗) =
∫

E
f f ∗ = νp( f ).

� Proof

1. If f = 0 or g = 0 a.e. on E, then the inequality is trivially true. So
wma f 6= 0 6= g a.e. on E. Now, for any α, β ∈ K, α f ∈ Lp(E, K)
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and βg ∈ Lq(E, K) since∫
E

α f = α
∫

E
f < ∞

and ∫
E

βg = β
∫

E
g < ∞.

Supposing that we can find α0 6= 0 6= β0 such that∫
E
|(α0 f )(β0g)| ≤ νp(α0 f )νq(β0g),

we see that we can factor out α0 and β0 so that

|α0β0|
∫

E
| f g| ≤ |α0β0| νp( f )νq(g),

which then ∫
E
| f g| ≤ νp( f )νq(g).

Thus, choosing α0 = νp( f )−1 and β0 = νq(g)−1, wma wlog
νp( f ) = 1 = νq(g).

Now, by Lemma 45, we obtain

| f g| ≤ | f |p

p
+

|g|q

q
.

Thus

ν1( f g) =
∫

E
| f g| ≤ 1

p

∫
E
| f |p + 1

q

∫
E
|g|q

=
1
p

νp( f )p +
1
q

νq(g)q

=
1
p
· 1 +

q
1
· 1

= 1 = νp( f )νq(g).

2. First, note that f ∗ is measurable, since f , | f | and Θ are all mea-
surable (cf. � Proposition 23 and � Proposition 22). Since
(p − 1)q = p, we have 1 1 How did Θ disappear?

νq( f ∗)q =
∫

E
| f ∗|q =

∫
E

(
νp( f )1−p | f |p−1

)q

= νp( f )−(p−1)q
∫

E
| f |(p−1)q
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= νp( f )−pνp( f )p = 1.

Finally,

ν1( f f ∗) =
∫

E
| f f ∗| =

∫
E

νp( f )1−p | f |p−1 | f |

= νp( f )1−p
∫

E
| f |p

= νp( f )1−pνp( f )p

= νp( f ). �

�Theorem 47 (Minkowski’s Inequality)

Let E ∈ M(R), 1 < p < ∞. If f , g ∈ Lp(E, K), then f + g ∈ Lp(E, K)

and
νp( f + g) ≤ νp( f ) + νp(g).

� Proof

f + g is measurable by � Proposition 22. Notice that for 0 ≤ a, b,
we have

(a + b)p ≤ (2 max{a, b})p ≤ 2p(ap + bp).

Thus
| f + g|p ≤ (| f |+ |g|)p ≤ 2p (| f |p + |g|p

)
.

It follows that

νp( f + g) =
∫

E
| f + g|p ≤ 2p (νp( f )p + νp(g)p) < ∞.

Thus f + g ∈ Lp(E, K).

Now let h = f + g, and h∗ the Lebesgue conjugate function
of h. Then h∗ ∈ Lq(E, K). By the last theorem, νq(h) = 1 and
ν1(hh∗) = νp(h). With this, and Hölder’s Inequality, we have

νp( f + g) = νp(h) = ν1(hh∗)

= ν1(( f + g)h∗)
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≤ ν1( f h∗) + ν1(gh∗)

(∗)
≤ νp( f )νq(h∗) + νp(g)νq(h∗)

= νp( f ) + νp(g),

where (∗) is where we use Hölder’s Inequality. �

We are finally ready to show that Lp(E, K) is a vector space and νp

is a semi-norm as claimed.

�Corollary 48 (νp is a Semi-Norm)

Let E ∈ M(R) and 1 < p < ∞. Then Lp(E, K) is a vector space over K

and νp defines a semi-norm on Lp(E, K).

� Proof

Lp(E, K) is a vector space Since K is a vector space, we need only
check that Lp(E, K) is nonempty, and closed under addition and
scalar multiplication.

Lp(E, K) 6= ∅ It is clear that the constant function, f (x) = 0 for all
x ∈ E, is in Lp(E, K) since∫

E
f =

∫
E

0 = 0 < ∞.

Lp(E, K) is closed under addition and scalar multiplication Let
f , g ∈ Lp(E, K) and κ ∈ K. Then by Minkowski’s Inequality,

νp(κ f + g) ≤ νp(κ f ) + νp(g) = |κ| νp( f ) + νp(g) < ∞.

νp is a semi-norm We showed for the first two conditions and
MinkMinkowski’s Inequality covers the Triangle Inequality. �

� Definition 35 (Lp-Space and Lp-Norm)
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Let E ∈ M(R) and 1 < p < ∞. We define the Lp-space

Lp(E, K) := Lp(E, K)/Np(E, K),

where 2 2 Note that Np(E, K) is where functions
are 0 a.e.Np(E, K) = { f ∈ Lp(E, K) : νp( f ) = 0}.

The Lp-norm on Lp(E, K) is the norm defined by

‖·‖p : Lp(E, K) → R

[ f ] 7→ νp( f ).

For the sake of completeness, we shall restate Hölder’s and Minkowski’s
Inequalities for Lp(E, K).

�Theorem 49 (Hölder’s Inequality)

Let E ∈ M(R) and 1 < p < ∞. Let q denote the Lebesgue conjugate of p.

1. If [ f ] ∈ Lp(E, K) and [g] ∈ Lq(E, K), then [ f ][g] := [ f g] ∈ L1(E, K)

is well-defined and

‖[ f g]‖1 ≤ ‖[ f ]‖p ‖[g]‖q .

2. If 0 6= [ f ] ∈ Lp(E, K) and f ∗ is the conjugate function of f , then
[ f ∗] ∈ Lq(E, K), ‖[ f ∗]‖q = 1, and

‖[ f ][ f ∗]‖ = ‖[ f ]‖p .

� Proof

The only part that does not follow immediately from �Theorem 46
is the well-definedness of [ f ][g] = [ f g]. �

�Theorem 50 (Minkowski’s Inequality)
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Let E ∈ M(R) and 1 < p < ∞. If [ f ], [g] ∈ Lp(E, K), then [ f + g] ∈
Lp(E, K) and

‖[ f + g]‖p = ‖[ f ] + [g]‖p ≤ ‖[ f ]‖p + ‖[g]‖p .

We can now show that Lp(E, K) is a Banach space for all 1 ≤ p <

∞, whose proof shall be left for next lecture.



12 � Lecture 12 Jun 18th 2019

12.1 Lp Spaces (Continued 2)

�Theorem 51 ((Lp(E, K),‖·‖p) is Banach Space)

Let E ∈ M(R) and 1 ≤ p < ∞. Then Lp(E < K) is complete and hence
Banach.

� Strategy

By � Proposition 44, (Lp(E, K), ‖·‖p) is a normed linear space. It thus
suffices for us to show that it is complete.

This is a preferred approach by the professor, that he has defaulted to
proving completeness from the equivalent result of having every absolutely
summable series being summable in the space. We prove this equivalence in
A4.

So given an absolutely summable sequence {[ fn]}∞
n=1, since we want

∞

∑
n=1

[ fn] < ∞ a.e. on E,

in particular this should be reflected by any of its representatives, i.e. if we
take, wlog, fn as the representative of [ fn], then we want

h =
∞

∑
n=1

fn < ∞ a.e. on E.

To show that the sum is finite a.e. on E, we will first make use of the fact
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that this would be equivalent to

|h| =
∣∣∣∣∣ ∞

∑
n=1

fn

∣∣∣∣∣ < ∞ a.e. on E.

To that end, the partial sums should always be finite. By the triangle inequal-
ity, we see that ∣∣∣∣∣ N

∑
n=1

fn

∣∣∣∣∣ ≤ N

∑
n=1

| fn| .

This is where our ‘clean’ proof begins.

� Proof

Suppose {[ fn]}∞
n=1 is a sequence of equivalence classes in Lp(E, K)

that is absolutely summable. We note that the following value will
be useful, and so we give it a variable.

γ :=
∞

∑
i=1

‖[ fn]‖p .

Showing that ∑∞
n=1 fn(x) converges a.e. on E For each N ≥ 1, let

gN = ∑N
n=1 | fn|. Note that since fn ∈ Lp(E, K), by �Corollary 48,

we have that gN ∈ Lp(E, [0, ∞]). Furthermore, since gN is a sum of
absolute values, we have that

0 ≤ g1 ≤ g2 ≤ g3 ≤ . . . .

Let g∞ := limN→∞ gN = supN≥1 gN . By � Proposition 27,
g∞ ∈ L(E, [0, ∞]). 1 Note that gp

∞ = supN≥1 gp
N . By the Mono- 1 Now, we want to show that even

g∞ < ∞ a.e. on E. Following this is a
non-trivial step forward.tone Convergence Theorem, we observe that∫

E
gp

∞ = lim
N→∞

∫
E

gp
N

= lim
N→∞

∫
E

(
N

∑
n=1

| fn|
)p

= lim
N→∞

∫
E

= lim
N→∞

νp

(
N

∑
n=1

| fn|
)p
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≤ lim
N→∞

(
N

∑
n=1

νp(| fn|)
)p

≤
(

∞

∑
n=1

‖[ fn]‖p

)p

= γp < ∞

by assumption. Thus g∞ ∈ Lp(E, K), which means that g∞ < ∞ a.e.
on E. From here, we observe that∣∣∣∣∣ ∞

∑
n=1

fn

∣∣∣∣∣ ≤ ∞

∑
n=1

| fn| ≤ g∞ ≤ γ < ∞.

Then since K is complete, ∑∞
n=1 fn(x) converges to some value in K

for every x ∈ E.

Constructing h = ∑∞
n=1 fn a.e. on E In particular, we want the above

sum to converge to some function h = ∑∞
n=1 fn a.e. on E. We want to

explicitly isolate the points where the sum goes bad. Letting

B := {x ∈ E : g∞(x) = ∞} ⊆ E,

we have that mB = 0. Consider H = E \ B ∈ M(E). 2 Here, let 2 We will build h on this nicer set.

g = χH · g∞. Note that since H ∈ M(E), χH is measurable, and
so by � Proposition 22, g ∈ L(E, [0, ∞)), and g = g∞ a.e. on E.
Furthermore, ∫

E
gp =

∫
E

gp
∞ ≤ γp,

and so g ∈ Lp(E, [0, ∞)) ⊆ Lp(E, K), i.e. [g] ∈ Lp(E, K) and
‖[g]‖p ≤ γ.

For each N ≥ 1, let hN := χH ·
(

∑N
n=1 fn

)
. By the same reasoning

as for g, we have that hN ∈ Lp(E, K) ⊆ L(E, K). Moreover, it is
clear from construction that [hN ] = ∑N

n=1[ fn], since hN = ∑N
n=1 fn

a.e. on E, in particular, they agree on H. It is also important to note
that for x ∈ H,

|hN(x)| ≤
N

∑
n=1

| fn(x)| ≤ g(x),

and for x ∈ B, |hN(x)| = 0 = g(x). Thus |hN | < g, and so
|hN |p ≤ gp. So for each N ≥ 1, we have∫

E
|hN |p ≤

∫
E

gp ≤ γp.
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Since the partials are all well-defined, we can define

h(x) := lim
N→∞

hN(x) ∈ K for x ∈ E.

Again, by � Proposition 27, h ∈ L(E, K). Furthermore, since each
|hN | ≤ g, we have that |h| ≤ g and |h|p ≤ gp, which then∫

E
|h|p ≤

∫
E

gp ≤ γp < ∞.

It follows that h ∈ Lp(E, K) and [h] ∈ Lp(E, K).

[h] = limN→∞[hN ] It remains for us to show that this equation is
true. In other words, we want to show that

lim
N→∞

‖[h]− [hN ]‖p = lim
N→∞

∥∥∥∥∥[h]− N

∑
n=1

[ fn]

∥∥∥∥∥
p

= 0.

Note that |hM − hN |p ≤ (|hM|+ |hN |)p ≤ (g + g)p for any M, N,
and

∫
E(2 |g|)

p < ∞. Then, satisfying the condition for the Lebesgue
Dominated Convergence Theorem, we have

‖[h]− [hN ]‖p = νp(h − hN)

=

(∫
E
|h − hN |p

) 1
p

=

(∫
E

lim
M→∞

|hM − hN |p
) 1

p

=

(
lim

M→∞

∫
E
|hM − hN |p

) 1
p

= lim
M→∞

(∫
E
|hM − hN |p

) 1
p

= lim
M→∞

‖[hM]− [hN ]‖p

= lim
M→∞

∥∥∥∥∥ M

∑
n=N+1

[ fn]

∥∥∥∥∥
p

≤ lim
M→∞

M

∑
n=N+1

‖[ fn]‖p

=
∞

∑
n=N+1

‖[ fn]‖p
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Since ∑∞
n=1 ‖[ fn]‖p = γp < ∞ by assumption, we have that

lim
N→∞

‖[h]− [hN ]‖p = lim
N→∞

∞

∑
n=N+1

‖[ fn]‖p = 0.

This completes the proof. �

Notice that in �Theorem 51 we talked about 1 ≤ p < ∞ but not
p = ∞ itself. We shall explore this in the following subsection.

12.1.1 Completeness of L∞(E, K)

We need to first clarify what the norm in L∞(E, K) is. It would be
sensible to immediately let the norm be the supremum of the function,
but we want to exclude the places where f hit its ‘suprema’ only up to
a set of measure zero.

� Definition 36 (Essential Supremum)

Let E ∈ M(R) and f ∈ L(E, K). We define the essential supremum of
f on E as

ν∞( f ) := inf {γ > 0 : m ({x ∈ E : | f (x)| > γ}) = 0} .

� Note 12.1.1

1. Let us try to describe the essential supremum in words: we pick out the
smallest γ (specifically, we pick the inf) such that the places on E where
f > γ is measure zero. Graphically, we set lower and lower γ until we
finally hit some value where f > γ but the places where this happens is
no longer of measure zero.

2. Simply by definition, we have that ν∞( f ) ≥ 0 for any f ∈ L(E, K).

� Definition 37 (L∞(E, K))
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With the essential supremum, we can define

L∞(E, K) = { f ∈ L(E, K), ν∞( f ) < ∞}.

Example 12.1.1

1. Let E = R and f = χQ. Observe that for any γ > 0, since

{x ∈ R :
∣∣χQ

∣∣ > γ} ⊆ Q,

we have
0 ≤ m{x ∈ R :

∣∣χQ

∣∣ > γ} ≤ mQ = 0.

Thus ν∞(χQ) = 0.

Note that there was nothing special about the choice of Q except
that it is a set of measure zero.

2. Suppose a < b ∈ R and f ∈ C([a, b], K).

Claim: f ∈ L∞([a, b], K) and ν∞( f ) = ‖ f ‖sup := supx∈[a,b]| f (x)|
We know that every continuous function on a measurable set is
measurable 3, so f ∈ L([a, b], K). 3 cf. � Proposition 19

Note that for γ > ‖ f ‖sup, we have that

m ({x ∈ [a, b] : | f (x)| > γ}) = m(∅) = 0.

So ν∞( f ) ≤ γ. Since this holds for all γ, it follows that ν∞( f ) ≤
| f |sup.

On the other hand, for γ ≤ ‖ f ‖sup = | f (x0)| for some x0 ∈ [a, b].
By continuity of f on [a, b], and in particular on x0, ∃δ > 0 such that
∀x ∈ (x0 − δ, x0 + δ) ∩ [a, b] implies that | f (x)| > γ. Notice that

m ((x0 − δ, x0 + δ) ∩ [a, b]) > 0,

which means that
ν∞( f ) ≥ γ.
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This holds for all γ, and so

ν∞( f ) ≥ ‖[ f ]‖sup .

Thus
ν∞( f ) = ‖[ f ]‖sup ,

which also gives us that

f ∈ L∞([a, b], K). �

� Proposition 52 (L∞(E, K) is a vector space and ν∞(·) a semi-
norm)

Let E ∈ M(R). Then L∞(E, K) is a vector space over K and ν∞(·) is a
semi-norm on L∞(E, K).

� Proof

Since L∞(E, K) ⊆ L(E, K), and that the latter is a vector space,
it suffices to perform the subspace test on L∞(E, K) to show that
L∞(E, K) is a vector space.

First, note that if ζ = 0 is the zero function, then ν∞(ζ) = 0 < ∞,
and so ζ ∈ L∞(E, K), i.e. L∞(E, K) 6= ∅. Further, as noted before,
ν∞( f ) ≥ 0 for any f ∈ L∞(E, K).

Next, suppose that f ∈ L∞(E, K) and 0 6= κ ∈ K. It is clear that
κ f ∈ L(E, K), and we quickly notice that

ν∞(κ f ) = inf{γ > 0 : m{x ∈ E : |κ f (x)| > γ} = 0}

= inf{|κ| δ : m{x ∈ E : |κ| | f (x)| > |κ| δ} = 0}

= |κ| inf{δ > 0 : m{x ∈ E : | f (x)| > δ} = 0}

= |κ| ν∞( f ) < ∞.

So κ f ∈ L∞(E, K) for all 0 6= κ ∈ K. As noted before, if κ = 0, then
κ f = 0 ∈ L∞(E, K).
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Now suppose f , g ∈ L∞(E, K). WTS

ν∞( f + g) ≤ ν∞( f ) + ν∞(g).

Let α > ν∞( f ) and β > ν∞(g). Let

E f = {x ∈ E : | f (x)| > α} and Eg = {x ∈ E : |g(x)| > β}.

Then mE f = 0 = mEg. Let H = E \ (E f ∪ Eg). For x ∈ H, we have

|( f + g)(x)| ≤ | f (x)|+ |g(x)| ≤ α + β,

so
{x ∈ E : |( f + g)(x)| > α + β} ⊆ E f ∪ Eg.

Thus

m {x ∈ E : |( f + g)(x)| > α + β} ≤ mE f + mEg = 0,

and so ν∞( f + g) ≤ α + β. Since α and β were arbitrary, it follows
that

ν∞( f + g) ≤ ν∞( f ) + ν∞(g) < ∞.

Thus L∞(E, K) and ν∞(·) is indeed a semi-norm. �

� Definition 38 (L∞(E, K))

Let
N∞(E, K) := { f ∈ L∞(E, K) : ν∞( f ) = 0}.

Then we define

L∞(E, K) = L∞(E, K)/N∞(E, K),

and we denote by [ f ] the coset of f ∈ L∞(E, K) in L∞(E, K).

�Theorem 53 (L∞(E, K) is a normed-linear space)

Let E ∈ M(R). Then L∞(E, K) is a normed-linear space, where for
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[ f ] ∈ L∞(E, K) we set
‖[ f ]‖∞ := ν∞( f ).

� Proof

See � Proposition 44. �

Remark 12.1.1

Let f ∈ L∞(E, K). Let us look at the places where the undesirable happens.
For each n ≥ 1, let

Bn :=
{

x ∈ E : | f (x)| > ν∞( f ) +
1
n

}
.

Then by definition of ν∞(·), we have that mBn = 0 for each n ≥ 1, and
letting

B :=
∞⋃

n=1

Bn = {x ∈ E : | f (x)| > ν∞( f )} ,

we have that
mB ≤

∞

∑
n=1

mBn =
∞

∑
n=1

0 = 0.

In other words, for any f ∈ L∞(E, K), the set

B = {x ∈ E : | f (x)| > ν∞( f )}

has measure zero. So for any [ f ] ∈ L∞(E, K), we can always pick a represen-
tative g ∈ [ f ] such that

|g(x)| ≤ ‖[ f ]‖∞

for all x ∈ E.

In particular, the function g := χE\B · f is measurable, and differs from f

only on B, whence [g] = [ f ], and we indeed have

|g(x)| ≤ ν∞( f ) = ν∞(g) = ‖[g]‖∞

for all x ∈ E.
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Moreover,we see that ν∞( f ) = 0 iff f = 0 a.e. on E, and so

N∞(E, K) = { f ∈ L∞(E, K) : f = 0 a.e. on E}. �

�Theorem 54 (Completeness of L∞(E, K))

Let E ∈ M(R). Then L∞(E, K) is a Banach space.

� Proof

To be added �

Recall that if E ∈ M(R) and 1 < p < ∞, f ∈ Lp(E, K) and
g ∈ Lq(E, K), where q is the Lebesgue conjugate of p, then Hölder’s
Inequality gives that f g inL1(E, K) and

ν1( f g) ≤ νp( f )νq(g).

Let’s look at p = 1.

�Theorem 55 (Hölder’s Inequality for L1(E, K))

Let E ∈ M(R) with mE > 0.

1. If f ∈ L1(E, K) and g ∈ L∞(E, K), then f g ∈ L1(E, K) and

ν1( f g) ≤ ν1( f )ν∞(g).

2. For f ∈ L1(E, K), there exists a function f ∗ ∈ L∞(E, K) such that
ν∞( f ∗) = 1 and

ν1( f f ∗) =
∫

E
f · f ∗ = ν1( f ).

