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@ Preface

This course is a post-requisite of MATH 235/245 (Linear Algebra II)
and AMATH 231 (Calculus IV) or MATH 247 (Advanced Calculus
III). In other words, familiarity with vector spaces and calculus is

expected.

The course is spiritually separated into two parts. The first part
shall be called Exterior Differential Calculus, which allows for a
natural, metric-independent generalization of Stokes” Theorem,
Gauss’s Theorem, and Green’s Theorem. Our end goal of this part is
to arrive at Stokes” Theorem, that renders the Fundamental Theorem

of Calculus as a special case of the theorem.

The second part of the course shall be called in the name of the
course: Differential Geometry. This part is dedicated to studying ge-
ometry using techniques from differential calculus, integral calculus,

linear algebra, and multilinear algebra.

To the learner You will likely want to avoid using this as your main
text going forward. There is little to no intuition introduced in this
course, coupled with seemingly haphazard organization of topics, in-
credibly cryptic definitions and theorems, along with little examples
to reinforce your learning. The lectures and lecture notes are more
likely aimed at those with relatively strong background in the topic,

not for those who are coming into the field for the first time.

Also, as this is written down right now, we are on the last week
of classes and we have yet to even see the entrance to Differential
Geometry, which is the name of the course. At this point, the course

may as well be renamed Exterior Calculus.


http://www.ucalendar.uwaterloo.ca/1819/COURSE/course-MATH.html#MATH235
http://www.ucalendar.uwaterloo.ca/1819/COURSE/course-AMATH.html#AMATH231
http://www.ucalendar.uwaterloo.ca/1819/COURSE/course-MATH.html#MATH247
http://www.ucalendar.uwaterloo.ca/1819/COURSE/course-MATH.html#MATH247




A Introduction

This introductory chapter is almost entirely taken from Flanders
(1989), of which I appreciate because it does not introduce exterior
differential forms using terminology common to Physics, such as curl
and flux. As a student in Mathematics and have not taken any course
in Physics to make sense of those terminologies, this introduction has
been valuable, and I have decided to add it to my notes for ease of

reference.

THE MATHEMATICAL OBJECTS of which we shall study in this course
are called exterior differential forms, and they are objects which

occur when studying integration. For instance,

* a line integral
/Adx+de+Cdz

brings us to a 1-form

w=Adx+ Bdy+ Cdz;

¢ a surface integral
//dedz + Qdzdx + Rdxdy
leads us to a 2-form
« = Pdydz+ Qdzdx + Rdxdy; (1)

and
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® a volume integral

// Hdxdydz

A= Hdxdydz.

leads to a 3-form

These are common examples of differential forms in IR3. In general,
in an n-dimensional space, we call the expression in the r-fold inte-

gral, i.e. / ... /, an r-form in n-variables.
N——
r times
In Equation (1), notice the absence of dz dy, dx dz and dy dx, which
suggests symmetry or skew-symmetry. The further absense of the

terms dx dx, ... further suggests that the latter is more likely.

In this course, we shall construct a calculus of differential forms
which houses certain inner consistency properties, one of which
is the rule for changing variables in a multiple integral, which is
common in multivariable calculus. For us, we shall define integrals
as oriented integrals, and so we will never need to take absolute

values of Jacobians.

CONSIDER

// A(x,y)dxdy

with the change of variable
x =x(u,v)and y = y(u,v).

For multivariable calculus, we know that

//A(x,y) dxdy = //A(x(u,v),y(u,v)) ggz:z; dudo,

which leads us to write

() =+
dxdy = 3(w.0) dudo = f% §% du do.

Notice that if we set y = x, the determinant has equal rows, and so it

evaluates to 0. If we interchange x and y, the sign of the determinant
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changes. This motivates the rules

dxdx = 0and dydx = —dxdy.

In other words, we construct rules for exterior differential forms so

as to capture these properties that the Jacobian introduces.

WE sHALL associate with each r-form w and (r + 1)-form dw, called
the exterior derivative of w. Its definition will be given in such a way

that it validates the general Stokes’ formula

w :/ dw,
oM M

where M will be introduced as an oriented (7 + 1)-dimensional

manifold and dM is its boundary.

A basic property of the exterior derivative is known as the Poincaré

Lemma:

d(dw) = 0.






Part 1

Exterior Differential Calculus






@ Lecture 1 Jan o7th

Linear Algebra Review

& Definition 1 (Linear Map)

Let V, W be finite dimensional real vector spaces. Amap T : V. — W is
called linear ifVa,b € R, Vv € V and Yw € W,

T(av + bw) = aT(v) + bT(w).

We define L(U, W) to be the set of all linear maps from V to W.

66 Note 1.1.1
* Note that L(U, W) is itself a finite dimensional real vector space.

e The structure of the vector space L(V, W) is such that VT,S €
L(V,W), and Va,b € R, we have

al +bS:V - W

and

(aT 4+ bS)(v) = aT(v) + bS(v).
o A special case: when W = V, we usually write
L(V,W) = L(V),

and we call this the space of linear operators on V.
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Now suppose dim(V) = n for some n € IN. This means that there

exists a basis {ey,...,e,} of V with n elements.

& Definition 2 (Basis)

A basis B = {ey, ..., e} of an n-dimensional vector space V is a subset

of V where

1. BspansV, ie. Yo eV

n
v = Zv’ei. 1
i=1

2. e1,...,ey are linearly independent, i.e.

v'e; =0 = v =0 for every i.

66 Note 1.1.2

We shall abusively write
vie; =) Ve
i

Again, this should be clear from the context of the discussion.

The two conditions that define a basis implies that any v € V can

be expressed as v'e;, where v € R.
1

& Definition 3 (Coordinate Vector)

The n-tuple (v',...,v") € R" is called the coordinate vector [v]g €
R" of v with respect to the basis B = {eq,...,e,}.

66 Note 1.1.3

* We shall use a different convention
when we write a linear combination.
In particular, we use v’ to represent the
ith coefficient of the linear combination
instead of v;. Note that this should not
be confused with taking powers, and
should be clear from the context of the
discussion.
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It is clear that the coordinate vector [v]p is dependent on the basis B.
Note that we shall also assume that the basis is “ordered”, which is some-
what important since the same basis (set-wise) with a different “ordering”

may give us a completely different coordinate vector.

Example 1.1.1

LetV =R",and é; = (0,...,0,1,0,...,0), where 1 is the jth compoe-
nent of é;. Then

Bsia = {é1,...,6n}

is called the standard basis of IR". >

66 Note 1.1.4
Letv = (v!,...,0") € R". Then

na
(478

v:vlé1+...v
SoR" 5 [v]g,, =veEV =R"

This is a privilege enjoyed by the n-dimensional vector space R".

Now if we choose a non-standard basis of R", say B, then [v]5 #

66 Note 1.1.5

It does not make sense to ask if a standard basis exists for an arbitrary
space, as we have seen above. A geometrical way of wrestling with this

notion is as follows:

While the subspace is embedding in a vector space of which has a stan-
dard basis, we cannot establish a “standard” basis for this 2-dimensional
subspace. In laymen terms, we cannot tell which direction is up or down,

positive or negative for the subspace, without making assumptions.
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Figure 1.1: An arbitrary 2-dimensional
subspace in a 3-dimensional space

a 2-dimensional subspace in IR®

However, since we are still in a finite-dimensional vector space,
we can still make a connection to a Euclidean space of the same

dimension.

& Definition 4 (Linear Isomorphism)

Let V be n-dimensional, and B = {e,...,en} be some basis of V. The
map

v =1vle; — [v]g

from V to R" is a linear isomorphism of vector spaces.

Exercise 1.1.1

Prove that the said linear isomorphism is indeed linear and bijective?. 2i.e. we are right in calling it linear and
being an isomorphism

66 Note 1.1.6

Any n-dimensional real vecotr space is isomorphic to R", but not canon-
ically so, as it requires the knowledge of the basis that is arbitrarily

chosen. In other words, a different set of basis would give us a different

isomorphism.

Orientation

Consider an n-dimensional vector space V. Recall that for any linear

operator T € L(V'), we may associate a real number det(T), called the
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determinant of T, such that T is said to be invertible iff det(T) # 0.

& Definition 5 (Same and Opposite Orientations)

Let
B={e,...,en} and B= {é1,...,é,}

be two ordered bases of V. Let T € L(V) be the linear operator defined by
T(ei) = é;

foreachi = 1,2,...,n. This mapping is clearly invertible, and so
det(T) # 0, and T~ is also linear, such that T~ (&;) = e, for each

1.

We say that B and B determine the same orientation if det(T) > 0,
and we say that they determine the opposite orientations if det(T) <
0.

66 Note 1.2.1

 This notion of orientation only works in real vector spaces, as, for
instance, in a complex vector space, there is no sense of “positivity” or

“negativity”.