� Proof
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1. By Remark 12.1.1, for [g] ∈ L∞(E, K), we can find, wlog, g0 ∈ [g]

so that g0 = g a.e. on E, and for all x ∈ E, we have |g0(x)| ≤
ν∞(g) = ν∞(g0). In particular, we have that for any f ∈ L1(E, K),
| f g| = | f g0| a.e. on E, and we find that∫

E
| f g| =

∫
E
| f g0| .

Thus wlog wma |g(x)| ≤ ν∞(g) for all x ∈ E. Then

ν1( f g) =
∫

E
| f g| ≤

∫
E
| f | ν∞(g) = ν∞(g)

∫
E
| f | = ν1( f )ν∞(g).

2. Set Θ : E → T such that

f = Θ · | f | ,

where

Θ(x) =


f (x)
| f (x)| when f (x) 6= 0

1 when f (x) = 0.

Then with f ∗ := Θ, we have ν∞( f ∗) = 1, | f | = f f ∗, and so

ν1( f f ∗) =
∫

E
| f f ∗| =

∫
E
| f | = ν1( f ). �

�Corollary 56 (Hölder’s Inequality for L1(E, K))

Let E ∈ M(R). If [ f ] ∈ L1(E, K) and [g] ∈ L∞(E, K), then [ f ][g] :=

[ f g] ∈ L1(E, K) is well-defined and

‖[ f g]‖1 ≤ ‖[ f ]‖1 ‖[g]‖∞ .

�Corollary 57 (Hölder’s Inequality for Continuous Functions)

Suppose that a < b ∈ R. Consider h ∈ C([a, b], K) and f ∈
L1([a, b], K). Then h · f ∈ L1([a, b], K) and

ν1(h · f ) ≤ ν1( f )ν∞(h) = ν1( f ) ‖h‖sup .
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� Proof

Continuous functions are measurable, so h is measurable, and
L∞([a, b], K) with ‖h‖sup = ν∞(h). Then it is simply �Theo-
rem 55. �
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13.1 Lp Spaces (Continued 3)

Remark 13.1.1 (Containment of Lp Spaces)

Let E ∈ M(R) with mE < ∞. Suppose that 1 ≤ p < ∞, and that
[ f ] ∈ L∞(E, K), which then wlog f ∈ L∞(E, K). As commented before,
| f (x)| ≤ ‖[ f ]‖∞ a.e. on E. Then

‖[ f ]‖p =
∫

E
| f |p ≤

∫
E
‖[ f ]‖p

∞ = ‖[ f ]‖p
∞ mE < ∞,

which means [ f ] ∈ Lp(E, K), with

‖[ f ]‖p ≤ ‖[ f ]‖∞ (mE)
1
p .

Thus L∞(E, K) ⊆ Lp(E, K), 1 ≤ p < ∞ when mE < ∞.

Next, consider 1 ≤ p < r < ∞. Suppose [g] ∈ Lr(E, K). Again, wlog
g ∈ Lr(E, K) and

‖[g]‖p
p =

∫
E
|g|p =

∫
E
(|g|r)

p
r ≤

∫
E

max{1, |g|r}

≤
∫

E
1 + |g|r = mE + ‖[g]‖r < ∞.

So [g] ∈ Lp(E, K). Thus we see that

L∞(E, K) ⊆ Lr(E, K) ⊆ Lp(E, K) ⊆ L1(E, K). �

Remark 13.1.2
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Suppose a < b ∈ R. Then from Example 12.1.1, we have that

[C([a, b], K)] := {[ f ] : f ∈ C([a, b], K)} ⊆ L∞([a, b]).

Recall that

R∞([a, b], K) = { f : [a, b] → K : f is Riemann-integrable and bdd }.

By �Corollary 41, f ∈ L([a, b], K) and so [ f ] ∈ L∞([a, b], K) by virtue of
f being bounded. �

Our next goal is to establish that the space [C([a, b], K)] is dense in
Lp([a, b], K), for 1 ≤ p < ∞.

� Definition 39 (Closed Span)

We define the closed span of a subspace B ⊆ (H, ‖·‖) as

spanB := {y ∈ H : ∀ε > 0 ∃x ∈ spanB ‖x − y‖ < ε}

Imma use the name from the notes of
Prof. Marcoux, 2019 for Lemma 58, since
there’s no good expressive name for it.

� Lemma 58 (Lemma 6.31)

Let (X , ‖·‖) be a normed linear space, and suppose that Y and Z are
linear manifolds 1 in X . Suppose B ⊆ Y satisfies 1 i.e. a vector subspace, but not necessar-

ily closed.

spanB = X .

Then if B ⊆ Z , then Z = X .

� Proof

Let x ∈ X = spanB and ε > 0. Then there exists {bi}N
i=1 ⊆ B and

{ki}N
i=1 ⊆ R such that ∥∥∥∥∥x −

N

∑
n=1

knbn

∥∥∥∥∥ <
ε

2
.
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Since bi ∈ B ⊆ Z , there exists zi ∈ Z such that

‖zi − bi‖ <
ε

2N(|ki|+ 1)
.

Let z := ∑N
n=1 knzn ∈ Z , and this would give

‖x − z‖ ≤
∥∥∥∥∥x −

N

∑
n=1

knbn

∥∥∥∥∥+
∥∥∥∥∥ N

∑
n=1

knbn − z

∥∥∥∥∥
<

ε

2
+

∥∥∥∥∥ N

∑
n=1

kn(bn − zn)

∥∥∥∥∥
≤ ε

2
+

N

∑
n=1

|kn| ‖bn − zn‖

≤ ε

2
+

N

∑
n=1

ε

2N

=
ε

2
+

ε

2
= ε.

Thus Z is dense in X . �

� Notation

Let E ∈ M(R) and 1 ≤ p ≤ ∞. We set

SIMPp(E, K) = SIMP(E, K) ∩ Lp(E, K).

Exercise 13.1.1

Prove that if mE < ∞ or if p = ∞, then

SIMPp(E, K) = SIMP(E, K).

� Solution

Case p = ∞ By definition, a simple function f has finite range, and so
ν∞( f ) < ∞. Thus SIMP(E, K) ⊆ L∞(E, K) and so our result holds.

Case mE < ∞ This is quite similar, especially since the range of f is
finite, and so integration of a finite function over a finite domain is
going to be finite. Thus, again SIMP(E, K) ⊆ Lp(E, K). ◎
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� Proposition 59 (Density of Equivalence Classes of SIMPp(E, K)

in (Lp(E, K),‖·‖p))

Let E ∈ M(R) be a Lebesgue measurable set and 1 ≤ p ≤ ∞. Then

[SIMPp(E, K)] := {[ϕ] : ϕ ∈ SIMPp(E, K)}

is dense in
(Lp(E, K), ‖·‖p).

� Strategy

Recall � Proposition 30. This is the proposition that is key to showing
that simple functions are dense, simply because we may get as close to any
f ∈ L(E, [0, ∞]) as we want.

1. Reduce to the problem to only real-valued functions.

2. Reduce the problem to only positive real-valued functions.

3. It then remains to reconstruct a simple function in Lp(E, R) that is as
close to the original real-valued function as we would like.

� Proof

Case K = C If we had proved the above for the case where K = R,
then for [g] ∈ Lp(E, K) and ε > 0, we may write

g = <g + i=g.

In particular, g ∈ L(E, C), so it is necessary that <g, =g ∈ L(E, R)

by � Proposition 21. Then, by assumption that this works for R,
we can pick ϕ1, ϕ2 ∈ SIMP(E, R) such that

‖[<g]− [ϕ1]‖p <
ε

2

‖[=g]− [ϕ2]‖p <
ε

2
.
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Then, let
ϕ = ϕ1 + iϕ2 ∈ SIMP(E, C),

which then

‖[g]− [ϕ]‖ ≤ ‖[<g]− [ϕ1]‖p + |i| ‖[=g]− [ϕ2]‖p <
ε

2
+

ε

2
= ε.

Then [SIMP(E, C)] is dense in (Lp(E, C), ‖·‖p).

Case K = R We shall further break this into 2 cases, of which we
have seen in our last exercise.

Case 1: 1 ≤ p < ∞ ∀ε > 0, let [ f ] ∈ Lp(E, R). Then f ∈ Lp(E, R) and
we may write

f = f+ − f−,

where f+, f− ∈ Lp(E, R). By � Proposition 30, we can find simple
functions

0 ≤ ϕ1 ≤ ϕ2 ≤ ϕ3 ≤ . . . ≤ f+

such that
f+(x) = lim

n→∞
ϕn(x), x ∈ E.

Note that ∫
E
|ϕn|p ≤

∫
E

∣∣ f+∣∣p ≤
∫

E
| f |p < ∞,

and so ϕn ∈ SIMPp(E, R), for n ≥ 1. Thus, by the Lebesgue Domi-
nated Convergence Theorem,

lim
n→∞

∫
E

∣∣ f+ − ϕn
∣∣p =

∫
E

lim
n→∞

∣∣ f+ − ϕn
∣∣p = 0

Thus we can find some N1 > 0, such that for n > N1, we have

∥∥ f+ − ϕn
∥∥

p <
ε

2
.

Similarly, we can find simple functions ψ1, ψ2, . . . ∈ SIMPP(E, R),
such that

0 ≤ ψ1 ≤ ψ2 ≤ ψ3 ≤ . . . − f−,

such that
f−(x) = lim

n→∞
ψn(x), x ∈ E,
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and so that we can find N2 > 0 where ∀n > N2, we have

∥∥ f− − ψn
∥∥

p <
ε

2
.

Then

‖ f − (ϕn + ψn)‖p =
∥∥ f+ − f− − ϕn − ψn

∥∥
p

≤
∥∥ f+ − ϕn

∥∥
p +

∥∥ f− − ψn
∥∥

p

<
ε

2
+

ε

2
= ε.

Case 2: p = ∞ Let ε > 0, [ f ] ∈ L∞(E, R), and M = ‖ f ‖∞. Then
range f ⊆ [−M, M] =: I. Now choose N > 0 such that 1

N < ε. 2 Let 2 Let us break I into intervals of
length 1

N . Doing this will allow∣∣∣ f (x)− (−M + k
N )χ f−1(Ik)

∣∣∣ ≤ 1
N .

Ik =

[
−M +

k
N

, −M +
k + 1

N

)

for k ∈ {0, . . . , 2MN − 2}, and I2MN =
[

M − 1
N , M

]
.

Let Hk := f−1(Ik), for k ∈ {0, . . . , 2MN − 1}. Then Hk is measur-
able by the measurability of f . Let

ϕ :=
2MN−2

∑
k=0

(
−M +

k
N

)
χHk .

It is clear that ϕ ∈ SIMP(E, R) = SIMP∞(E, R). Furthermore,

| f (x)− ϕ(x)| ≤ 1
N

< ε ∀x ∈ E.

It follows that
‖[ f ]− [ϕ]‖∞ < ε.

This completes the proof. �

� Proposition 60 (Density of Equivalence Classes of Step Func-
tions in Lp Spaces)

Let a < b ∈ R. If 1 ≤ p < ∞, then

[STEP([a, b], K)]



PMATH450 — Lebesgue Integration and Fourier Analysis 163

is dense in
(Lp([a, b], K), ‖·‖p).

� Proof

By a similar argument to what we provided for the case of K = C,
it suffices for us to show that the statement is true for the case when
K = R.

Notice that [a, b] ∈ M(R), and m[a, b] = b − a < ∞. Let us see
for ourselves that Y := [SIMP([a, b], R)] and Z := [STEP([a, b], R)]

are linear manifolds in Lp([a, b], R). It is rather clear that Y ,Z ⊆
Lp([a, b], R). To show that Y is a linear manifold, we see that for
ϕ, ψ ∈ SIMP([a, b], R) and c ∈ R, if we suppose wlog that N < M

and define En = ∅ and αn = 0 for N < n ≤ M, then

cϕ + ψ = c
N

∑
n=1

αnχEn +
M

∑
m=1

βmχHm

=
M

∑
n=1

c(αn + βn)χEn∪Hn ∈ SIMP([a, b], R).

To show that Z is a linear manifold, we see that for
ϕ, ψ ∈ STEP([a, b], R) and c ∈ R, if we suppose wlog that N < M

and define In = ∅ and αn = 0 for N < n ≤ M, and define
coefficients such that

cn(x) =


an + bn x ∈ In ∩ Jn

an x ∈ In \ Jn

bn x ∈ Jn \ In

,

then

(cϕ + ψ)(x) = c
N

∑
n=1

αnχIn +
M

∑
m=1

βmχJm

= c
M

∑
n=1

cn(x)(χIn\Jn + χIn∩Jn + χJn\In)(x)

∈ STEP([a, b], R).

From here, notice that by our warning on page 90, Z ⊆ Y . Further-
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more, if we define

B := {χH : H ∈ M([a, b])},

then
Y = span{[ϕ] : ϕ ∈ B},

and so along with � Proposition 60, spanB is dense in
(Lp([a, b], R, ‖·‖p)). From Lemma 58, it suffices for us to show that
B ⊆ Z . 3 By �Theorem 18, we can find an open H ⊆ G ⊆ R such

3 We want to approximate any element
[χH ] ∈ B using intervals. Realizing that
we are in R, we know that any open set
G ⊆ R can be written as a disjoint union
of open intervals. Furthermore, if we
pick an open set G that closely encloses
H, then we obtain disjoint open sets that
closely approximates H.

that
m(G \ H) <

ε

2
.

We may write

G =
∞⋃

n=1

(an, bn).

It is important that we note that each of the interval is finite, since
mH ≤ m[a, b] < ∞, and m(G \ H) < ∞, and thus m(G) = m(H) +

m(G \ H) < ∞. Furthermore, some of the (an, bn)’s may be empty
sets.

Now let

Gk =
k⋃

n=1

(an, bn).

Clearly, limk→∞ Gk = G. Then we may choose N > 0 such that

m(G \ GN) =
∞

∑
n=N+1

m([an, bn]) <
ε

2
.

Let ϕ = χGN∩[a,b]. It is clear that ϕ ∈ STEP([a, b], R).

It remains to show that

νp(χH − ϕ) =
∫
[a,b]

|χH − ϕ|p < ε.

Notice that

|χH(x)− ϕ(x)| =



|1 − 0| = 1 x ∈ H \ GN

|0 − 1| = 1 x ∈ (GN ∩ [a, b]) \ H

|1 − 1| = 0 x ∈ H ∩ GN

|0 − 0| = 0 x /∈ H ∪ GN

.
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It thus follows that

νp(χH − ϕ) =
∫
[a,b]

|χH − ϕ|p

=
∫

E
|χH − ϕ|

= m(H \ GN) + m((GN ∩ [a, b]) \ H)

≤ m(G \ GN) + m(G \ H)

<
ε

2
+

ε

2
= ε.

where E = (H \ GN) ∪ ((GN ∩ [a, b]) \ H). It thus follows that
[χH ] ∈ spanZ , and so Z = [STEP([a, b], R)] is dense in
(Lp([a, b], R), ‖·‖p). �

� Note 13.1.1

Lemma 58 greatly simplified our proof above. We completely circum-
vented the need to pick an arbitrary element from Lp([a, b], K) and try to
approximate it using step functions. Instead, we need only approximate
characteristic functions of measurable sets.

We shall use the same approach as we did in the proof above to show that
the equivalence classes of continuous functions on a closed interval [a, b],
over K, is dense in (Lp([a, b], K), ‖·‖p).

�Theorem 61 (Density of Equivalence Classes of Continuous
Functions in Lp Spaces)

Let a < b ∈ R. If 1 ≤ p < ∞, then [C([a, b], K)] is dense in
(Lp([a, b], K), ‖·‖p).

� Proof

We may once again assume that K = R, as we did in the last 2
proofs.
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Let
B := {[χ[r,s]] : a ≤ r < s ≤ b}.

By � Proposition 60, spanB = Lp([a, b], R). Let

Z := [C([a, b], R)].

By Lemma 58, it suffices to show that B ⊆ Z .

Let ε > 0 and χ[r,s] ∈ [χ[r,s]] ∈ B. Let s−r
2 > δ > 0 so that we

consider the function

fδ(x) =



0 x ∈ x ≤ r or x ≥ s

1
δ (x − r) r < x ≤ r + δ

1 r + δ < x < s − δ

− 1
δ (x − s) s − δ ≤ x < s

.
1

|
r

|
s

|
r + δ

|
s − δ

Figure 13.1: Shape of the continuous
function fδ for approximating χ[r,s]

Then ∥∥∥[χ[r,s]]− [ fδ]
∥∥∥p

p
=
∫
[a,b]

∣∣∣χ[r,s] − fδ

∣∣∣p
≤
∫
[r,r+δ]∪[s−δ,s]

1p

= m([r, r + δ]) + m([s − δ, s])

= 2δ.

Then picking δ < ε
2 in the first place, our work is done. �

Recall that a topological space is said to be separable if it admits a
countable dense subset.

Exercise 13.1.2 (A way of finding a countable subset in a separable
metric space)

Suppose (X, d) is a separable metric space, δ > 0, and

Y := {xλ : λ ∈ Λ} ⊆ X satisfies d(xα, xβ) ≥ δ for all α 6= β ∈ Λ.

Then Λ is countable. 4

4 We may intuitively think of the flow
of the proof as follows. If we can find
such a Y whose elements are always δ
away from one another in a separable
metric space, then this Y should end
up swallowing elements in X almost
everywhere, and in particular, Y would
be at least countable. However, Y is
at most countable since it cannot be
dense (elements that are within δ away
from any element of Y cannot be closely
approximated).
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�Corollary 62 (Separability of Lp Spaces)

Let a < b ∈ R.

1. If 1 ≤ p < ∞, then (Lp([a, b], R), ‖·‖p) is separable.

2. If p = ∞, then (L∞([a, b], K), ‖·‖∞) is not separable.

� Proof

1. Fix 1 ≤ p < ∞. Recall from Remark 13.1.1 that for [ f ], [g] ∈
L∞([a, b], K) ⊆ Lp([a, b], K), we have

‖[ f ]− [g]‖p ≤ ‖[ f ]− [g]‖sup · m([a, b])
1
p = ‖[ f ]− [g]‖sup (b − a)

1
p .

Let ε > 0 and [h] ∈ Lp([a, b], K). By the density of [C([a, b], K)] in
Lp([a, b], K), we can find [g] ∈ [C([a, b], K)] such that

‖[h]− [g]‖p <
ε

3
.

By the Weierstrass Approximation Theorem, we can find a
polynomial p(x) = p0 + p1x + . . . + pmxm ∈ C[x] such that

‖[g]− [p]‖∞ = ‖g − p‖sup <
ε

3(b − a)
1
p

.

By the density of Q in R, we can find a polynomial q(x) = q0 +

q1x + . . . + qnxn ∈ (Q + iQ)[x] such that

‖[p]− [q]‖∞ = ‖p − q‖sup <
ε

3(b − a)
1
p

.

Observe that

‖[h]− [q]‖p

≤ ‖[h]− [g]‖p + ‖[g]− [p]‖p + ‖[p] + [q]‖p

≤ ‖[h]− [g]‖p + ‖[g]− [p]‖∞ (b − a)
1
p + ‖[p]− [q]‖∞ (b − a)

1
p

<
ε

3
+

ε

3(b − a)
1
p
(b − a)

1
p +

ε

3(b − a)
1
p
(b − a)

1
p
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= ε.

Thus, this q is the polynomial from a countable subset. Therefore,
[(Q + iQ)[x]] is dense in (Lp([a, b], K), ‖·‖p).

2. Consider a ≤ r1 < s1 ≤ b and a ≤ r2 < s2 ≤ b, with r1 6= r2 and
s1 6= s2. Then the symmetric difference

[r1, s1]∆[r2, s2] := ([r1, s1] ∪ [r2, s2]) \ ([r1, s1] ∩ [r2, s2])

contains an interval, say, [u, v] ⊆ [a, b]. Notice that for any x ∈
[u, v], ∣∣∣χ[r1,s1]

(x)− χ[r2,s2]

∣∣∣ = 1,

and so ∥∥∥[χ[r1,s1]
]− [χ[r2,s2]

]
∥∥∥

∞
=
∥∥∥[χ[r1,s1]∆[r2,s2]

]
∥∥∥

∞
= 1.

Consider Λ := {(r, s) ∈ R2 : a ≤ r < s ≤ b}. It is clear that
Λ is uncountable. For any (r1, s1) 6= (r2, s2) ∈ Λ, by our above
argument, we have ∥∥∥χ[r1,s1]

− χ[r2,s2]

∥∥∥
sup

= 1.

By Exercise 13.1.2, we have that L∞([a, b], K) be must be separa-
ble. 5

�
5 All the elements χ[r,s] are 1-away from
one another, and so the contrapositive of
the exercise gives us this counterexam-
ple.
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14.1 Hilbert Spaces

Given E ∈ M(R), we’ve seen that for 1 ≤ p ≤ ∞, (Lp(E, R), ‖·‖p) is
a Banach space, i.e. a complete normed linear space. The case where
p = 2 is a special space that merits our attention.

� Definition 40 (Inner Product)

An inner product on a K-vector space H is a function

〈·, ·〉 : H×H → K

that satisfies

1. (positive definiteness) 〈x, x〉 ≥ 0 for all x ∈ H, and 〈x, x〉 = 0 iff
x = 0;

2. (conjugate bilinear) for all w, x, y, z ∈ H and α, β ∈ K,

〈αw + x, y + βz〉 = α〈w, y〉+ 〈x, y〉+ αβ〈w, z〉+ β〈x + z〉;

3. (conjugate symmetry) for all x, y ∈ H, 〈x, y〉 = 〈y, x〉.

� Definition 41 (Inner Product Space)

An inner product space (IPS) is a vector space H endowed with an inner
product.
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� Definition 42 (Orthogonality)

We say that x, y in an IPS H are orthogonal if

〈x, y〉 = 0.

�Theorem 63 (Cauchy-Schwarz Inequality)

Suppose (H, 〈·, ·〉) is an IPS over K. Then for all x, y ∈ H,

|〈x, y〉| ≤ 〈x, x〉
1
2 〈y, y〉

1
2 .

� Proof

Note that if 〈x, y〉 = 0, then there is nothing to show, since inner
products are positive definite. So suppose 〈x, y〉 6= 0. 1 1 This proof is said to be typical of any

kind of Cauchy-Schwarz-like inequality.
I am making this note because this is the
rare time that I have actually seen one
in pure mathematics (still a greenhorn
with questionable basics).

Let κ ∈ K. Notice that

0 ≤ 〈x − κy, x − κy〉

= 〈x, x〉 − κ〈y, x〉 − κ〈x, y〉+ |κ|2 〈y, y〉.

So pick

κ =
〈x, y〉
〈y, y〉 .

Then we have

0 ≤ 〈x, x〉 − 〈x, y〉
〈y, y〉 〈y, x〉 − 〈y, x〉

〈y, y〉 〈x, y〉+ |〈x, y〉|2

〈y, y〉2 〈y, y〉

= 〈x, x〉 − |〈x, y〉|2

〈y, y〉 −
∣∣〈x, y〉2

∣∣
〈y, y〉 +

|〈x, y〉|2

〈y, y〉

= 〈x, x〉 − |〈x, y〉|2

〈y, y〉 .

Thus
|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉.
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Hence
|〈x, y〉| ≤ 〈x, x〉

1
2 〈y, y〉

1
2 . �

� Proposition 64 (Norm Induced by The Inner Product)

Let (H, 〈·, ·〉) be an IPS. Then the map

‖x‖ := 〈x, x〉
1
2 , x ∈ H

defines a norm on H, called the norm induced by the inner product.

� Proof

Positive Definiteness This immediately from the definition of an
inner product.

Scalar Multiplication Let κ ∈ K and x ∈ H. Then

‖κx‖2 = 〈κx, κx〉 = |κ|2 〈x, x〉 = |κ|2 ‖x‖2 .

Thus
‖κx‖ = |κ| ‖x‖ .

Triangle Inequality By the Cauchy-Schwarz Inequality, we have

‖x + y‖2 = 〈x + y, x + y〉

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

≤ ‖x‖2 + |〈x, y〉|+ |〈y, x〉|+ ‖y‖2

= ‖x‖2 + 2〈x, x〉
1
2 〈y, y〉

1
2 + ‖y‖2

= ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2 .

Hence
‖x + y‖ ≤ ‖x‖+ ‖y‖ . �
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It follows that every IPS (H, 〈·, ·〉) is also a normed linear space
(NLS). Furthermore, norms induce metrics, and so every IPS is also a
metric space. Figure 14.1 is a highly abstract illustration of the idea.

Metric Space

Normed Linear Space

Inner Product Space

Figure 14.1: Hierarchy of Spaces, from
Metric Space to Normed Linear Space,
then down to Inner Product Space

� Definition 43 (Hilbert Space)

A Hilbert space is a complete IPS.

Example 14.1.1

1. Let N ≥ 1 be an integer, and H = CN . For

x = (xn)
N
n=1, y = (yn)

N
n=1 ∈ CN ,

we define

〈x, y〉 =
N

∑
n=1

xnyn

as the inner product on CN . This is, in fact, called the standard
inner product on CN . Furthermore, CN is complete wrt to the norm
induced by this inner product. Thus

(CN , 〈·, ·〉)

is a Hilbert space.

2. We can make the above slightly more general. Fix 1 ≤ N ∈ N, and
choose some

ρ1, ρ2, . . . , ρN ∈ R+.

Exercise 14.1.1

Check that CN , with the function

〈x, y〉ρ :=
N

∑
n=1

ρnxnyn

that you are to check is an inner product, is a Hilbert space.

3. The following is a space that will be very important for us. The set

`2(K) := {(xn)n∈N : xn ∈ K, ∑ |xn|2 < ∞},



PMATH450 — Lebesgue Integration and Fourier Analysis 173

with the inner product

〈(xn)n, (yn)n〉 :=
∞

∑
n=1

xnyn,

is called the sequence space `2 with its standard inner product.
The space

(`2(K), 〈·, ·〉)

is a Hilbert space. 2 � 2 We saw, in PMATH 351, that with the
norm induced by this inner product,
`2(K) is a complete metric space.

Let us now look at an inner product that we shall define on L2.

�Theorem 65 (The Standard Inner Product for L2(E, K))

Let E ∈ M(R). The map

〈·, ·〉 : L2(E, K)× L2(E, K) → K

([ f ], [g]) 7→
∫

E
f g

is an inner product on L2(E, K).

Furthermore, the norm induced by this inner product is the L2-norm
‖·‖2 on L2(E, K). Since (L2(E, K), ‖·‖2) is complete, (L2(E, K), 〈·, ·〉) is
a Hilbert space.

� Proof

Before anything else, we need to show that 〈·, ·〉 is well-defined.
Notice that if [ f1] = [ f2] and [g1] = [g2] in L2(E, K), then f1g1 =

f2g2 a.e. on E, and so

〈[ f1], [g1]〉 =
∫

E
f 1g1 =

∫
E

f2g2 = 〈[ f2], [g2]〉.

Furthermore, by �Theorem 49, we have that∫
E
| f g| = ‖[ f g]‖1 ≤ ‖[ f ]‖2 ‖[g]‖2 < ∞.

Thus 〈·, ·〉 is indeed well-defined.
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Showing that 〈·, ·〉 is an inner product (Positive Definiteness) Let
[ f ] ∈ L2(E, K). Notice that

f f = | f |2 ≥ 0.

Thus
〈[ f ], [ f ]〉 =

∫
E

f f =
∫

E
| f |2 ≥ 0.

Now if [ f ] = [0] ∈ L2(E, K), then

〈[ f ], [ f ]〉 =
∫

E
| f |2 =

∫
E

02 = 0.

(Conjugate Bilinearity) Let [ f ], [g], [h] ∈ L2(E, K), and α, β ∈ K.
Then

〈α[ f ] + β[g], [h]〉 =
∫

E
(α f + βg)h

= α
∫

E
f h + β

∫
E

gh

= α〈[ f ], [h]〉+ β〈[g], [h]〉,

and

〈[ f ], α[g] + β[h]〉 =
∫

E
f (αg + βh)

= α
∫

E
f g + β

∫
E

f h

= α〈[ f ], [g]〉+ β〈[ f ], [h]〉.

(Conjugate Symmetry) Let [ f ], [g] ∈ L2(E, K). Then

〈[ f ], [g]〉 =
∫

E
f g =

∫
E

f g =
∫

E
f g = 〈[g], [ f ]〉.

Showing that the norm induced by 〈·, ·〉 is the L2-norm
By � Proposition 64, we have for any [ f ] ∈ L2(E, K),

‖[ f ]‖ := 〈[ f ], [ f ]〉
1
2 =

(∫
E
| f |2

) 1
2
= ‖[ f ]‖2 . �

� Definition 44 (Orthonormality)
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Let E be a subset of an IPS (H, 〈·, ·〉). We say that x ∈ E has norm 1 if

‖x‖ = 〈x, x〉
1
2 = 1.

We say that x, y ∈ E are orthonormal if x, y each has norm 1, and they
are orthogonal to one another, i.e. 〈x, y〉 = 0.

We say that E is an orthonormal set if ∀x, y ∈ E , x and y are or-
thonormal.

� Definition 45 (Orthonormal Basis)

Let H be a Hilbert space. An orthonormal basis (ONB) (or Hilbert
space basis) for H is a maximal (wrt inclusion) orthonormal set in
H.

Remark 14.1.1

1. By Zorn’s Lemma, we can extend every orthonormal set in H to an ONB
for H.

2. If H is infinite-dimensional, then an ONB for H is not a Hamel basis 3 3 The Hamel basis is a basis that we
are rather familiar with, coming from
a finite-dimensional world, where the
span of an ONB is the entire space.

for H. �

Example 14.1.2

1. Let N ≥ 1 be an integer, and consider H = CN endowed with the
standard inner product 〈·, ·〉. For 1 ≤ n ≤ N, define

en := (δn,k)
N
k=1,

where δa,b denotes the Kronecker delta function. Then {en}N
n=1 is

an ONB for CN .

2. Let 1 ≤ N ∈ N and ρk = k, for 1 ≤ k ≤ N. Set

en :=
(

1√
k

δn,k

)N

k=1
.

Then {en}N
n=1 is also an ONB for CN , with the rather awkward
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inner product from our last example:

〈x, y〉ρ =
N

∑
n=1

ρnxnyn.

3. Generalizing the first example here to infinite dimensions, let H =

`2(K), with its standard inner product. For n ≥ 1, let

en = (δn,k)
∞
k=1 .

Exercise 14.1.2

Show that {en}N
n=1 is an ONB for `2(K).

4. Now for an orthonormal basis that is highly relevant to us. Con-
sider H = L2([0, 2π], C), of which we have shown is a Hilbert space,
with its standard inner product

〈[ f ], [g]〉 :=
∫

E
f g.

For n ∈ Z, define the continuous function

ξn : [0, 2π] → C

θ 7→ 1√
2π

einθ .

Then [ξn] ∈ L2([0, 2π], C) for all n ∈ Z. In A4, we shall see that
{[ξn]}n∈Z is an ONB for L2([0, 2π], C). �

We recall the following result from linear algebra:

�Theorem 66 (Gram-Schmidt Orthogonalisation Process)

If (H, 〈·, ·〉) is a Hilbert space over K, and {xn}∞
n=1 is a linearly inde-

pendent set in H, then we can find an orthonormal set {yn}∞
n=1 in H so

that
span {x1, . . . , xN} = span {y1, . . . , yN}

for all N ≥ 1.
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� Proof

First, set
y1 =

x1

‖x1‖
.

Notice that

〈x2 − 〈x2, y1〉y1, y1〉 = 〈x2, y1〉 − 〈x2, y1〉〈y1, y1〉

= 〈x2, y1〉 − 〈x2, y1〉 · 1 = 0.

To get norm 1, we can then set

y2 =
x2 − 〈x2, y1〉y1

‖x2 − 〈x2, y1〉y1‖
.

By induction, one can show that

yN =
xN − ∑N−1

n=1 〈xN , yn〉yn∥∥∥xN − ∑N−1
n=1 〈xN , yn〉yn

∥∥∥ ,

for N ≥ 1, works. �

�Theorem 67 (The Pythagorean Theorem and Parallelogram
Law)

Let H be a Hilbert space and suppose that x1, x2, . . . , xn ∈ H.

1. (The Pythagorean Theorem) If {xn}N
n=1 is orthogonal, then∥∥∥∥∥ N

∑
n=1

xn

∥∥∥∥∥
2

=
N

∑
n=1

‖x2‖2 .

2. (The Parallelogram Law) We have

‖x1 + x2‖2 + ‖x1 − x2‖2 = 2
(
‖x1‖2 + ‖x2‖2

)
.

� Proof
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1. Since 〈xn, xm〉 = 0 for all n 6= m, we have∥∥∥∥∥ N

∑
n=1

xn

∥∥∥∥∥
2

=

〈
N

∑
n=1

xn,
N

∑
n=1

xn

〉
=

N

∑
n=1

〈xn, xn〉 =
N

∑
n=1

‖xn‖2 .

2. We see that

‖x1 + x2‖2 + ‖x1 − x2‖2 = 〈x1 + x2, x1 + x2〉+ 〈x1 − x2, x1 − x2〉

= 2〈x1, x1〉+ 2〈x2, x2〉

= 2
(
‖x1‖2 + ‖x2‖2

)
. �
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15.1 Hilbert Spaces (Continued)

�Theorem 68 (Closest Point from a Convex Set in a Hilbert
Space)

Let H be a Hilbert space, and K ⊆ H be a closed, non-empty convex subset
of H. Given x ∈ H, there exists a unique point y ∈ K that is closest to x, The proof of �Theorem 68 is left to the

assignments.i.e.
‖x − y‖ = dist(x, K) := min{‖x − z‖ : z ∈ K}.

�Theorem 69 (A Way to Orthogonality)

Let H be a Hilbert space. Let M ⊆ H be a closed subspace. Let x ∈ H,
and m ∈ M. TFAE:

1. ‖x − m‖ = dist(x,M) ;

2. The vector x − m is orthogonal to M, i.e.

〈x − m, y〉 = 0 for all y ∈ M.

� Proof

(1) =⇒ (2) Suppose to the contrary that ∃y ∈ M such that

κ := 〈x − m, y〉 6= 0.
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Wlog, suppose ‖y‖ = 1. 1 Consider z := m + κy ∈ M. Then 1 We may assume so since if ‖y‖ 6= 1,
then we simply divide κ by ‖y‖ and
we’ll get a y′ with norm 1.

‖x − z‖2 = 〈x − z, x − z〉 = 〈x − m − κy, x − m − κy〉

= ‖x − m‖2 − κ〈y, x − m〉 − κ〈x − m, y〉+ κκ〈y, y〉

= ‖x − m‖2 − κκ − κκ + κκ

= ‖x − m‖2 − |κ|2 < ‖x − m‖2 ,

a contradiction. Thus, such a y cannot exist, and so the result holds.

(2) =⇒ (1) Suppose ∀y ∈ M, 〈x − m, y〉 = 0. Write

M 3 y = m + (y − m).

Observe that by the Pythagorean theorem,

‖x − y‖ = ‖x − m − y + m‖ = ‖x − m‖+ ‖m − y‖

≥ ‖x − m‖

since ‖m − y‖ ≥ 0. Thus ‖x − m‖ = dist(x,M). �

Let’s have a little talk about complements.

� Definition 46 (Perpendicular Space)

Given any non-empty subset S of a Hilbert space H, we define the perpen-
dicular space of S as

S⊥ := {y ∈ H : 〈x, y〉 = 0, x ∈ S}.

Exercise 15.1.1

Show that S⊥ is a norm-closed subspace 2 of H. 2 A norm-closed subspace is a subspace
that is closed under the norm of the
ambient space.Remark 15.1.1
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1. Observe that 0 ∈ S⊥ always, and (S⊥)⊥ ⊇ S . It thus follows that

(
S⊥
)⊥

⊇ spanS ,

the norm closure of the linear span of S .

2. Let V is a vector space and W is a (vector) subspace of V . Let

{wλ : λ ∈ Λ}

be a (Hamel) basis for W . We may then extend {wλ : λ ∈ Λ} to be a basis
of V , such as

{wλ : λ ∈ Λ} ∪ {xγ : γ ∈ Γ}.

Let
X := span{xγ : γ ∈ Γ}.

Then X ⊆ V is a subspace, and

(a) W ∩X = {0}; and

(b) V = W +X := {w + x : w ∈ W , x ∈ X}.

We say that W is alagebraically complemented by X . This existence of
X says that every subspace is algebraically complemented.

Note that X is not unique. Indeed, if vectors of the basis for X are not of
norm 1, then normalizing them all gives us an ONB for X .

We can do something similar with normed linear spaces (NLSs). If X is a
Banach space and Y is a closed subspace of X, we say that Y is topologi-
cally complemented if there exists a closed subspace Z ⊆ X such that Z
is an algebraic complement to Y, i.e. that

(a) Y∩ Z = {0}; and

(b) X = Y+ Z.

However, not all closed subspace of a Banach space is topologically com-
plemented.

� Culture (Phillip’s Theorem)

c0 = {(xn)n ∈ KN : lim
n→∞

xn = 0} ⊆
`∞ is not topologically complemented.

Cited from Whitley, 1996.

We shall write X = Y⊕ Z if Z is a topological complement to Y.

Now let H be a Hilbert space and M ⊆ H be a closed subspace.

Claim: H = M⊕M⊥ From Exercise 15.1.1, M⊥ is closed. Notice that
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if z ∈ M∩M⊥, then
〈z, z〉 = 0,

and so z = 0. Thus M∩M⊥ = {0}.

Let x ∈ H. By �Theorem 68, ∃m1 ∈ M such that

‖x − m1‖ = dist(x,M).

Furthermore, by �Theorem 69, m2 := x − m1 ∈ M⊥. Thus we see that

x = m1 + m2 ∈ M+M⊥.

Since M and M⊥ are both closed subspaces, we have H = M⊕M⊥. a

In fact, the above claim is much stronger than what immediately meets
the eye. Given a Banach space X and a topologically complemented closed
subspace Y, there is generally no expectation of a unique topological
complement for Y. For instance, X = R2 with, say, ‖·‖∞, if we let Y be
the x-axis, then any line that passes through the origin and not equal to the
x-axis would be a closed subspace and is a topological complement to Y.
However, in the above claim, the space M⊥ is unique, and we call M⊥

the orthogonal complement of M.

3. The orthogonal projection With H and M as in the last remark, we have
that H = M⊕M⊥. Now for any x ∈ H, if we suppose that we can
write

m1 + n1 = x = m2 + n2,

where m1, m2 ∈ M and n1, n2 ∈ M⊥, then

0 = x − x = m1 − m2 + n1 − n2 =⇒ m1 − m2 = n1 − n2.

But m1 −m2 ∈ M and n1 − n2 ∈ M⊥, and so m1 −m2 = 0 = n1 − n2,
i.e. m1 = m2 and n1 = n2. Thus, we may uniquely represent each x ∈ H
as

x = m + n where m ∈ M, n ∈ M⊥.

Now consider the map

P : H → M⊕M⊥
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x 7→ m.

This map P is called an orthogonal projection.

Continuity of the orthogonal projection Observe that given x1 = m1 +

n1, x2 = m2 + n2 ∈ H and κ ∈ K, we have

P(κx1 + x2) = P(κ(m1 + n1) + m2 + n2)

= κm1 + m2 = κP(x1) + P(x2).

Thus P is linear. Furthermore,

P(P(x1)) = P(m1) = m1.

Thus P2 = P, and we say that P is an idempotent. On a related note to the orthogonal
projection, observe that the ‘projection
in the other way’ is also an orthogonal
projection. That is, Q = I − P, where I
is the identity function, that would give
Q(x1) = (I − P)(x1) = m1 + n1 − m1 =

n1, is also an orthogonal projection.

In fact, for x ∈ H, we have that

‖Px‖2 = ‖m‖2 ≤ ‖m‖2 + ‖n‖2 = ‖m + n‖2 = ‖x‖2 .

Thus the operator norm on P is

‖P‖ = sup{‖Px‖ : ‖x‖ ≤ 1} ≤ 1.

It follows that P is bounded. Since it is linear, it is also continuous.

Finally, notice that if m ∈ M 6= {0} such that ‖m‖ = 1, then

‖Pm‖ = ‖m‖ = 1.

4. Let ∅ 6= S ⊆ H. By the first remark, if we let M = spanS , then M is a
closed subspace of H. By the second remark, we have

H = M⊕M⊥.

Exercise 15.1.2

Show that S⊥ = M⊥.

Suppose ∃0 6= x ∈
(
S⊥)⊥ such that x /∈ M. Notice that since x ∈ H,
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we can write
x = m1 + m2,

where m1 ∈ M and m2 ∈ M⊥. Notice that m2 6= 0 ∈ M⊥ = S⊥, since
otherwise, x ∈ M. But then

〈x, m2〉 = 〈m1 + m2, m2〉 = 0 + ‖m2‖2 6= 0.

Thus x /∈
(
S⊥)⊥, a contradiction. It follows that (S⊥)⊥ ⊆ spanS , and

so by the first remark, (
S⊥
)⊥

= spanS . �

� Lemma 70 (Finite Dimensional Linear Manifolds are Norm-
closed Subspaces)

Let H be a Hilbert space over K, and suppose that M ⊆ H is a finite-
dimensional linear manifold in H. Then M is norm-closed, and hence a
subspace of H.

� Proof

The proof of Lemma 70 is left to the assignments. �

� Proposition 71 (Formulae for Orthogonal Projections in
Hilbert Spaces onto a Finite-Dimensional Subspace)

Suppose M is a finite-dimensional subspace of a Hilbert space H over K.
Suppose that ∃N ∈ N \ {0}, such that {e1, . . . , eN} is an ONB for H. If
P is the orthogonal projection of H onto M, then

Px =
N

∑
n=1

〈x, en〉en, x ∈ H.

� Proof
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Let x ∈ H = M⊕M⊥, and write x = m1 + m2, with m1 ∈ M
and m2 ∈ M⊥. By the second point in the last remark, we have
that Px = m1 is unique such that x − Px ∈ M⊥. Consider w =

∑N
n=1〈x, en〉en. For m ∈ {1, . . . , N}, we observe that

〈x − w, em〉 = 〈x, em〉 −
N

∑
n=1

〈x, en〉〈en, em〉

= 〈x, em〉 − 〈x, em〉�����:1〈em, em〉

= 0.

Thus x − w ∈ M⊥, and so

Px = w =
N

∑
n=1

〈x, en〉en. �

�Theorem 72 (Bessel’s Inequality)

If {en}∞
n=1 is an orthonormal set in a Hilbert space H, then for each x ∈

H,
∞

∑
n=1

|〈x, en〉|2 ≤ ‖x‖2 .

� Proof

For each N ∈ N \ {0}, set

MN := span{e1, . . . , eN}.

Then each MN is a finite-dimensional subspace of H with ONB
{e1, . . . , eN}.

For each N, let PN be the orthogonal projection from H to MN .
From the last discussion on the 3rd point of the last remark, since
‖en‖ = 1, we have that ‖PN‖ = 1 for all N.

By � Proposition 71, we observe that

‖x‖2 ≥ ‖PN x‖2 =

∥∥∥∥∥ N

∑
n=1

〈x, en〉en

∥∥∥∥∥
2
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=
N

∑
n=1

|〈x, en〉en|2

=
N

∑
n=1

|〈x, en〉|2

by the Pythagorean Theorem. �
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16.1 Hilbert Spaces (Continued 2)

�Theorem 73 (Countability of an Orthonormal Set in a Separa-
ble Hilbert Space)

Let H be a(n) (infinite-dimensional) separable Hilbert space, and suppse
that E ⊆ H is an orthonormal set. Then E is countable, say as E =

{en}∞
n=1, and if x ∈ H, then

∞

∑
n=1

〈x, en〉en

converges in H.

� Proof

First, notice that for x 6= y ∈ E , we have

‖x − y‖ = 〈x − y, x − y〉
1
2 =

(
‖x‖2 + ‖y‖2

) 1
2
=

√
2.

By Exercise 13.1.2, we have that E is indeed countable.

Let x ∈ H and ε > 0. For each N ≥ 1, set

yN =
N

∑
n=1

〈x, en〉en.1

Since H is complete (for it is a Hilbert space), it suffices for us to 1 The keen reader should notice that we
are simply taking yN = PN x from the
proof of Bessel’s Inequality.show that {yN}∞

N=1 is Cauchy.
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From Bessel’s Inequality, we know that

∞

∑
n=1

|〈x, en〉|2 ≤ ‖x‖2 < ∞.

Thus, for any ε > 0, rearranging if necessary, we can find some
N0 > 0 such that

∞

∑
n=N0+1

|〈x, en〉|2 < ε.

Then for M > N > N0, we see that

‖yM − yN‖2 =

∥∥∥∥∥ M

∑
n=1

〈x, en〉en −
N

∑
n=1

〈x, en〉en

∥∥∥∥∥
2

=

∥∥∥∥∥ M

∑
n=N+1

〈x, en〉en

∥∥∥∥∥
2

=
M

∑
n=N+1

|〈x, en〉|2 ∵ Pythagorean Theorem

≤
∞

∑
n=N0

|〈x, en〉|2 < ε.

It follows that the limit of the Cauchy sequence {yN}∞
N=1 is in H. �

�Theorem 74 (Characterization of an ONB)

Let E = {en}∞
n=1 be an orthonormal set in an infinite-dimensional,

separable Hilbert space H. TFAE:

1. E is an ONB, i.e. E is a maximal orthonormal set in H.

2. spanE = H.

3. ∀x ∈ H, x = ∑∞
n=1〈x, en〉en.

4. (Parseval’s Identity) ∀x ∈ H, ‖x‖2 = ∑∞
n=1 |〈x, en〉|2.

� Proof

(1) =⇒ (2) Firstly, it is clear that E ⊆ M := spanE ⊆ H. In
particular, {0} 6= E ⊆ M, so M⊥ 6= {0}. Then ∃0 6= x ∈ M⊥ such



PMATH450 — Lebesgue Integration and Fourier Analysis 189

that E ∪ {x} is also an orthonormal basis, contradicting maximality
of E .

(2) =⇒ (3) Let M = spanE = H. Let y = ∑∞
n=1〈x, en〉en. Observe

that by a similar step in the proof in � Proposition 71, we observe
that

〈x − y, em〉 = 0, for each m ∈ N \ {0}.

It follows that x − y ∈ M⊥ = {0}, and so x = y.

(3) =⇒ (4) We see that

‖x‖2 =

∥∥∥∥∥ ∞

∑
n=1

〈x, en〉en

∥∥∥∥∥
2

= 〈
∞

∑
n=1

〈x, en〉en,
∞

∑
m=1

〈x, em〉em〉

=
∞

∑
n=1

∞

∑
m=1

〈x, en〉〈x, em〉〈en, em〉

=
∞

∑
n=1

〈x, en〉〈x, en〉����:1〈en, en〉

=
∞

∑
n=1

|〈x, en〉|2 .

(4) =⇒ (1) Suppose x ∈ E⊥. Then for all n ∈ N \ {0},

‖x‖2 =
∞

∑
n=1

|〈x, en〉|2 = 0,

and so x = 0, i.e. E⊥ = {0}. Hence E is indeed maximum. �

� Definition 47 (Unitary Operator)

Let H1,H2 be Hilbert spaces over K. A map U : H1− > H2 is called a
unitary operator if it is a linear bijection such that

〈Ux, Uy〉 = 〈x, y〉

for all x, y ∈ H1.
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� Definition 48 (Isomorphism of Hilbert Spaces)

Let H1,H2 be Hilbert spaces over K. We say that H1 and H2 are isomor-
phic if there exists a unitary operator U : H1− > H2. We denote this
relationship as H1 ' H2.

� Note 16.1.1

Note that ∀x ∈ H, we have that

‖Ux‖2 = 〈Ux, Ux〉 = 〈x, x〉 = ‖x‖2 .

In particular, unitary operators are isometries. Furthermore, observe that

‖U‖ = sup{‖Ux‖ : ‖x‖ ≤ 1} ≤ 1,

and so unitary operators are bounded and continuous. Moreover, the in-
verse map U−1 : H2 → H1 defined by U−1(Ux) := x is also linear,
and

〈U−1(Ux), U−1(Uy)〉 = 〈x, y〉 = 〈Ux, Uy〉,

the inverse of a unitary operator is also a unitary operator.

Remark 16.1.1

Note that if L ⊆ H1 is a closed subspace, then L is complete, whence UL is
also complete, and hence closed in H2. �

The proof of the following theorem is left to the assignments.

�Theorem 75 (Isomorphism of Infinite-dimensional Separable
Hilbert Spaces)

Any 2 infinite-dimensional separable Hilbert spaces over K are isomorphic.
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16.2 Introduction to Fourier Analysis

Remark 16.2.1

As a result of �Theorem 75, it follows that if H is a complex, separable,
infinite-dimensional Hilbert space, then H ' `2. One must wonder why do we focus

on E = [−π, π]. For a relatively good
motivation for the things that are to
come, please read Appendix A.

Now,

• from �Corollary 62, L2([−π, π], K) is separable;

• from Item 4 of Example 14.1.2, L2([−π, π], K) is infinite-dimensional,
with the ONB {[ξn]}n∈Z; and

• by �Theorem 65, L2([−π, π], K) is a Hilbert space, with the inner
product

〈[ f ], [g]〉 =
∫

E
f g.

Let us define

L2(T, C) := { f : R− > C : f is measurable, 2π-periodic,

and
∫
[π,π)

| f |2 < ∞
}

.

Exercise 16.2.1

Show that L2(T, C) is a vector space, and that the function

ν2 : L2(T, C) → R

f 7→
(

1
2π

∫
[−π,π)

| f |2
)1/2

is a semi norm on L2(T, C).

Now let
N2(T, C) := { f ∈ L2(, T, C) : ν2( f ) = 0}.

It follows that if L2(T, C) = L2(T, C)/N (T, C), then [ f ] = [g] ∈
L2(T, C) iff f = g a.e. on R, or equivalently f = g a.e. on [−π, π),
since they are 2π-periodic functions on R. We can then obtain a norm on
L2(T, C) by setting ‖[ f ]‖2 := ν2( f ).
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Furthermore, the function

〈·, ·〉T : L2(T, C)× L2(T, C) → C

([ f ], [g]) 7→ 1
2π

∫
[−π,π)

f g

is an inner product on L2(T, C), and ‖·‖2 is precisely the norm induced by
the inner product. By what we’ve seen in the last section, L2(T, C) is com-
plete wrt the norm ‖·‖, and is therefore a Hilbert space. One can finally ver-
ify that {[ξn]}n∈Z, where ξn(ε) = einθ , is indeed and ONB for L2(T, C). �

Example 16.2.1 (Fourier Series for L2(T, C), and the isomorphism
between L2(T, C) and `2(Z, C))

Let [ f ] ∈ L2([−π, π], C). From A5Q4, we can show that {[ξn]}n∈Z,
where

ξn : [−π, π] → C

θ 7→ 1√
2π

einθ ,

is an ONB for L2([π, π], C). For any n ∈ Z, let

α
[ f ]
n := 〈[ f ], [ξn]〉.

We shall refer to α
[ f ]
n as the nth-Fourier coefficient of [ f ] relative to the

ONB {[ξn]}n∈Z. By A7Q2, we have that the map

U : L2(T, C) → `2(Z, C)

[ f ] 7→
(

α
[ f ]
n

)
n∈Z

is a unitary operator from the Hilbert space L2(T, C) to `2(Z, C).

In particular, U is injective. This means that if [ f ], , [g] ∈ L2(T, C)

and α
[ f ]
n = α

[g]
n for all n ∈ Z, then f = g a.e. on R. In other words,

an element [ f ] ∈ L2(T, C) is completely determined by its Fourier
coefficients. Moreover, given any sequence (βn)n∈Z ∈ `2(Z, C),
∃[ f ] ∈ L2(T, C) such that α

[ f ]
n = βn, for all n ∈ Z.

Now let [ f ] ∈ L2(T, C). For each N ∈ N \ {0}, set

∆N([ f ]) =
N

∑
n=−N

α
[ f ]
n [ξn].
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We shall call ∆N([ f ]) as the Nth partial sum of the Fourier series of
[ f ]. It follows from �Theorem 74 that

[ f ] = lim
N→∞

∆N([ f ]),

where the convergence is relative to the ‖·‖2-norm which was men-
tioned above. �

� Note 16.2.1

This is a beautiful occurrence, having functions that can be written
uniquely (up to a set of measure zero) as a linear combination of the ONB
{[ξn]}n∈Z, which is a very powerful result that is often used in linear
algebra.

We can then ask the question of whether the same result holds for
other similarly defined Lp(T, C), for 1 ≤ p ≤ ∞ where p 6= 2. We shall
focus on L1. Unfortunately, we shall see that this doesn’t hold. The rest
of the course is dedicated to showing this.

� Notation

We shall note down here notations and definitions of which we’ve seen but require some modification for the purposes
of our discussion.

• Trig(T, C) := span{ξn : n ∈ Z} = {∑N
n=−N αnξn : αn ∈ C : N ∈ N \ {0};

• C(T, C) := { f : R → C : f is continuous and 2π-periodic};

• SIMP(T, C) := { f : R → C : f �[−π,π) is a simple function and f is 2π-periodic};

• STEP(T, C) := { f : R → C : f �[−π,π) is a step function and f is 2π-periodic};

• for 1 ≤ p < ∞,

Lp(T, C) := { f : R → C : f is measurable, 2π-periodic, and
∫
[−π,π)

| f |p < ∞};
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• and for p = ∞,

Lp(T, C) := { f : R → C : f is measurable, 2π-periodic, and essentially bounded };

Note that
Trig(T, C) ⊆ C(T, C) ⊆ Lp(T, C), 1 ≤ p ≤ ∞.
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17.1 Introduction to Fourier Analysis (Continued)

As was the case with p = 2, for each 1 ≤ p < ∞, Lp(T, C) forms a
vector space over C, and the map

νp : Lp(T, C) → R

f 7→
(

1
2π

∫
[−π,π)

| f |p
)1/p

defines a seminorm on Lp(T, C)

For p = ∞, echoing a similar argument as in Section 12.1.1, we have
that

ν∞( f ) := inf{δ > 0 : m{θ ∈ [−π, π) : | f (θ)| > δ} = 0},

for f ∈ L∞(T, C) is a seminorm on L∞(T, C).

By � Proposition 44, for each 1 ≤ p ≤ ∞, we can obtain a norm
‖·‖p on

Lp(T, C) := Lp(T, C)
/
Np(T, C),

where
Np(T, C) := { f ∈ Lp(T, C) : νp( f ) = 0}.

1 Again, we can find that [ f ] = [g] ∈ Lp(T, C) iff f = g a.e. on R. 1 claftosel

Exercise 17.1.1

Verify that for f ∈ C(T, C)

‖[ f ]‖∞ = ‖ f ‖sup := sup{| f (θ)| : θ ∈ [−π, π)}.
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� Note 17.1.1

Note that the supremum on the RHS of the above equation is a finite num-
ber, since f ∈ C(T, C) implies that f is continuous on R, and hence f is
bounded on [−π, π] ⊇ [−π, π).

Given any function f : [−π, π) → C„ let f̌ : R → C be the
2π-periodic extension of f ; i.e. f̌ (θ) = f (θ) for θ ∈ [−π, π) and
f̌ (θ + 2π) = f̌ (θ) for θ ∈ R . It is clear that f̌ always exists and is
uniquely defined by f .

�Theorem 76 (The 2π periodic extension map is an isometric
isomorphism)

Let 1 ≤ p ≤ ∞. The map

Ξp : Lp([−π, π), C) → Lp(T, C)

[ f ] 7→ [ f̌ ]

is an isometric isomorphism.

Exercise 17.1.2

Prove �Theorem 76.

It follows from the above isometric isomorphism that all of our re-
sults about Lp-spaces hold for their respective Lp(T, C) counterparts.

Let us now focus on L1(T, C).

� Definition 49 (The Fourier Coefficients and The Fourier Series)

For f ∈ L1(T, C) and n ∈ Z, we refer to

f̂ (n) :=
1

2π

∫
[−π,π)

f ξn
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as the nth-Fourier coefficient of f . We also refer to

∑
n∈Z

f̂ (n)ξn

as the Fourier series of f in L1(T, C).

Remark 17.1.1

If f , g ∈ L1(T, C) and f = g a.e. on [−π, π), then

f̂ (n) =
1

2π

∫
[−π,π)

f ξn =
1

2π

∫
[−π,π)

gξn = ĝ(n), ∀n ∈ Z.

Thus, if we set the nth-Fourier coefficient of [ f ] ∈ L1(T, C) as

α
[ f ]
n := f̂ (n), n ∈ Z,

as we did in Example 16.2.1, then α
[ f ]
n is well-defined. We can thus define

∑
n∈Z

α
[ f ]
n [ξn]

as the Fourier series of [ f ]. �

Notice that we did not mention the convergence of the above series.
Up to now, the Fourier series is simply a formal power series, meant
only to represent the sequence of partial sums(

N

∑
n=−N

α
[ f ]
n [ξn]

)∞

N=0

.

We shall study about the convergence of the series.

Note that we may extend the notion of a Fourier coefficient for non-
integer powers of eiθ ; i.e. for f ∈ L1(T, C) and r ∈ R, we define

f̂ (r) =
1

2π

∫
[−π,π)

f ξr,

where ξr(θ) = eirθ for all θ ∈ R.

Remark 17.1.2

In the case of p = 2, we’ve seen that
(

α
[ f ]
n

)
n∈Z

∈ `2(Z, C). While this does
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not hold for [ f ] ∈ L1(T, C), we can actually get pretty close.

First, notice that |ξr(θ)| = 1 for all θ ∈ R and r ∈ R. Thus for f ∈
L1(T, C), ∣∣∣ f̂ (n)∣∣∣ = ∣∣∣∣ 1

2π

∫
[−π,π)

f ξr

∣∣∣∣
≤ 1

2π

∫
[−π,π)

∣∣ f ξr
∣∣

=
1

2π

∫
[−π,π)

| f |

= ν1( f ) = ‖[ f ]‖1 .

So as before, if f , g ∈ L1(T, C), and f = g a.e. on [T], then f̂ (r) = ĝ(r) for
all r ∈ R. Thus, we may define α

[ f ]
r := f̂ (r), for r ∈ R.

It follows that

sup
r∈R

∣∣∣α[ f ]
r

∣∣∣ = sup
r∈R

∣∣∣ f̂ (r)∣∣∣ ≤ ‖[ f ]‖1

for all [ f ] ∈ L1(T, C). In particular, we have that(
α
[ f ]
n

)
n∈Z

∈ `∞(Z, C).

We can, in fact, do better. �

Let

c0(Z, C) :=
{
(zn)

∞
n=1 : ∀n ∈ N zn ∈ C ∧ lim

n→∞
zn = 0

}
.

�Theorem 77 (The Riemann-Lebesgue Lemma)

Let f ∈ L1(T, C). Then

lim
r→∞

f̂ (r) = 0 = lim
r→−∞

f̂ (r).

In particular, (
α
[ f ]
n

)
n∈Z

∈ c0(Z, C).

� Strategy
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The key here is to realize that this is simple in the case of characteristic func-
tions of an interval. Since the Lebesgue integration is linear, the span of
the 2π-periodic extensions of these characteristic functions of intervals is
STEP(T, C). The result would hold for its equivalence classes, and we then
simply need to appeal to the density of [STEP(T, C)] in L1(T, C), which
then gives us the result.

� Proof

Case: Characteristic functions Let f0 be the characteristic of an
interval [s, t] ⊆ [−π, π), i.e. f0 = χ[s,t]. Let f := f̌0 be the 2π-
periodic extension of f0 to R, so that f ∈ STEP(T, C). Then f is
continuous and, in particular, bounded, over a bounded interval, f

is Riemann integrable as well. Then

f̂ (r) =
1

2π

∫
[−π,π)

χ[s,t]ξr

=
1

2π

∫ t

s
e−irθ dθ

=
1

2π

(
e−irt − e−irs

−ir

)
.

Thus ∣∣∣ f̂ (r)∣∣∣ ≤ ∣∣e−irt
∣∣+ ∣∣e−irs

∣∣
2π |−ir| =

2
2π |r| =

1
π |r| .

It is clear that
lim
r→∞

f̂ (r) = 0 = lim
r→−∞

f̂ (r).

Case: Step functions Let f ∈ STEP(T, C), and f0 := f �[−π,π),
and write f0 = ∑M

k=1 βkχHk as a disjoint representation, where each
Hk = [sk, tk] is a subinterval [−π, π).

Then the result follows almost exactly like the last case for charac-
teristic functions, while making use of the linearity of the Lebesgue
integral.

Case: Final, generic case Let [ f ] ∈ L1(T, C) and ε > 0. By the density
of [STEP(T, C)] in L1(T, C), let g ∈ STEP(T, C) such that

‖[ f ]− [g]‖1 ≤ ε

2
.
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Then

f̂ (r) =
1

2π

∫
[−π,π)

f ξr

=
1

2π

∫
[−π,π)

( f − g)ξr +
1

2π

∫
[−π,π)

gξr

= f̂ − g(r) + ĝ(r).

As seen before, we have that∣∣∣ f̂ − g(r)
∣∣∣ ≤ ν1( f − g) = ‖[ f − g]‖1 = ‖[ f ]− [g]‖1 <

ε

2
.

Now from the previous case, since g ∈ STEP(T, C), we may choose
N > 0 such that |r| > N so that |ĝ(r)| < ε

2 . Thus |r| > N implies
that ∣∣∣ f̂ ∣∣∣ ≤ ∣∣∣ f̂ − g(r)

∣∣∣+ |ĝ(r)| < ε

2
+

ε

2
= ε.

Thus
lim
r→∞

f̂ (r) = 0 = lim
r→−∞

f̂ (r),

as required.

Recall that
α
[ f ]
n = f̂ (n), n ∈ Z.

It is clear that f̂ (n) = 1
2π

∫
[−π,π) f ξn ∈ C and so α

[ f ]
n ∈ C, and

lim
n→∞

α
[ f ]
n = lim

n→∞
f̂ (n) = 0.

Thus
(

α
[ f ]
n

)
n∈Z

∈ c0(Z, C). �

Remark 17.1.3

Recall that we had [ f ] ∈ L2(T, C) iff (α
[ f ]
n )n∈Z ∈ `2(Z, C). We have shown

that if [ f ] ∈ L1(T, C) implies that

(α
[ f ]
n )n∈Z ∈ c0(Z, C).

However, the converse is not true. We shall see in the final chapter that the
map

Λ : (L1(T, C), ‖·‖1) → (c0(Z, C), ‖·‖∞)
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[ f ] 7→
(

α
[ f ]
n

)
n∈Z

is a continuous, injective linear map, but it is not surjective. �

We are left with some other questions as well; for [ f ] ∈ L1(T, C):

1. does the Fourier series ∑n∈Z α
[ f ]
n [ξn] of f converge, and if so, in

which sense? Is it pointwise (a.e.), uniformly, or in the L1-norm?

2. if the Fourier series does converge in some sense, is the value f

itself?

3. Is [ f ] completely determined by its Fourier series, as we have seen
for L2? That is, if [ f ], [g] ∈ L1(T, C), and α

[ f ]
n = α

[g]
n for all n ∈ Z, is

it true that [ f ] = [g]?

17.2 Convolution

Recall that an algebra is a vector space over some field F which also
happens to be a ring. A Banach algebra A is a Banach space over K

which is also an algebra, where multiplication is jointly continuous
since it satisfies the inequality

‖ab‖ ≤ ‖a‖ ‖b‖

for all a, b ∈ A.

Example 17.2.1

(C(X, K), ‖·‖sup) is a Banach algebra for each locally compact, Haus-
dorff topological space X. In particular, Mn(K) ' B(Kn) (for each n ≥
1), when equipped with the operator norm, is a Banach algebra. �

Thus far, we have seen that L1(T, C) is a Banach space, but we have
not studied about whether it has any multiplicative structure.

For f , g ∈ L1(T, C), we set

g � f (θ) :=
1

2π

∫
[−π,π)

g(s) f (θ − s)dm(s),

where dm(s) is similar to the notation dx in Riemann integration, only
as an indicator of the variable of which the integration is performed
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with respect to (wrt). We refer to g � f (θ) as the convolution of g

and f . Observe that if [ f1] = [ f2], [g1] = [g2] ∈ L1(T, C), then
g1 � f1 = g2 � f2 a.e., and so we may define

[g] ∗ [ f ] := [g � f ],

for all [ f ], [g] ∈ L1(T, C).

The careful reader would quickly notice the following 2 points:

1. it is not clear that g � f ∈ C for any θ ∈ R;

2. it is much less clear that g � f ∈ L1(T, C).

To prove the above statement, we require Fubini’s Theorem, which
requires quite a bit of work.

We shall work around Fubini’s Theorem due to the overhead
that we have to take on. Instead, we shall instead show that we can
turn L1(T, C) (and in turn L1(T, C)) into a so-called left module
over C(T, C) using convolution. 2 That is, given g ∈ C(T, C) and 2 Wikipedia article for left module.

f ∈ L1(T, C), we shall set

g � f (θ) :=
1

2π

∫
[−π,π)

g(s) f (θ − s)dm(s),

and prove that g � f ∈ C(T, C) ⊆ L1(T, C). 3 Now if this is true, then 3 Note C(T, C) ⊆ Lp(T, C) for 1 ≤ p ≤
∞.if f1 ∈ L1(T, C) and f1 = f a.e. on R, then g � f (θ) = g � f1(θ) for all

θ ∈ R, then g � f = g � f1, and we can thus define

g ∗ [ f ] = [g � f ], [ f ] ∈ L1(T, C).

One advantage to convolving with continuous functions only is that
we can make use of the Riemann integral. This will allow us to garner
more information about the continuity properties of �, and ultimately
about convergence properties of the Fourier series.

� Lemma 78 (Preservation of the Lebesgue Integral of 2π-
periodic functions under certain Transformations)

Let f ∈ L1(T, C) and θ ∈ R.

https://en.wikipedia.org/wiki/Left_module
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1. ∫
[−π,π)

f =
∫
[−π,π)

τ◦
s ( f ),

where τ◦
s ( f )(θ) = f (θ − s) is a translation of f by s.

2. If h(s) := f (−s), s ∈ R, is a reflection of f (on some axis), then∫
[−π,π)

h =
∫
[−π,π]

f .

3. Let ϕ f ;θ : R → C be ϕ f ,θ(s) = f (θ − s). Then ϕ f ,θ ∈ L1(T, C) and

ν1(ϕ f ,θ) = ν1( f ).

That is,

1
2π

∫
[−π,π)

| f (θ − s)|dm(s) =
1

2π

∫
[−π,π)

| f (t)|dm(t).

� Proof

The proof of this lemma is in A6Q1. �

� Definition 50 (Convolution)

Let f ∈ L1(T, C) and g ∈ C(T, C). We define the convolution of f by g

to be the function

g � f : R → C

θ 7→ 1
2π

∫
[−π,π)

g(s) f (θ − s)dm(s).

We still have not shown that g � f (θ) ∈ C for each θ ∈ R. Let’s do
that right now.

Fixing θ ∈ R, we see that by Lemma 78,

|g � f (θ)| =
∣∣∣∣ 1
2π

∫
[−π,π)

g(s) f (θ − s)dm(s)
∣∣∣∣
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≤ 1
2π

∫
[−π,π)

|g(s)| | f (θ − s)|dm(s)

≤ ‖g‖sup
1

2π

∫
[−π,π)

∣∣∣ϕ f ,θ(s)
∣∣∣dm(s)

= ‖g‖sup ν1(ϕ f ,θ)

= ‖g‖sup ν1( f ) < ∞.

It follows that g � f is indeed a complex-valued function.

The following is an extremely important lemma that we shall use
extensively.

� Lemma 79 (Swapping Convolutions)

Let f ∈ L1(T, C) and g ∈ L∞(T, C). If θ ∈ R, then∫
[−π,π)

g(s) f (θ − s)dm(s) =
∫
[−π,π)

g(θ − t) f (t)dm(t).

In particular, this holds if

f ∈ L1(T, C) and g ∈ C(T, C).

� Proof

The proof of this lemma is in A6Q2. �

Remark 17.2.1

With Lemma 79, for f ∈ L1(T, C) and g ∈ C(T, C), we can define the
convolution of g by f as

f � g(θ) =
1

2π

∫
[−π,π)

g(θ − t) f (t)dm(t).

Consequently, we have that f � g(θ) = g � f (θ) for all θ ∈ R, and so we
shall simply refer to this function as the convolution of f and g. �

Exercise 17.2.1
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Let h : R → C be a 2π-periodic and continuous function. Prove that h is
uniformly continuous. 4 4 This is a rather simple (even proof-

wise) but important realization in our
theories going forward.

� Proposition 80 (Continuity of the Convolution of f and g

where g is Continuous)

Let g ∈ C(T, C) and f ∈ L1(T, C). Then g � f ∈ C(T, C).

� Proof

First, note that by Exercise 17.2.1, g is uniformly continuous. Let
ε > 0. We can then choose δ > 0 such that ∀x, y ∈ R, |x − y| < δ

implies that |g(x)− g(y)| < ε
ν1( f ) .

Now for any θ, θ0 ∈ R such that |θ − s − (θ0 − s)| = |θ − θ0| < δ,
for any s ∈ R, we have that

|g(θ − s)− g(θ0 − s)| < ε

ν1( f )
.

Then by Lemma 79 and the last remark, we have

|g � f (θ)− g � f (θ0)|

=
1

2π

∣∣∣∣∫
[π,π)

g(θ − s) f (s)− g(θ0 − s) f (s)dm(s)
∣∣∣∣

≤ 1
2π

∫
[−π,π)

|g(θ − s)− g(θ0 − s)| | f (s)|dm(s)

<
1

2π

∫
[−π,π)

ε

ν1( f )
| f (s)|dm(s)

=
ε

ν1( f )
ν1( f ) = ε.

Thus g � f is (uniformly) continuous.

That g � f is 2π-periodic follows from g and f being 2π-periodic
themselves. �

We now want to see if given [ f1] = [ f2] ∈ L1(T, C), do we have
g � f1 = g � f2? This is, in particular, motivated by what we already
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saw in L2(T, C), where this realization allowed us to work solely
with L2(T, C) instead of L2(T, C). Fortunately, this indeed holds
for L1(T, C).

Observe that if [ f1] = [ f2] ∈ L1(T, C), then f1 = f2 a.e. on R, which
then g f1 = g f2 a.e. We thus see that ∀θ ∈ R, and any s ∈ R,

g � f1(θ) = f1 � g(θ)

=
1

2π

∫
[−π,π)

g(θ − s) f1(s)dm(s)

=
1

2π

∫
[−π,π]

g(θ − s) f2(s)dm(s)

= f2 � g(θ) = g � f2(θ).

We may thus extend our notion of convolutions to L1(T, C).

� Definition 51 (Convolution on L1(T, C))

Given g ∈ C(T, C) and [ f ] ∈ L1(bt, C), we define the convolution of g

and [ f ] to be
g ∗ [ f ] := [g � f ],

where g � f ∈ L1(T, C) is the convolution introduced in � Definition 50.

� Definition 52 (Convolution Operator with Kernel)

We define the convolution operator with kernel g to be the map

Cg : L1(T, C) → L1(T, C)

[ f ] 7→ g ∗ [ f ].

� Warning

The kernel defined above has nothing to do with the notion of kernels in
abstract algebra.
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Remark 17.2.2

Observe that if [ f1], f2 ∈ L1(T, C), and if κ ∈ C, then

Cg(κ[ f1] + [ f2]) = g ∗ [κ f1 + f2]

=
1

2π

∫
[−π,π)

g(s)(κ f1(θ − s) + f2(θ − s))dm(s)

= κ
1

2π

∫
[−π,π)

g(s) f1(θ − s)dm(s)

+
1

2π

∫
[−π,π)

g(s) f2(θ − s)dm(s)

= κg ∗ [ f1] + g ∗ [ f2]

= κCg([ f1]) + Cg([ f2]).

Thus Cg is a linear map on L1(T, C).

Since (L1(T, C), ‖·‖1) is a Banach space, and Cg is linear, it is natural to
ask if Cg is bounded, 5 and if so, what is its operator norm? 5 This would also mean that Cg is

continuous.
We shall see that the answer to this question is intimately related to the

question of convergence of Fourier series of elements of L1(T, C). �

With our current tool set, it is rather difficult to directly compute∥∥Cg
∥∥. In particular, we have to deal with monstrosities of the follow-

ing form:

1
2π

∫
[−π,π)

(
1

2π

∫
[−π,π)

g(s) f (θ − s)dm(s)
)

e−inθ dm(θ).

What we shall do is to reformulate Cg as a vector-valued Riemann
integral on L1(T, C). We shall be able to extend this notion of convo-
lution beyond the Banach space L1(T, C). To that end, we first need to
understand the notion of a homogeneous Banach space.
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18.1 Convolution (Continued)

Let f ∈ L1(T, C), and s ∈ R. Consider the function

τ◦
s ( f ) : R → C

θ 7→ f (θ − s),

which we have seen before. One should think of τ◦
s as translating f

by s. The superscript ◦ above τs is to indicate that we are acting on
functions. When working with elements of L1(T, C), we shall drop
this superscript.

Now, since M(R) is invariant under translation, the Lebesgue mea-
sure is translation-invariant, and the set of 2π-periodic functions is
invariant under translation implies that

τ◦
s ( f ) ∈ L1(T, C).

Furthermore, if [ f ] = [g] ∈ L1(T, C), then

[τ◦
s ( f )] = [τ◦

s (g)].

Thus, we may define the operation of translation by s on L1(T, C) as

τs([ f ]) := [τ◦
s ( f )].

� Definition 53 (Homogeneous Banach Spaces)

A homogeneous Banach space over T is a linear manifold B in L1(T, C),
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equipped with the norm ‖·‖B wrt to which (B, ‖·‖B) is a Banach space,
satisfying

1. ‖[ f ]‖1 ≤ ‖[ f ]‖B for all [ f ] ∈ B;

2. [Trig(T, C)] ⊆ B;

3. B is invariant under translation; i.e. ∀[ f ] ∈ B and s ∈ R,

τs[ f ] = [τ◦
s ( f )] ∈ B;

4. ∀[ f ] ∈ B, s ∈ R, ‖τs[ f ]‖B = ‖[ f ]‖B; and

5. for each [ f ] ∈ B, the map

Ψ[ f ] : R → B

s 7→ τs[ f ]

is continuous. 1 1 This means that the translation itself is
a continuous process on a homogeneous
Banach space.

Remark 18.1.1

It may be surprising to find that a linear manifoldM of a Banach space X
may not be closed in the ambient norm, but that (M, ‖·‖M) is complete in its
own norm.

But one may quickly notice that each of the spaces Lp(T, C) is dense in
L1(T, C), for 1 ≤ p < ∞, and each of them is complete under their corre-
sponding ‖·‖p-norm. So we’ve already seen the above ‘surprising’ fact. �

Example 18.1.1 (([C(T, C)],‖·‖∞) is a homogeneous Banach space)

Recall that
[C(T, C)] ⊆ L∞(T, C)

is a subset of L1(T, C) and it is a linear manifold. Furthermore, for
f ∈ C(T, C), we have that

‖[ f ]‖∞ = ‖ f ‖sup := sup{| f (θ)| : θ ∈ [−π, π)},

and that ([C(T, C)], ‖·‖∞) is a Banach space. We shall show that it is,
in fact, a homogeneous Banach space.
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1. Let [ f ] ∈ [C(T, C)]. Then

‖[ f ]‖1 =
1

2π

∫
[−π,π)

| f | ≤ 1
2π

∫
[−π,π)

‖ f ‖sup = ‖ f ‖sup = ‖[ f ]‖∞ .

2. It is clear that ξn(θ) = einθ is continuous for each θ ∈ R and so
ξn ∈ C(T, C). Since [C(T, C)] is a linear manifold, it follows that
[Trig(T, C)] ⊆ [C(T, C)].

3. If f ∈ C(T, C), then it is clear that τ◦
s ( f ) ∈ C(T, C), since a trans-

lation of 2π-periodic continuous function is still a 2π-periodic
continuous function. Thus [C(T, C)] is translation invariant.

4. Let [ f ] ∈ [C(T, C)]. Then

‖τs[ f ]‖∞ = ‖[τ◦
s ( f )]‖∞ = ‖τ◦

s ( f )‖∞

= sup{| f (θ − s)| : θ ∈ R}

= sup{| f (θ)| : θ ∈ R}

= ‖ f ‖sup = ‖[ f ]‖∞ .

5. Let [ f ] ∈ [C(T, C)], and wlog wma f ∈ C(T, C). Since f is continu-
ous, we have that for every s ∈ R, ∀ε > 0, ∃δ > 0 such that ∀s0 ∈ R,
if |s − s0| < δ, then | f (s)− f (s0)| < ε. In particular, for any θ ∈ R,
since |θ − s − (θ − s0)| < δ, we have

| f (θ − s)− f (θ − s0)| <
ε

2
.

Now for any s ∈ R, and any ε > 0, we may pick the same δ > 0 so
that for any s0 ∈ R, we have∥∥∥Ψ[ f ](s)− Ψ[ f ](s0)

∥∥∥
∞
= ‖τs[ f ]− τs0 [ f ]‖∞

=
∥∥[τ◦

s ( f )]− [τ◦
s0
( f )]

∥∥
∞

=
∥∥τ◦

s ( f )− τ◦
s0
( f )
∥∥

sup

= ‖ f (θ − s)− f (θ − s0)‖

= sup{| f (θ − s)− f (θ − s0)| : θ ∈ R}

≤ sup
{ ε

2
: θ ∈ R

}
=

ε

2
< ε.

It follows that Ψ[ f ] is indeed continuous for every s ∈ R.
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This concludes the proof that ([C(T, C)], ‖·‖∞) is a homogeneous
Banach space. �

Example 18.1.2 ((Lp(T, C),‖·‖p) is a homogeneous Banach space for
1 ≤ p < ∞)

Let 1 ≤ p < ∞. We shall show that (Lp(T, C), ‖·‖p) is a homogeneous
Banach space.

1. Let f ∈ Lp(T, C), and q the Lebesgue conjugate of p, i.e. 1
p + 1

q =

1. Recall from � Proposition 23 that there exists a measurable
function ρ : R → T such that f = ρ | f |. One may observe that by
Hölder’s Inequality, and the fact that f itself is 2π-periodic, we have
ρ ∈ Lq(T, C). Furthermore,

‖[ρ]‖q =

(
1

2π

∫
[−π,π)

|ρ|q
)1/q

≤
(

1
2π

∫
[−π,π)

1
)1/q

= 1.

Most importantly, for us here, ‖[ρ]‖q = ‖[ρ]‖q = 1. It follows, again,
by Holder’s Inequality, that

‖[ f ]‖p =

(
1

2π

∫
[−π,π)

| f · ρ|
)
≤ ‖[ f ]‖p ‖[ρ]‖q ≤ ‖[ f ]‖p .

2. As a consequence of the last example, we observe that

[Trig(T, C)] ⊆ [C(T, C)] ⊆ Lp(T, C) ⊆ L1(T, C).

3. The fact that the norm is finite in next part makes the final conclu-
sion.

4. Let [ f ] ∈ Lp(T, C) and s ∈ R. We observe that by Lemma 79,

‖τs[ f ]‖p = ‖[τ◦
s ( f )]‖p

=

(
1

2π

∫
[−π,π)

| f (θ − s)|p dm(s)
)1/p

=

(
1

2π

∫
[−π,π)

| f (s)|p dm(s)
)1/p

= ‖[ f ]‖p < ∞.

5. Let [ f ] ∈ Lp(T, C) and s ∈ R. WTS ∀ε > 0, ∃δ > 0 such that
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∀s0 ∈ R, if |s − s0| < δ, then∥∥∥Ψ[ f ](s)− Ψ[ f ](s0)
∥∥∥

p
= ‖τs[ f ]− τs0 [ f ]‖p

=
∥∥[τ◦

s ( f )]− [τ◦
s0
( f )]

∥∥
p

=

(
1

2π

∫
[−π,π)

| f (θ − s)− f (θ − s0)|dm(s)
)1/p

.

We realize that we need to see if we can have f (θ − s) to be as close
to f (θ − s0) as possible under the right circumstances.

Notice that [C(T, C)] is dense in Lp(T, C). Thus, we may find [g] ∈
[C(T, C)] such that

‖[ f ]− [g]‖p <
ε

3
.

Furthermore, we can pick this g such that ∃δ > 0 such that for
|s − s0| < δ, we have

∥∥τ◦
s (g)− τ◦

s0
(g)
∥∥

∞ <
ε

3
,

and this is by the last example. Note that

‖·‖1 ≤ ‖·‖p ≤ ‖cot‖∞ .

Thus by the same δ, we have

∥∥τ◦
s ( f )− τ◦

s0
( f )
∥∥

p ≤ ‖τ◦
s ( f )− τ◦

s (g)‖p +
∥∥τ◦

s (g)− τ◦
s0
(g)
∥∥

p

+
∥∥τ◦

s0
(g)− τ◦

s0
( f )
∥∥

p

<
ε

3
+

ε

3
+

ε

3
= ε

saving us the work of doing integration, and completing the proof.
�

Example 18.1.3 ((L∞(T, C),‖·‖∞) is not a homogeneous Banach
space)

The situation for p = ∞ is different. It checks out the first 4 conditions,
but fails on the last; translations under this norm is not continuous.
That sounds sensible, given how the norm is defined as a supremum
and not some nice elementary function, but we shall see where exactly
does it fall short.
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1. This is an easy exercise: for [ f ] ∈ L∞(T, C),

‖[ f ]‖1 =
1

2π

∫
[−π,π)

| f | ≤ 1
2π

∫
[−π,π)

‖ f ‖sup = ‖ f ‖sup = ‖[ f ]‖∞ .

2. Again, by Example 18.1.1, we have that

[Trig(T, C)] ⊆ [C(T, C)] ⊆ L∞(T, C).

3. For [ f ] ∈ L∞(T, C) and s ∈ R, we have

‖τs[ f ]‖∞ = ‖[τ◦
s ( f )]‖∞

= ‖ f (θ − s)‖sup

= sup{| f (θ − s)| : θ ∈ R}

= sup{| f (θ)| : θ ∈ R}

= ‖ f ‖sup = ‖[ f ]‖∞ < ∞.

4. The last part concluded with what we want.

For the translation not being continuous, consider the function

f0 := χ[0,π) ∈ L∞([−π, π), C)

and let
f = f̌0 ∈ L∞(T, C)

be the 2π-periodic extension of f0.

For −π < s < 0, we see that

τs( f )(θ)− τ0( f )(θ) = 1 − 0 = 1

for all θ ∈ (s, 0), and so

‖τs[ f ]− τ0[ f ]‖∞ = 1.

In particular,

lim
s→0

‖τs[ f ]− τ0[ f ]‖∞ = 1 6= 0 ‖τ0[ f ]− τ0[ f ]‖∞ ,

i.e. even if s is close to 0, the translation does not get any more contin-
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uous. Thus, in particular, s 7→ τs[ f ] is not continuous at 0. �

Let g ∈ C(T, C) and [ f ] ∈ L1(T, C). We defined the convolution of
g and [ f ] to be g ∗ [ f ] := [g � f ], where

g � f (θ) =
1

2π

∫
[−π,π)

g(s) f (θ − s)dm(s).

So we defined g ∗ [ f ] by first defining g � f pointwise, using Lebesgue
integration.

We showed in Example 18.1.2 that (L1(T, C), ‖·‖1) is a homoge-
neous Banach space over T. Then by the 5th condition in the defini-
tion, the function

β : R → L1(T, C)

s 7→ g(s)τs[ f ]

is continuous. By �Theorem 3,

1
2π

∫ π

−π
β(s) ds =

1
2π

∫ π

−π
g(s)τs[ f ] ds

exists in L1(T, C), and it is obtained as an ‖·‖1-limit of Riemann sums
(β, PN , P∗

N) ∈ L1(T, C) using partitions PN of [−2π, 2π] with corre-
sponding choices P∗

N of test values for PN .

Fixing g ∈ C(T, C), we can define the map

Γg : L1(T, C) → L1(T, C)

[ f ] 7→ 1
2π

∫ π

−π
g(s)τs[ f ] ds.

Notice that Γg is linear: for [ f ], [h] ∈ L1(T, C), we have

Γg([ f ] + [h]) = Γ([ f + h])

=
1

2π

∫ π

−π
g(s)τs([ f + h]) ds

=
1

2π

∫ π

−π
g(s)[τ◦

s ( f + h)] ds

=
1

2π

∫ π

−π
g(s)[ f (θ − s) + h(θ − s)] ds

=
1

2π

∫ π

−π
g(s)([ f (θ − s)] + [h(θ − s)]) ds



216 Lecture 18 Jul 11th 2019 Convolution (Continued)

=
1

2π

∫ π

−π
g(s)τs[ f ] + g(s)τs[h] ds

= Γg([ f ]) + Γg([h]).

One quickly realizes the resemblance of Γg to Cg. After all, in par-
ticular,

τs[ f ] = [τ◦
s ( f )], and τ◦

s ( f )(θ) = f (θ − s),

for all θ ∈ R.

We shall make showing Γg = Cg as our next goal, so that for [ f ] ∈
L1(T, C), we have

Cg[ f ] = g ∗ [ f ] = [g � f ] =
1

2π

∫ π

−π
g(s)τs[ f ] ds = Γg[ f ].

This is, however, not an obvious or trivial result, especially since the
two constructions are entirely different; one is an equivalence class
of convolutions, while the other is an integral of convolution-like
expressions but involving equivalence classes.
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19.1 Convolution (Continued 2)

By Example 18.1.1, it follows that if f ∈ C(T, C), then the map
s 7→ τs[ f ], or equivalently s 7→ τ◦

s ( f ) is continuous from (T, |·|) to
(C(T, C), ‖·‖sup).

� Lemma 81 (Pointwise Value of Γg)

Let f , g ∈ (C(T, C), ‖·‖sup). Let

Γ◦
g( f ) :=

1
2π

∫ π

−π
g(s)τ◦

s ( f ) ds,

taken as a Banach space Riemann integral in (C(T, C), ‖·‖sup). Then

Γ◦
g( f )(θ) = g � f (θ) =

1
2π

∫
[−π,π)

g(s) f (θ − s)dm(s)

for all θ ∈ R.

� Strategy

The most difficult part of this proof is to understand the difference between
Γ◦

g( f ) and g � f . For Γ◦
g( f ), since (C(T, C), ‖·‖sup) is a Banach space, and

β : R → C(T, C) given by β(s) := g(s) f τ◦
s ( f ) ∈ C(T, C) is continuous,

by �Theorem 3, Γ◦
g( f ) is a ‖·‖sup-limit of Riemann sums S(β, PN , P∗

n ).
We may further, wlog, suppose that for each N ≥ 1, PN ∈ P([−π, π]) is a
regular partition of [−π, π] into 2N subintervals of equal length 2π

2N , and we
may pick P∗

N = PN \ \{−π} so that P∗
N is a set of test values for PN .
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On the other hand, g � f is the convolution of g and f , which was defined
pointwise via Lebesgue integration.

� Proof

For a fixed θ0 ∈ R, we may define γθ0 : R → K as

γθ0(s) = g(s) f (θ0 − s), s ∈ R.

Since both g and f are continuous and 2π-periodic, γθ0 is also con-
tinuous and 2π-periodic. Thus both sides are bounded and Rie-
mann integrable on [−π, π). By �Theorem 40, we have

g � f (θ0) =
1

2π

∫
[−π,π)

g(s) f (θ0 − s)dm(s)

=
1

2π

∫
[−ππ)

γθ0(s)dm(s)

=
1

2π

∫ π

−π
γθ0(s) ds

=
1

2π

∫ π

−π
g(s) f (θ0 − s) ds.

Since (C, |·|) is a Banach space, �Theorem 3, with the same PN

and P∗
N as defined in our strategy, we have

g � f (θ0) =
1

2π

∫ π

−π
γ(s) ds = lim

N→∞
S(γ, PN , P∗

N).

Finally, ∥∥∥Γ◦
g( f )− S(β, PN , P∗

N)
∥∥∥

sup

≥
∣∣∣Γ◦

g( f )(θ0)− S(β, PN , P∗
N)(θ0)

∣∣∣
=

∣∣∣∣∣Γ◦
g( f )(θ0)−

2N

∑
n=1

(β(pn))(θ0)(pn − pn−1)

∣∣∣∣∣
=

∣∣∣∣∣Γ◦
g( f )(θ0)−

2N

∑
n=1

(g(pn) f (θ0 − pn))(pn − pn−1)

∣∣∣∣∣
=

∣∣∣∣∣Γ◦
g( f )(θ0)−

2N

∑
n=1

γθ0(s)(pn − pn−1)

∣∣∣∣∣
=
∣∣∣Γ◦

g( f )− S(γ, PN , P∗
N)
∣∣∣
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Then, since limN→∞

∥∥∥Γ◦
g( f )− S(β, PN , P∗

N)
∥∥∥ = 0, it follows that

lim
N→∞

∣∣∣Γ◦
g( f )− S(γ, PN , P∗

N)
∣∣∣ = 0.

Thus
Γ◦

g( f )(θ0) = lim
N→∞

S(γ, PN , P∗
N) = g � f (θ0).

Since θ0 ∈ R was arbitrary, we indeed have

Γ◦
g( f ) = g � f . �

�Theorem 82 (Equivalence of Γg and Cg)

Let g ∈ C(T, C) and [ f ] ∈ L1(T, C). Let Γg be as defined before; i.e.

Γg[ f ] :=
1

2π

∫ π

−π
g(s)τs[ f ] ds,

where the integral is a Banach space Riemann integral in (L1(T, C), ‖·‖1).
Then

Γg[ f ] = g ∗ [ f ] = [g � f ] = Cg[ f ].

� Proof

By the ‖·‖1-density of [C(T, C)] in L1(T, C), we can make use of
Lemma 81. In particular, we can find a sequence ( fm)∞

m=1 in C(T, C)

such that
lim

n→∞
‖[ fm]− [ f ]‖1 = 0.

Thus, for each m ≥ 1, we have

Γg[ fm] =
1

2π

∫ π

−π
g(s)τs[ fm] ds.

Since fm ∈ C(T, C), for each m ≥ 1, the map s 7→ g(s)τ◦
s ( fm) is

continuous, thus

Γ◦
g( fm) =

1
2π

∫ π

−π
g(s)τ◦

s ( fm) ds

converges in (C(T, C), ‖·‖sup) by the last lemma. In particular, for
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an appropriate sequence (PN)N of partitions of [−π, π], we have
that

Γ◦
g( fm) = lim

N→∞
S(βm, PN , P∗

N),

where βm = g(s)τ◦
s ( fm), for s ∈ [−π, π). But given any Riemann

sum S(βm, Q, Q∗) of the form

M

∑
k=1

βm(q∗k )(qk − qk−1) =
M

∑
k=1

g(q∗k )τ
◦
q∗k
( fm)(qk − qk−1)

in C(T, C), its image in [C(T, C)] is

[S(βm, Q, Q∗)] =
M

∑
k=1

g(q∗k )τq∗k
[ fm](qk − qk−1).

Since h 7→ [h] from (C(T, C), ‖·‖sup) to ([C(T, C)], ‖·‖∞) is a bijec-
tive linear isometry, the image of Γ◦

g( fm) under this map is

[Γ◦
g( fm)] = lim

N→∞
[S(βm, PN , P∗

N)],

and this convergence is wrt the ‖·‖∞-norm.

On the other hand, by the definition of each [S(βm, PN , P∗
N)], we

have, precisely,

lim
N→∞

[S(βm, PN , P∗
N)] = Γg([ fm]) ∈ ([C(T, C)], ‖·‖∞),

thus
[Γ◦

g( fm)] = Γg[ fm], m ≥ 1.

Now
[S(βm, PN , P∗

N)] ∈ [C(T, C)] ⊆ L1(T, C)

and
Γg[ fm] ∈ [C(T, C)] ⊆ L1(T, C).

Since [C(T, C)] is a homogeneous Banach space, ‖[h]‖1 ≤ ‖[h]‖∞ for
all [h] ∈ [C(T, C)]. Thus

0 ≤ lim
N→∞

∥∥∥[Γ◦
g( fm)]− [S(βm, PN , P∗

N)]
∥∥∥

1

≤ lim
N→∞

∥∥∥[Γ◦
g( fm)]− [S(βm, PN , P∗

N)]
∥∥∥

∞
= 0,
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and so
Γg[ fm] = [Γ◦

g( fm)] = lim
N→∞

[S(βm, PN , P∗
N)],

where the convergence happens in (L1(T, C), ‖·‖1).

Step 1 WTS ∀m ≥ 1, Γg[ fm] = g ∗ [ fm]. By Lemma 81, ∀m ≥ 1, we
have Γ◦

g( fm) = g � fm. Thus

Γg[ fm] = [Γ◦
g( fm)] = [g � fm] = g ∗ [ fm]

for m ≥ 1.

Step 2 WTS g ∗ [ f ] = limm→∞ g ∗ [ fm] in (L1(T, C), ‖·‖1). One way
we can show this is by realizing that we want

0 = lim
m→∞

(g ∗ [ fm]− g ∗ [ f ]) = lim
m→∞

[g � fm − g � f ],

and for θ ∈ R,

(g � fm − g � f )(θ) =
1

2π

∫
[−π,π)

g(s)( fm(θ − s)− f (θ − s))dm(s)

= g � ( fm − f )(θ).

As noted after � Definition 50, we have

|g � ( fm − f )(θ)| ≤ ‖g‖sup ‖[ fm]− [ f ]‖1 .

Thus for m ≥ 1,

‖g ∗ [ fm]− g ∗ [ f ]‖1 = ‖g ∗ [ fm − f ]‖1

=
1

2π

∫
[−π,π)

|g � ( fm − f )(θ)|dm(θ)

≤ 1
2π

∫
[−π,π)

‖g‖sup ‖[ fm]− [ f ]‖1 dm(θ)

= ‖g‖sup ‖[ fm]− [ f ]‖1 .

Since
lim

m→∞
‖[ fm]− [ f ]‖1 = 0,

1 it follows that 1 I bet you forgot this! :P

g ∗ [ f ] = lim
m→∞

g ∗ [ fm]

in (L1(T, C), ‖·‖1).
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Step 3 WTS Γg[ f ] = limm→∞ Γg[ fm] in (L1(T, C), ‖·‖1). We see that
by the properties of a homogeneous Banach space, we have

∥∥Γg[ f ]− Γg[ fm]
∥∥

1 =

∥∥∥∥ 1
2π

∫ π

−π
g(s)τs[ f − fm] ds

∥∥∥∥
1

≤ 1
2π

∫ π

−π
g(s) ‖τs[ f − fm]‖1 ds

≤ ‖g‖sup ‖τs[ f − fm]‖1

= ‖g‖sup ‖[ f ]− [ fm]‖1 .

As before, it follows that

Γg[ f ] = lim
m→∞

Γg[ fm] ∈ (L1(T, C), ‖·‖1).

Step 4 Finally, we see that

Γg[ f ] = lim
m→∞

Γg[ fm] = lim
m→∞

g ∗ [ fm] = g ∗ [ f ]. �

Viewing Γg as a map from L1(T, C) onto itself, we finally conclude
our gruesome path into showing that Γg = Cg. Thus, our 2 “notions”
of “convolutions” agree. In fact, when g ∈ C(T, C), we may define

ΓB
g : B → B

[ f ] 7→ 1
2π

∫ π

−π
g(s)τs[ f ] ds

as a map on any homogeneous Banach space B over T. Furthermore,
Cg[ f ] = [g � f ] ∈ B.

Let us show that the above function always agree with convolution.

�Theorem 83 (Riemannian Version of Convolution on Homoge-
neous Banach Spaces)

Let (B, ‖·‖B) be a homogeneous Banach space over T, [ f ] ∈ B, and
g ∈ C(T, C). Then

1
2π

∫ π

−π
g(s)τs[ f ] ds

converges inB. Furthermore,
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1.
g ∗ [ f ] =

1
2π

∫ π

−π
g(s)τs[ f ] ds,

where g ∗ [ f ] = [g � f ], and where for all θ ∈ R,

g � f (θ) =
1

2π

∫
[−π,π)

g(s) f (θ − s)dm(s).

That is, ΓB
g [ f ] = g ∗ [ f ].

2. We also have
‖g ∗ [ f ]‖B ≤ ν1(g) ‖[ f ]‖B .

� Proof

1. Since (B, ‖·‖B) is a Banach space, and for [ f ] ∈ B, the function
β : R → B such that

β(s) := g(s)τs[ f ]

is continuous, by �Theorem 3,

ΓB
g [ f ] :=

1
2π

∫ π

−π
β(s) ds =

1
2π

∫ π

−π
g(s)τs[ f ] ds

exists in B.

As before, wlog wma PN ∈ P([−π, π)) is a regular partition into
2N subintervals of equal length, and if we set P∗

N = PN \ {π} as
the corresponding set of test values of PN , then

lim
N→∞

∥∥∥ΓB
g [ f ]− S(β, PN , P∗

N)
∥∥∥
B

= 0.

Since ‖[h]‖1 ≤ ‖[h]‖B for all [h] ∈ B, since B is a homogeneous
Banach space. Thus

lim
N→∞

∥∥∥ΓB
g [ f ]− S(β, PN , P∗

N)
∥∥∥

1
= 0.

Hence
ΓB

g [ f ] =
1

2π

∫ π

−π
g(s)τs[ f ] ds

in (L1(T, C), ‖·‖1). Phrased differently, we have ΓB
g [ f ] = ΓL1(T,C)

g [ f ].
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It follows by �Theorem 82 that

ΓB
f [ f ] = ΓL1(T,C)

g [ f ] = g ∗ [ f ].

2. Recall that given any homogeneous Banach space over T, we
defined the continuous map Ψ[ f ] : R− > B such that Ψ[ f ](s) =

τs[ f ]. Notice that since B is a homogeneous Banach space,∥∥∥Ψ[ f ](s)
∥∥∥
B

= ‖τs[ f ]‖B = ‖[ f ]‖B .

Thus, observe that

‖g ∗ [ f ]‖B =
1

2π

∥∥∥∥∫ π

−π
g(s)τs[ f ] ds

∥∥∥∥
B

=
1

2π

∥∥∥∥∫ π

−π
g(s)Ψ[ f ](s) ds

∥∥∥∥
B

≤ 1
2π

∫ ;p

−π
|g(s)|

∥∥∥Ψ[ f ](s)
∥∥∥
B

ds

=
1

2π

∫ π

−π
|g(s)| ‖[ f ]‖B ds

= ‖[ f ]‖B ν1(g). �

Remark 19.1.1

The first result in �Theorem 83 is stronger than it seems. In � Propo-
sition 80, we showed that if g ∈ C(T, C) and f ∈ L1(T, C), then
g � f ∈ C(T, C), and so g ∗ [ f ] := [g � f ] ∈ [C(T, C)]. Then why
is g ∗ [ f ] ∈ B? There is no reason whyB should contain all continuous
functions, although it does contain all trigonometric functions. What we
have shown is that g ∗ [ f ] ∈ B even if B does not contain [C(T, C)]. In
other words, convolutions (at least by a continuous function) keeps us in this
smaller spaceB. �

�Theorem 84 (Convolution as a Normalizer)

Let g ∈ C(T, C), and let

Cg : ([C(T, C)], ‖·‖∞) → ([C(T, C)], ‖·‖∞),
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as defined in � Definition 52, corresponding to g, so that Cg[h] = g ∗ [h]
by �Theorem 82. Then

∥∥Cg
∥∥ = ν1(g) = ‖[g]‖1.

� Proof

By part 2 of �Theorem 83, for [ f ] ∈ ([C(T, C)], ‖·‖∞),

∥∥Cg[ f ]
∥∥

∞ = ‖g ∗ [ f ]‖∞ ≤ ν1(g) ‖[ f ]‖∞ ,

so
∥∥Cg

∥∥ ≤ ν1(g).

Let f ∈ C(T, C) with ‖[ f ]‖∞ ≤ 1. Then g ∗ [ f ] ∈ [C(T, C)] so that

∥∥Cg[ f ]
∥∥

∞ = ‖g ∗ [ f ]‖∞ = ‖g � f ‖sup ≥ ν1(g).

Then by �Theorem 40, we see that

g � f (0) =
1
2

∫
[−π,π)

g(s) f (0 − s)dm(s)

=
1

2π

∫ π

−π
g(s) f (−s) ds �
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20.1 Convolution (Continued 3)

Let us establish a similar result for convolution by a continuous func-
tion g acting on L1(T, C).

�Theorem 85 (Convolution Operator for g on L1(T, C))

Let g ∈ C(T, C), and

Cg : L1(T, C) → L1(T, C)

be the convolution operator corresponding to g, so that Cg[ f ] = g ∗ [ f ].
Then

∥∥Cg
∥∥ = ν1(g) = ‖[g]‖1.

� Proof

To be added �

We shall next explore the connection between convolution opera-
tors and convergence of Fourier series.

20.2 The Dirichlet Kernel

Recall that given [ f ] ∈ L2(T, C), the sequence (∆N([ f ]))∞
N=1 of partial

sums of the Fourier series of [ f ] converges in the ‖·‖2-norm to [ f ].

We want to see how far we can extend the same result for [ f ] ∈
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L1(T, C). Our little (not so little) impasse into convolution is actually
somewhat important to the so-called Dirichlet kernel, of which we
shall see below, and why that’s important is also what we shall quite
immediately see.

� Definition 54 (Dirichlet Kernel of Order N)

For each n ∈ Z, recall that ξn ∈ C(T, C) is the function ξn(θ) = einθ . For
N ≥ 1, we define the Dirichlet kernel of order N as

DN =
N

∑
n=−N

ξn.

� Note 20.2.1

Again, the word ‘kernel’ has nothing to do with the null space of any linear
map.

Let f ∈ L1(T, C). For each N ≥ 1, define

∆◦
N( f ) :=

N

∑
n=−N

α
[ f ]
n ξn =

N

∑
n=−N

f̂ (n)ξn.

It is clear that ∆◦
N( f ) ∈ C(T, C), since it is a finite linear combination of

{ξn}N
n=−N ⊆ C(T, C).

If f = g a.e. on R, we saw that α
[ f ]
n = α

[g]
n for all n ∈ Z, which then

∆◦
N( f ) = ∆◦

N(g) for N ≥ 1. Thus, we may define

∆N([ f ]) = [∆◦
N( f )], N ≥ 1.

Hence, ∆N([ f ]) is the Nth partial sum of the Fourier series of [ f ]. In
the case of [ f ] ∈ L2(T, C), this definition coincides with our previous
definition.

For N ≥ 1, f ∈ L1(T, C) and θ ∈ R, we have

∆◦
N( f )(θ) =

N

∑
n=−N

α
[ f ]
n ξn
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=
N

∑
n=−N

(
1

2π

∫
[−π,π)

f (s)ξn(s)dm(s)
)

ξn(θ)

=
N

∑
n=−N

1
2π

∫
[−π,π)

f (s)ein(θ−s) dm(s)

=
N

∑
n=−N

1
2π

∫
[−π,π)

f (θ − s)eins dm(s) ∵ Lemma 79

=
1

2π

∫
[−π,π)

N

∑
n=−N

f (θ − s)eins dm(s)

=
1

2π

∫
[−π,π)

DN(s) f (θ − s)dm(s)

= (DN � f )(θ).

Thus ∆◦
N( f ) = DN � f , or

∆N([ f ]) = DN ∗ [ f ] = CDN ([ f ]), N ≥ 1.

We expressed the Nth partial sum of the Fourier series of [ f ] ∈
L1(T, C) as the convolution of the Dirichlet kernel DN of order N with
[ f ]. 1 1 Our sweats and tears ploughing

through the convoluted lands of convo-
lutions is not confounded!The question of whether or not these partial sums converge to [ f ] in

L1(T, C) is now a question of whether or not limN→∞ CDN ([ f ]) = [ f ]

in L1(T, C).

�Theorem 86 (Properties of the Dirichlet Kernel)

Let N ≥ 1 be an integer and DN be the Dirichlet kernel of order N. Then

1. DN(−θ) = DN(θ) ∈ R for all θ ∈ R;

2. 1
2π

∫ π
−π DN(θ) dθ = 1;

3. For 0 6= θ ∈ [−π, π),

DN(θ) =
sin(

(
N + 1

2

)
θ)

sin
(

1
2 θ
) .

Also, DN(0) = 2N + 1.

4. ‖[DN ]‖1 = ν1(DN) ≥ 4
π2 ∑N

n=1
1
n .



230 Lecture 20 Jul 18th 2019 The Dirichlet Kernel

� Proof

To be added �

On the right are some graphs of DN , particularly for D2, D5 and
D10.
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Figure 20.1: Graph of D2
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Figure 20.2: Graph of D5
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Figure 20.3: Graph of D10

Two things worth noticing here are that

• the amplitude of the function is increasing near 0; this is clear from
Dn being continuous and DN(0) = 2N + 1 for N ≥ 1; and

• each DN has lots of fluctuations between positive and negative
values, which accounts for the fact that the integrals of DN are
bounded, while the integrals of |DN | are not.

The next result follows from �Theorem 83 and �Theorem 84,
and along with the divergence of the harmonic series ∑∞

n=1
1
n as we let

N → ∞ for the 4th result in �Theorem 86.

�Corollary 87 (Unboundedness of Convolution Operators for
the Dirichlet Kernel)

For each N ≥ 1, let DN denote the Dirichlet kernel of order N.

1. If CDN ∈ B([C(T, C)], ‖·‖∞) is the convolution operator corresponding
to DN , for N ≥ 1, then

lim
N→∞

∥∥CDN

∥∥ = ∞.

2. If CDN ∈ B(L1(T, C), ‖·‖1) is the convolution operator corresponding
to DN , for N ≥ 1, then

lim
N→∞

∥∥CDN

∥∥ = ∞.
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We are already seeing some bad signs of things not working out
nicely. Let’s push a little bit further. To exploit the connection between
the Dirichlet kernel and convolution, we require a few results from
real analysis.

� Definition 55 (Nowhere Dense)

Let (X, d) be a metric space and H ⊆ X. We say that H is nowhere dense
(or meager, or thin) if G := X \ H is dense in X. In other words, the
interior of H is empty.

Example 20.2.1

We usually think of nowhere dense subsets of metric spaces as being
“small”, as the alternate terminologies “meager” and “thin” suggest.

1. The set H = Z is nowhere dense in R; which is easily verifiable.

2. The Cantor set C is nowhere dense in X = [0, 1], equipped with the
standard metric inherited from R.

3. The set H = Q of rational numbers is not nowhere dense in R, since
X \ H = R \ R = ∅. �

� Definition 56 (First and Second Category)

We say that a subset H of a metric space (X, d) is of the first category in
(X, d) if there exists a sequence (Fn)n of closed, nowhere dense sets in X

such that
H ⊆

∞⋃
n=1

Fn.

Otherwise, we say that H is of second category.

The reader should be familiar with the following result.

� Definition 57 (Baire Category Theorem)
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A complete metric space (X, d) is of the second category. That is, X is not a
countable union of closed, nowhere dense sets in X.
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21.1 The Dirichlet Kernel (Continued)

The second result which we shall require is the following.

�Theorem 88 (Banach-Steinhaus Theorem (aka The Uniform
Boundedness Principle))

Let (X, d) be a complete metric space and ∅ 6= F ⊆ C(X, R). Suppose
that ∀x ∈ X, ∃κx > 0 a constant such that

| f (x)| ≤ κx, f ∈ F .

Then there exists an open set G ⊆ X and κ > 0 such that

| f (x)| ≤ κ, x ∈ G, f ∈ F .

� Proof

To be added �

There is a stronger version of the Banach-Steinhaus Theorem that
applies to linear operators in Banach spaces.

�Theorem 89 (Banach-Steinhaus Theorem for Operators (aka
The Uniform Boundedness Principle for Operators))
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Let (X, ‖·‖X) and (Y, ‖·‖Y) be Banach spaces, and suppose that ∅ 6=
F ⊆ B(X,Y). Let H ⊆ X be a subset of the second category in X, and
suppose that for each x ∈ H, there exists a constant κx > 0 such that

‖Tx‖Y ≤ κx, T ∈ F .

Then F is bounded; that is

sup
T∈F

‖T‖ < ∞.

� Proof

To be added �

�Corollary 90 (Sparcity of Boundedness of Unbounded Se-
quences of Bounded Functions between Banach Spaces)

Let (X, ‖·‖X) and (Y, ‖·‖Y) be Banach spaces, and let (Tn)∞
n=1 be an

unbounded sequence in C(X,Y), i.e. supn≥1 ‖Tn‖ = ∞.

Let H = {x ∈ X : supn≥1 ‖Tnx‖ < ∞}. Then H is of the first
category in X, and J := X \ H is of the second category.

� Proof

To be added �

Remark 21.1.1 (� Further implications of �Corollary 90)

The statement that supn≥1 ‖Tn‖ = ∞ is the statement that for each n ≥ 1,
there exists xn ∈ X with ‖xn‖X = 1 such that

lim
n→∞

‖Tnxn‖Y = ∞.
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In the first place, it is not clear that there should exist any x ∈ X such that

lim
n→∞

‖Tnx‖Y = ∞.

The above corollary not only says that such a vector x ∈ X exists; it asserts
that this is true for a ‘very large’ set of x’s, in the sense that the set H of x’s
for which it fails is a set of the first category in X. �

We are now ready to answer the question of whether or not the par-
tial sums of the Fourier series of an element [ f ] ∈ L1(T, C) necessarily
converge to [ f ] in the ‖·‖1-norm. We shall see that by �Corollary 90,
this convergence almost never happens. 1 Furthermore, the same 1 We use the phrase ‘almost never’ to

mean the notion of first category, not
measure zero.argument shows that this is also the case for [ f ] ∈ [C(T, C)] in the

‖·‖∞.

�Theorem 91 (The unbearable lousiness of being a Dirichlet
Kernel)

1. Let

K∞ := {[ f ] ∈ [C(T, C)] : [ f ] = lim
N→∞

∆N [ f ] ∈ ([C(T, C)], ‖·‖∞)}.

Then K∞ is a set of the first category in ([C(T, C)], ‖·‖∞), whose com-
plement [C(T, C)] \ K∞ is a set of the second category.

2. Let

K1 := {[ f ] ∈ L1(T, C) : [ f ] = lim
N→∞

∆N [ f ] ∈ (L1(T, C), ‖·‖1)}.

Then K1 is a set of the first category in (L1(T, C), ‖·‖1), whose comple-
ment L1(T, C) \ K1 is a set of the second category.

� Proof

To be added �

We have entered the darkest days of our course, and almost at the
very end of our journey. If this were a novel, I bet readers would be
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crying over how their favorite hero has fallen, and the fragility of our
other heroes. But there is some hope in the face of this despair.

21.2 The Féjer Kernel

� Definition 58 (Nth-Cesàro mean)

Let (X, ‖·‖X) be a Banach space, and (xn)∞
n=0 be a sequence in X. The

Nth-Cesàro mean of the sequence is defined as

σN := 1
N
(x0 + x1 + . . . + xN−1) ,

for N ≥ 1.

� Proposition 92 (Convergent Sequences have Convergent
Cesàro Means)

Suppose that X is a Banach space and (xn)∞
n=0 is a sequence in X. Let

(σN)
∞
N=1 denote the sequence of Cesàro means of (xn)∞

n=1. If x = limn→∞ xn

exists, then
x = lim

N→∞
σN .

Exercise 21.2.1

Prove � Proposition 92.

Remark 21.2.1

The converse of � Proposition 92 is false. Let (xn)∞
n=1 = ((−1)n)∞

n=1.
Then

(x0, x1, x2, . . .) = (1,−1, 1, . . .).

We see that |σN | ≤ 1
N , which then limN→∞ σN = 0, but limn→∞ xn does

not exist. �

� Definition 59 (Nth-Cesàro sum and the Féjer kernel of order N)
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Let f ∈ L1(T, C). The Nth-Cesàro sum of the Fourier series of f is the
Nth-Cesàro mean of the sequence (∆◦

n( f ))∞
n=0. Thus

σ◦
N( f ) =

1
N
(D0 � f + D1 � f + . . . DN−1 � f ) = FN � f ,

where FN := 1
N (D0 + D1 + . . . + DN−1) is called the Féjer kernel of

order N.

We also define the Nth-Cesàro sum of the Fourier series of [ f ] ∈
L1(T, C) as the Nth-Cesàro mean of the sequence (∆n[ f ])∞

n=0, namely

σN [ f ] :=
1
N
(D0 ∗ [ f ] + D1 ∗ [ f ] + . . . + DN−1 ∗ [ f ])

= FN ∗ [ f ] = [FN � f ] = [σ◦
N( f )].

Remark 21.2.2

Dn ∈ C(T, C) for all n ≥ 0 implies that FN ∈ C(T, C) for all N ≥ 1. By
� Proposition 80, it follows that σ◦

N( f ) ∈ C(T, C) ⊆ L1(T, C) for every
f ∈ L1(T, C).

Furthermore, ∀θ ∈ R,

σ◦
N( f )(θ) =

1
2π

∫
[−π,π)

FN(s) f (θ − s)dm(s)

=
1

2π

∫
[−π,π)

FN(θ − s) f (s)dm(s).

By �Theorem 83, FN ∈ C(T, C) implies that for every homogeneous
Banach algebraB and [ f ] ∈ B, we have

σN [ f ] = FN ∗ [ f ] ∈ B.

In particular, ∀[ f ] ∈ Lp(T, C),

σN [ f ] = FN ∗ [ f ] ∈ Lp(T, C). �

�Theorem 93 (Properties of the Féjer Kernel)

For each N ∈ N \ {0},
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1. FN is a 2π-periodic, even, continuous function;

2. If 0 6= θ ∈ [−π, π), then

FN(θ) =
1
N

(
1 − cos(Nθ)

1 − cos(θ)

)
=

1
N

 sin
(

N
2 θ
)

sin
(

1
2 θ
)
2

,

while FN(0) = N. In particular, FN(θ) ≥ 0 for all θ ∈ R;

3.
ν1(FN) =

1
2π

∫ π

−π
|FN(θ)| dθ =

1
2π

∫ π

−π
FN(θ) dθ = 1.

4. For all 0 < δ ≤ π,

lim
N→∞

(∫ −δ

−π
|FN(θ)| dθ +

∫ π

δ
|FN(θ)| dθ

)
= 0; and

5. For 0 < |θ| < π,

0 ≤ FN(θ) ≤
π2

Nθ2 .

� Proof

To be added �

To the right are some graphs of FN , particularly for F2, F5 and F10.
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Figure 21.1: Graph of F2

0

1

2

3

4

5

-6 -4 -2 0 2 4 6

Figure 21.2: Graph of F5
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Figure 21.3: Graph of F10

Two things worth noticing about them are:

• the amplitude of the function is increasing near 0; this is as we’ve
seen for the Dirichlet kernel, where FN is continuous and FN(0) =

N for N ≥ 1; and

• for each δ > 0, the functions become uniformly close to 0 when
δ < |θ| < π.

Let us pull out D5 and F5 for comparison.

For both D5 and F5, their respective 1-norms from −π to π sums
to 1. For D5, we see that there are many regions where the function
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Figure 21.4: Comparing D5 and F5

is negative, whereas F5 is always positive. Furthermore, FN has the
property that

lim
N→∞

(∫ −δ

−π
|FN(θ)| dθ +

∫ π

δ
|FN(θ)| dθ

)
= 0,

of which DN does not.
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22.1 The Féjer Kernel (Continued)

� Definition 60 (Summability Kernel)

A summability kernel is a sequence (kn)∞
n=1 of 2π-periodic, continuous,

1 complex-valued functions R satisfying: 1 A summability kernel can be more
general than a continuous sequence, but
for our purposes, this is sufficient.1. 1

2π

∫ π
−π kn = 1 for all n ≥ 1;

2. supn≥1 ν1(kn) = supn≥1
1

2π

∫ π
−π |kn| < ∞; and

3. for all 0 < δ ≤ π,

lim
n→∞

(∫ −δ

−π
|kn|+

∫ π

δ
|kn|

)
= 0.

If we further have kn ≥ 0 for all n ≥ 1, we say that (kn)∞
n=1 is a

positive summability kernel.

�Theorem 94 (Féjer kernel as a Positive Summability Kernel)

The Féjer kernel (FN)
∞
N=1 is a positive summability kernel.

� Proof

�Theorem 93 proves exactly this. �
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Example 22.1.1 (Other examples of positive summability kernels)

1. For each n ∈ N \ {0}, consider the piecewise linear function

k·n : [−π, π) → R

θ 7→


0 θ ∈

[
−π,− 1

n

]
∪
[

1
n , π

)
n + n2θ θ ∈

(
− 1

n , 0
]

n − n2θ θ ∈
(

0, 1
n

) .

|
−π

|
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5

|
1
5

|
π

– 5

Figure 22.1: Graph of k·5

For n ∈ N \ {0}, let kn be the 2π-periodic function on R whose
restriction to the interval [−π, π) coincides with k·n. Then (kn)∞

n=1 is
a positive summability kernel.

2. For each n ∈ N \ {0}, consider the piecewise linear function

r·n : [−π, π) → R

θ 7→


0 θ ∈ [−π, 0] ∪

[ 2
n , π

)
n2θ θ ∈

(
0, 1

n

]
n − n2

(
θ − 1

n

)
θ ∈

(
1
n , 2

n

) .

|
−π

|
1
5

|
2
5

|
π

–5

Figure 22.2: Graph of r·5

For n ∈ N \ {0}, let rn be the 2π-periodic function on R whose
restriction to the interval [−π, π) coincides with k·n. Then (rn)∞

n=1 is
a positive summability kernel. �

�Theorem 95 (Summability kernels convolved with functions
in Homogeneous Banach Spaces)

Let (B, ‖·‖B) be a homogeneous Banach space over T and (kn)∞
n=1 be a

summability kernel. If [ f ] ∈ B, then

lim
n→∞

‖kn ∗ [ f ]− [ f ]‖B = 0,

and so [ f ] = limn→∞ kn ∗ [ f ] inB.

� Proof
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To be added �

�Corollary 96 (Reconcilation of the Cesàro sums to the Original
Function)

1. For each f ∈ (C(T, C), ‖·‖sup),

lim
N→∞

σ◦
N( f ) = f .

2. Let 1 ≤ p < ∞. For each [g] ∈ (Lp(T, C), ‖·‖p),

lim
N→∞

σN [g] = [g].

� Proof

To be added �

We can now show that the Fourier coefficients of functions of
Lp(T, C) completely determine themselves (a.e.).

�Corollary 97 (Reconcilation of the Fourier series to its Original
Function under the Féjer Kernel)

Let 1 ≤ p < ∞. If [ f ], [g] ∈ Lp(T, C) and α
[ f ]
n = α

[g]
n for all n ∈ Z, then

[ f ] = [g].

� Proof

Observe that α
[ f ]
n = α

[g]
n for all n ∈ Z, implies that σN [ f ] = σN [g] for

all N ≥ 1. It follows from �Corollary 96 that

[ f ] = lim
N→∞

σN [g] = lim
N→∞

σN [g] = [g]. �
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22.2 Which sequences are sequences of Fourier Coefficients?

Given [ f ] ∈ L1(T, C), we defined the Fourier series of [ f ] as

∑
n∈Z

α
[ f ]
n [ξn].

The Riemann-Lebesgue Lemma stated that

(α
[ f ]
n )n∈Z ∈ c0(Z, C).

It is then natural to ask if every sequence (βn)n∈Z ∈ c0(Z, C) is the
sequence of coefficients of some [ f ] ∈ L1(T, C). What we have seen is
that on Hilbert spaces, every (γn)n∈Z ∈ `2(Z, C) is the set of Fourier
coefficients of some [ f ] ∈ L2(T, C), and namely

[ f ] = ∑
n∈Z

γn[ξn].

We shall use Operator Theory to answer this. Recall that by the end
of Section 17.1, we introduced the map

Λ : (L1(T, C), ‖·‖1) → (c0(Z, C), ‖·‖∞)

[ f ] 7→
(

α
[ f ]
n

)
n∈Z

.

Since the Lebesgue integration is linear, so is Λ. Also, as shown before,∣∣∣α[ f ]
n

∣∣∣ ≤ ‖[ f ]‖1 , ∀n ∈ Z,

and so
‖Λ[ f ]‖∞ = sup{

∣∣∣α[ f ]
n

∣∣∣ : n ∈ Z} ≤ ‖[ f ]‖1 .

Thus Λ is bounded, with ‖Λ‖ ≤ 1.

By �Corollary 97, if [ f ], [g] ∈ L1(T, C) and Λ[ f ] = Λ[g], then
[ f ] = [g], and thus Λ is injective.

Thus, our question of whether or not every sequence in c0(Z, C)

is a sequence of Fourier coefficients of some element of L1(T, C) is
therefore the question of whether or not Λ is surjective.
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We require the Inverse Mapping Theorem from Functional Anal-
ysis to answer this question. To that end, we first introduce some
notations.

Given a Banach space (Z, ‖·‖Z) and a real number r > 0, we denote
the closed ball of radius r centered at the origin by

Zr = {z ∈ Z : ‖z‖Z ≤ r}.

For z0 ∈ Z and ε > 0, we denote by BZ(z0, ε) = {z ∈ Z : ‖z − z0‖ < ε}
the open ball of radius ε in Z, centered at z0.

� Lemma 98 (Finding an Open Container from a Closed Con-
tainer)

Let X and Y be Banach spaces and suppose that T ∈ B(X,Y). If Y1 ⊆
TXm for some m ≥ 1, then Y1 ⊆ TX2m.

� Proof

To be added �

�Theorem 99 (The Open Mapping Theorem)

Let X and Y be Banach spaces and suppose that T ∈ B(X,Y) is a sur-
jection. Then T is an open map; i.e. if G ⊆ X is open, then TG ⊆ Y is
open.

� Proof

To be added �

�Corollary 100 (The Inverse Mapping Theorem)
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Let X and Y be Banach spaces and suppose that T ∈ B(X,Y) is a bijec-
tion. Then T−1 is continuous, and so T is a homeomorphism.

� Proof

Since T is linear, by basic linear algebra, it has an inverse, which
must also be linear.

If G ⊆ X is open, then (T−1)−1(G) = TG is open in Y by the
Open Mapping Theorem. Thus T−1 is continuous, hence a homeo-
morphism. �

�Theorem 101 (L1(T, C) and c0(Z, C) are Not Isomorphic)

The map

Λ : (L1(T, C), ‖·‖1) → (c0(Z, C), ‖·‖∞)

[ f ] 7→
(

α
[ f ]
n

)
n∈Z

is not surjective.

� Proof

If it were surjective, then by the Inverse Mapping Theorem,

Λ−1 : c0(Z, C) → L1(T, C)(
α
[ f ]
n

)
n∈Z

7→ [ f ]

must be continuous.

Let DN be the Dirichlet kernel of order N, and let dN := Λ[DN ],
for N ≥ 1. Then dN = (. . . , 0, 0, . . . , 0, 1, 1, . . . , 1, 1, 0, 0, . . .),
where the 1’s appear for the indices −N ≤ k ≤ N. It is clear that
‖dN‖∞ = 1, since each dN is finitely supported, 2 but by part 4 of 2 This means that there are only finitely

many non-zero values in its indices,
which is the case.
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�Theorem 86,

lim
N→∞

∥∥∥Λ−1(dN)
∥∥∥

1
= lim

N→∞
‖[DN ]‖1 = ∞.

Thus Λ−1 is not continuous, a contradiction. Hence Λ must not
be surjective. In other words, there exists a sequence (βn)n∈Z ∈
c0(Z, C) that are not Fourier coefficients of any element of L1(T, C).�

Remark 22.2.1

As remarked, the fact that [ f ] ∈ L2(T, C) iff
(

α
[ f ]
n

)
n∈Z

∈ `2(Z, C)

makes it tempting to conjecture that perhaps the range of the map Λ from
�Theorem 101 should be `1(Z, C), but that is not true at all, and it is not
even surjective on c0(Z, C) ⊆ `1(Z, C).

For a clear example, the sequence

βn =


1
n n ≥ 1

0 n ≤ 0

is clearly in `2(Z, C), and so [ f ] := ∑n∈Z βn[ξn] converges in L2(T, C) ⊆
L1(T, C). However,

Λ[ f ] = (βn)n∈Z

is definitely not in `1(Z, C). �





A � Interest in 2π periodic functions

This is ripped out of Professor Marcoux’s 1 notes, which I think is 1 Marcoux, L. W. (2019). PMath 450
Introduction to Lebesgue Measure and
Fourier Analysis. (n.p.)rather important as a motivation to move from Lesbesgue’s Theory of

Integration into Fourier Analysis, but not important enough to warrant
being added to the main section of the notes.

So where does the notation L1(T, C) come from, given that we
are dealing with 2π-periodic functions on R? The issue lies in
the fact that we are really interested in studying functions on
T := {z ∈ C : |z| = 1}, but that we have not yet defined what we
mean by a measure on that set. We are therefore identifying [−π, π)

with T via the bijective function ψ(θ) = eiθ . Thus, an alternative
approach to this would be to say that a subset E ⊆ T is measurable if
and only if ψ−1(E) ⊆ [−π, π) is Lebesgue measurable. In order to
“normalize” the measure of T (i.e. to make its measure equal to 1), we
simply divide Lebesgue measure on [−π, π) by 2π.
This still doesn’t quite explain why we are interested in 2π-periodic
functions on T, rather than just functions on [−π, π), though. Here
is the “kicker”. The unit circle T ⊆ C has a very special property,
namely, that it is a group. Given θ0 ∈ T, we can “rotate” a function
f : T → C in the sense that we set g(θ) = f (θ · θ0). Observe
that rotation along T corresponds to translation (modulo 2π) of the
interval [−π, π). The key is the irritating “modulo 2π” problem. If
we don’t use modular arithmetic, and if a function g is only defined
on [−π, π), we can not “translate” it, since the new function need no
longer have [−π, π) as its domain. We get around this by extending
the domain of g to R and making g 2π-periodic. Then we may trans-
late g by any real number τ◦

s (g)(θ) := g(θ − s), which has the effect
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that if we set f (eiθ) = g(θ), then g(θ − s) = f (eiθ · e−is). That
is, translation of g under addition corresponds to rotation of f under
multiplication.
The last thing that we need to know is that such translations of func-
tions will play a crucial role in our study of Fourier series of elements
of L1(T, C). Aside from being a Banach space, L1(T, C) can be made
into an algebra under convolution. While our analysis will not take
us as far as that particular result, we will still need to delve into the
theory of convolutions of continuous functions with functions in
L1(T, C). This will provide us with a way of understanding how
and why various series associated to the Fourier series of an element
[ f ] ∈ L1(T, C) converge or diverge. Since convolutions are defined
as averages under translation by the group action, and since T is a
group under multiplication and R is a group under addition, our
identification of (T, ·) with ([−π, π),+) (using modular arithmetic)
is not an unreasonable way of doing things.



B �Assignment Problems

B.1 Assignment 1 (A1)

Question 1 (Separated Sets)

Let A and B be bounded subsets of R and suppose that

δ := dist(A, B) := inf{|a − b| : a ∈ A, b ∈ B} > 0.

Prove that m∗(A ∪ B) = m∗(A) + m∗(B).

Question 2 (A continuity result for Outer Measures)

Let E ⊆ R. Prove that

lim
N→∞

m∗(E ∩ [−N, N]) = m∗(E).

Question 3 (Finite Covers of [0, 1])

Let Γ = Q ∩ [0, 1]. Prove that if {In}N
n=1 is a finite collection of open

intervals which covers Γ (i.e. Γ ⊆ ⋃N
n=1 In), then ∑N

n=1 `(In) ≥ 1.

Question 4 (Measures on Countable Sets)

Let X = {xn}∞
n=1 be a countable set, and recall that P(X) is the power

set of X, i.e. P(X) = {Y : Y ⊆ X}. A measure on X is a function

µ : P(X) → [0, ∞]

such that µ(∅) = 0 and for every disjoint sequence En ⊆ X, n ≥ 1, we
have

µ

(
∞⋃

n=1

En

)
=

∞

∑
n=1

µ(En).
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Let M(X) = {µ : µ is a measure on X}. Find a description of
all possible measures on X; i.e., show that there exist sets A and B and a
bijective map θ : M(X) → S := BA.

Question 5 (Open Subsets of R)

Prove that if G ⊆ R is open, then G is a countable, disjoint union of open
intervals.
Hint: Define a relation on G via x ∼ y if [min{x, y}, max{x, y}] ⊆ G.

Question 6 (Towards Borel Sets)

Let E ⊆ R. We say that E is a Gδ-set if it is a countable intersection of
open subsets of R. We say that E is an Fσ-set if it is a countable union of
closed subsets of R. Recall that for E ⊆ R, EC := {x ∈ R : x /∈ E} is the
complement of E.

1. Prove that every open set is an Fσ-set, and that every closed set is a
Gδ-set.

2. Prove that the set of rational numbers is an Fσ-set, but not a Gδ-set.

3. Prove that the set of irrational numbers is a Gδ-set, but not an Fσ-set.

4. Let E1 = (−∞, 0]∩QC and E2 = [0, ∞)∩Q. Prove that E := E1 ∪ E2

is neither a Gδ-set nor an Fσ-set.



PMATH450 — Lebesgue Integration and Fourier Analysis 253

B.2 Assignment 2 (A2)

Question 1 (σ-additivity and continuity of the Lebesgue Measure)

1. Let L(R) denote the set of Lebesgue measurable subsets of R, and let
m : L(R) → [0, ∞] denote the Lebesgue measure. Prove that m is
σ-additive; i.e. if En ∈ L(R) for all n ≥ 1 and Ei ∩ Ej = ∅ if
1 ≤ oi 6= j < ∞, then

m

(
∞·
⋃

n=1

En

)
=

∞

∑
n=1

m(En).

2. Suppose that {En}n=1∞ is an increasing sequence of Lebesgue measur-
able sets; i.e.

E1 ⊆ E2 ⊆ E3 ⊆ . . . .

Let E =
⋃∞

n=1 En, so that E ∈ L(R), as the latter is a σ-algebra. Prove
that

mE = lim
n→∞

mEn.

Question 2 (Continuity of the Lebesgue Measure II)

Let {En}∞
n=1 be a decreasing sequence of Lebesgue measurable sets; i.e.

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

Let E =
⋂∞

n=1 En.

1. Suppose that mE1 < ∞. Prove that

mE = lim
n→∞

mEn.

2. Does the result of part 1 still hold if mE1 = ∞? Prove that it does, or
provide a counterexample to show that it need not be true.

Question 3 (Lebesgue Inner Measure)

Let E ⊆ R be a set. Prove that the following are equivalent:

1. E is measurable; i.e. E ∈ L(R);

2. For all ε > 0, there exists a closed set F ⊆ E so that m∗(E \ F) < ε;

3. There exists an Fσ-set H ⊆ E so that m∗(E \ H) = 0.
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Use this to show that if E ⊆ R is measurable, then

mE = sup{mK : K ⊆ E, K is compact }.

We say that the Lebesgue measure is regular.

Question 4 (σ-algebra of Sets)

1. Let A be a σ-algebra of subsets of R, and let f : R → R be a function.
Let B = {H ⊆ R : f−1(H) ∈ A}. Show that B is a σ-algebra.

2. Recall that by definition, f : R → R is measurable if f−1(G) ⊆
L(R) for all open sets G ⊆ R. Use this definition to prove that f

is measurable if and only if f−1(B) ⊆ L(R) for all Borel sets B ∈
Bor(R).

3. We say that f : R → R is Borel measurable if f−1((a, ∞)) ∈
Bor(R) for all a ∈ R. Prove that f is Borel measurable if and only if
f−1(B) ⊆ Bor(R) for all Bore sets B ∈ Bor(R).

Question 5 (The Cantor-Lebesgue Function)

Recall that we define the Cantor (middle third) set C as C =
⋂

n≥1 Cn,
where C0 = [0, 1], and for each n ≥ 1,

Cn = Cn−1 \ {In,1 ∪ In,2 ∪ . . . ∪ In,2n−1},

where In,j is the open “middle third” of the jth (closed) interval of Cn−1. If
we set

G =
⋃

n≥1

⋃
1≤j≤2n−1

In,j,

then the Cantor set is equal to [0, 1] \ G.

We define the Cantor-Lebesgue function ΓC on [0, 1] as follows. For
x ∈ In,j, we set ΓC(x) = 2j−1

2n , 1 ≤ j ≤ 2n−1. We then extend ΓC to all of
[0, 1] by setting ΓC(0) = 0, and for x ∈ (0, 1], we set

ΓC(x) = sup{ΓC(t) : t ∈ [0, x) ∩ G}.

1. Prove that the Cantor-Lebesgue function ΓC is an increasing, continu-
ous function that maps [0, 1] onto [0, 1].

2. Prove that if γ(x) = ΓC(x) + x for all x ∈ [0, 1], then ϕ is a continu-
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ous function that maps [0, 1] onto [0, 2].

3. Prove that ϕ(X) := {ϕ(x) : x ∈ C} ⊆ [0, 2] is a measurable set of
positive measure.

� Definition B.1 (Limit Superior and Limit Inferior)

Suppose that (xn)n ∈ RN is a bounded sequence of real numbers. We
define the limit superior (or limit supremum) of the sequence (xn)n to
be

lim sup
n≥1

xn := lim
n→∞

sup
k≥n

xk,

and the limit inferior (or limit infimum) to be

lim inf
n≥1

xn := lim
n→∞

inf
k≥n

xk.

Setting zn : supk≥n xk, for n ≥ 1, we find that zn ≥ zn+1 for all
n ≥ 1, and, from this, one should be able to convince themselves that
lim supn≥1 xn always exists, and similarly that lim infn≥1 xn always
exists. Moreover, if µ ≤ xn ≤ ν for all n ≥ 1 (since we assumed that (xn)n

is bounded), then

µ ≤ lim inf
n≥1

xn ≤ lim sup
n≥1

xn ≤ ν.

If (xn)n is not bounded above, we define lim supn≥1 xn = ∞, while if
(xn)n is not bounded below, we define lim infn≥1 xn = −∞.

Question 6 (Lim Sups and Lim Infs — I)

Let (xn)n ∈ RN be a bounded sequence of real numbers.

1. Prove that

lim sup
n≥1

xn = inf{γ ∈ R : ∃N > 0 ∀n ≥ N xn < Γ}.

2. Prove that if lim supn≥1 xn < µ, then there exists N ∈ N such that
n ≥ N implies that xn < µ. (We say that xn < µ for large n.)
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3. Prove that lim supn≥1 xn > µ implies that xn > µ for infinitely many
values of n ∈ N.

4. Show that if (an)n and (bn)n are bounded sequences of real numbers,
then

lim sup
n≥1

(an + bn) ≤ lim sup
n≥1

an + lim sup
n≥1

bn.

Give an example to show that equality need not occur.

Question 7 (Lim Sups and Lim Infs — II)

1. Let (xn)n ∈ RN be a bounded sequence. Prove that if β := lim supn≥1 xn,
then

(a) there exist a subsequence (xnk )k of (xn)n such that limk→∞xnk = β;
and

(b) if (xmk )k is any subsequence of (xn)n which converges, say to some
α ∈ R, then α ≤ β.

In other words, β is the largest limit point of any subsequence of (xn)n.

2. Let (yn)n ∈ RN be a sequence. Prove that the following conditions are
equivalent:

(a) there exists γ ∈ R such that limn→∞ yn = γ ∈ R; i.e. (yn)n is
convergent (to γ); and

(b) lim supn≥1 yn = γ = lim infn≥1 yn.
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B.3 Assignment 3 (A3)

Question 1 (Measurability of Extended Real-Valued Functions)

Recall that R = R ∪ {−∞, ∞} denotes the set of extended real numbers.
Let f : R− > R be a function, and recall that f is said to be measurable if
f−1(G) ∈ L(R) for all open sets G ⊆ R and f−1({−∞}), f−1({∞}) ∈
L(R).

Prove that the following are equivalent:

1. f is measurable.

2. For all α ∈ R, f−1((α, ∞]) ∈ L(R).

3. For all β ∈ R, f−1([−∞β)) ∈ L(R).

Question 2 (Measurable Functions as Limits of Simple Functions)

1. Let f : R → [0, ∞] be a measurable function. Show that there exists an
increasing sequence of measurable, simple functions ϕn : R → [0, ∞) so
that

f (x) = lim
n→∞

ϕn(x), ∀x ∈ R.

2. Let E ∈ L(R) and let g : E → [0, ∞] be a measurable function. Show
that there exists an increasing sequence of measurable, simple functions
ψn : E → [0, ∞) so that

g(x) = lim
n→∞

ψn(x), ∀x ∈ E.

Hint for 1.: For each n ≥ 1, partition the interval [0, n) into n2n equal
subintervals Ek,n =

[
k

2n , k+1
2n

)
, 0 ≤ k < (n2n)− 1. Let En2n ,n] = [n, ∞].

Use the sets f−1(Ek,n), 0 ≤ k ≤ n2n to build ϕn.

Hint for 2.: This should be very short. Otherwise, you’re doing something
wrong.

Question 3 (An Example)

1. Let E = [0, 1]. Fix m ≥ 1 and let f : E → R be the function
f (x) = xm. Since f is continuous, f is measurable. Prove that the
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Lebesgue integral of f over E satisfies∫
[0,1]

f =
1

m + 1
.

Note: You may not use �Theorem 40. You must prove this using only
techniques available to Lebesgue integration, and it should suffice to do
so with knowledge from before �Theorem 40.
(Hint: The Monotone Convergence Theorem with the last problem
should be useful.)

2. Let g : E → [0, 1] be the function g(x) = ex, i.e. the exponential
function. Prove that the Lebesgue integral of g satisfies

∫ 1

0
g = e1 − 1 = e − 1.

Hint: this should be much easier than part 1.

Question 4 (Sets of Positive Measure are “Large”)

1. Let E ∈ M(R) be a measurable set and suppose that m(E) > 0, i.e. E

has strictly positive Lebesgue measure. Prove that the set

H = E − E := {x − y : x, y ∈ E}

contains an interval.

Hints:

• First, reduce to the case where 0 < mE < ∞.

• Show that there exists an open interval I = (a, b) so that m(E ∩
(a, b)) > 0.9(b − a).

• Let F := E ∩ (a, b) ⊆ E. Suppose that α ∈ (−δ, δ), where
δ = 0.1(b − a). Show that F ∩ (F + α) 6= ∅ by considering upper
and lower bounds for the measure of F ∪ (F + α).

2. Conclude that if E ∈ M(R) satisfies m(E) > 0, then the cardinality of
E coincides with c, the cardinality of R.

Hint: Part 2 is doable even if you did not get part 1.

Question 5 (The Ubiquity of Non-Measurable Sets)
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Prove that every measurable set E of (strictly) positive measure contains a
non-measurable subset Z.
Hints: You may wish to reduce to the case where E ⊆ [−N, N] for some
N > 0. Then, you may wish to refer to the existence of non-measurable sets
as demonstrated in the notes. You may DIY as well if you have an idea on
what to do.

Question 6 (Pointwise Convergence of Measurable Functions)

Let E ∈ M(R) be a measurable set and suppose that m(E) < ∞. Let
( fn)n ∈ L(E, R) and suppose that ( fn)n converges pointwise to a real-
valued function f : E → R. Prove that if ε > 0 and δ > 0, then there
exists a measurable set H ⊆ E and an integer N ≥ 1 such that

1. m(H) < δ; and

2. x /∈ H implies that | fn(x)− f (x)| < ε for all n ≥ N.
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B.4 Assignment 4 (A4)

Question 1 (Completeness in Normed Linear Spaces)

Let (X, ‖·‖) be a normed linear space. Prove that X is complete, and hence
a Banach space, if and only if every absolutely summable series in X is
summable. Here, a series ∑∞

n=1 xn in X is said to be summable if

x := lim
N→∞

N

∑
n=1

xn

exists in X, while the series is said to be absolutely summable if

lim
N→∞

N

∑
n=1

‖xn‖ < ∞.

Question 2 (`p-Spaces, Part I)

Let 1 ≤ p < ∞. For K = R or K = C, we define the `p-spaces:

`p = `p(N) :=

{
x ∈ (xn)

∞
n=1 ∈ KN :

∞

∑
n=1

|xn|p < ∞

}
.

Furthermore, for x ∈ `p, we define ‖x‖p =
(
∑n≥1 |xn|p

)1/p. When
p = ∞, we define

`∞ = `∞(N) :=

{
x = (xn)

∞
n=1 ∈ KN sup

n≥1
|xn| < ∞

}
.

For x ∈ `∞, we define ‖x‖∞ = supn≥1 |xn|.

1. Prove Hólder’s Inequality for `p-spaces: that is if 1 ≤ p ≤ ∞ and
1
p + 1

q = 1, and if x = (xn)n ∈ `p and y = (yn)n ∈ `q, then

xy := (xnyn)n ∈ `1,

and ‖xy‖1 ≤ ‖x‖p ‖y‖q.
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Banach-Steinhaus Theorem for
Operators, 234

Bessel’s Inequality, 185

Cantor Set, 70

Cauchy Criterion of Riemann
Integrability, 24

Cauchy-Schwarz Inequality, 170

Characteristic Function, 30

Closed Span, 158

common refinement, 23

complete, 19

convex combination, 22

Convolution, 203, 206

convolution, 202, 204

Convolution Operator, 206

countable subadditivity, 35

Cover by Open Intervals, 35

denumerable, 31

Dirichlet Kernel of Order N, 228

Disjoint Representation, 96

Essential Supremum, 149

Extended Real Numbers, 85

Extended Real-Valued Function,
86
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Fatou’s Lemma, 129
First Category, 231
Fourier Coefficient, 196
Fourier Series, 196
Féjer kernel of order N, 237

Gram-Schmidt Orthogonalisation
Process, 176

Hölder’s Inequality, 139, 143, 155
Hölder’s Inequality for L1(E, K),

154
Hamel basis, 175
Hilbert Space, 172
Hilbert space basis, 175
Homogeneous Banach Spaces,

209

idempotent, 183
Inner Product, 169
Inner Product Space, 169
isometries, 190
Isomorphism, 190

Kernel, 206

Lebesgue Conjugate, 137
Lebesgue conjugate function, 139
Lebesgue Dominated Conver-

gence Theorem, 130
Lebesgue Integrable, 115
Lebesgue Integral, 100
Lebesgue Measurable Function,

74
Lebesgue Measure, 63
Lebesgue Measureable Set, 51
Lebesgue Outer Measure, 36

left module, 202
Length, 34
Limit Inferior, 255
Limit Superior, 255
linear manifold, 134
linear manifolds, 158

meager, 231
Measurable Function, 86
Metric, 18
metric, 18
Minkowski’s Inequality, 141, 144
monotone increment, 35
monotonicity, 35

Norm, 15
norm 1, 175
Norm Induced by The Inner

Product, 171
norm-closed subspace, 180
Normed Linear Space, 18
Nowhere Dense, 231

operator norm, 20
orthogonal complement, 182
Orthogonal Projection, 182
Orthogonality, 170
Orthonormal Basis, 175
orthonormal set, 175
Orthonormality, 175
Outer Measure, 35

Parseval’s Identity, 188
Partition, 20
Perpendicular Space, 180
positive summability kernel, 241
pseudo-length, 15
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quotient space, 135

Real Cone, 92
Refinement, 22
Riemann Integrable, 23
Riemann Sum, 21

Second Category, 231
Semi-Norm, 15
separable, 166
sequence space, 173
Simple Functions, 89
Standard Form, 90
standard inner product, 172, 173
step function, 90
Summability Kernel, 241
symmetric difference, 168

Test Values, 21
The Inverse Mapping Theorem,

246
The Monotone Convergence

Theorem, 107
The Open Mapping Theorem, 245
The Parallelogram Law, 177
The Pythagorean Theorem, 177
The Riemann-Lebesgue Lemma,

198
The Uniform Boundedness Prin-

ciple, 233
The Uniform Boundedness Prin-

ciple for Operators, 234
thin, 231
topologically complemented, 181
translation by s, 209
Translation Invariant, 45

unital algebra, 77
Unitary Operator, 189

Vitali’s Set, 48

Young’s Inequality, 137
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