* Whenever we talk about same and opposite orientation(s), we are usu-
ally talking about 2 sets of bases. It makes sense to make a comparison
to the standard basis in a Euclidean space, and determine that the
compared (non-)standard basis is “positive” (same direction) or “neg-
ative” (opposite), but, again, in an arbitrary space, we do not have this

convenience.

Exercise 1.2.1 (A1Q1)

Show that any n-dimensional real vector space V admits exactly 2 orienta-

tions.

Example 1.2.1
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On R", consider the standard basis

Bstd = {él,. . .,én}.

The orientation determined by Bgyq is called the standard orientation

of R". >

Dual Space

& Definition 6 (Dual Space)

Let V be an n-dimensional vector space. Then R is a 1-dimensional real
vector space. Thus we have that L(V,R) is also a real vector space 3. The 3 Note that L(V, R) is also finite di-

mensional since both the domain and
- . .
dual Sjpe 4 Of Vis deﬁ ned to be codomain are finite dimensional.

V* .= L(V,R).

Let Bbe a basis of V. Foralli=1,2,...,n, let el € V* such that

This (5]1: is known as the Kronecker Delta.

In general, we have that for every v = v/ e; € V, where o' € R, by

the linearity of ¢/, we have
é'(v) = ei(vjej) = vjei(e]-) = v]-é;: = 7',

So each of the ¢!, when applied on v, gives us the i" component of

[v] g, where B is a basis of V, in particular

v = vle;, where v' = ¢/(v). (1.1)
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Dual Space (Continued)

& Proposition 1 (Dual Basis)

The set
B = {el,...,e"}
* is a basis of V*, and is called the dual basis of B, where B is a basis of * Note that the e'’s are defined as in the
. . . last part of the last lecture.
V. In particular, dim V* = n = dim V. P
# Proof

B* spans V* Letw € V*. Letv = UjEj € V, where we note that

B= {ei}?:l c

We have that

a(v) = oc(vjej) = vjuc(ej).

Now forall j =1,2,...,n, define a; = a(e]-). Then
a(v) = ocjvj = ocjej(v),

which holds for all v € V. This implies that & = ajef , and so B*

spans V*.

B* is linearly independent Suppose ocjej =0 € V*. Applying zxjej
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to each of the vectors ey in B, we have
ocjej(ek) =0(e,) =0€R

and

uc]-ej(ek) = ac]-éi = wy.

By A1Q2, we have thatay = Oforallk = 1,2,...,n, and so B* is

linearly independent. O

Remark 2.1.1
Let B = {ey,...,en} bea basis of V, with dual space B* = {e!,..., e"}.
Then the map T : V. — V* such that

T(e;) = ¢

is a vector space isomorphism. And so we have that V. ~ V*, but not
cannonically so since we needed to know what the basis is in the first
place. ®

We will see later that if we impose an inner product on V, then it

will induce a canonical isomorphism from V to V*.

& Definition 7 (Natural Pairing)

The function
() V*xV >R

given by
(a,v) — a(v)

is called a natural pairing of V* and V.

66 Note 2.1.1

A natural pairing is bilinear, i.e. it is linear in « and linear in v, which
means that

(@, t101 + tav2) = ti{a, v1) + t2(x, v2)
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and

(taq + by, v) = ty(aq,v) + tr (a2, V),

respectively.

@ Proposition 2 (Natural Pairings are Nondegenerate)

For a finite dimensional real vector space V, a natural pairing is said to be

nondegenerate if This is A1Q2.
YVoeV (v,v) =0 <= a=0

and

Va e V* (a,v) =0 <= v=0.

Example 2.1.1

Fix a basis B = {ey,...,e,} of V. Given T € L(V), there is an associ-
ated n x n matrix A = [T| defined by
— column index
T(e;) = Age]-.
_t

row index
In particular,
block matrix

A=[T)ls ... [T(en)ls]

and

Af = M(T(er) = (¢, T(er)). Pl

& Definition 8 (Double Dual Space)

The set
V** = L(V*,R)

is called the double dual space.
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& Proposition 3 (The Space and Its Double Dual Space)

Let V be a finite dimensional real vector space and V** be its double dual

space. There exists a linear map ¢ such that

E:V VT

# Proof
Letv € V. Then §(v) € V** = L(V*,R), i.e. {(v) : V¥ — R. Then
for any & € V¥,

(6(v)) (a) € R.

Since « € V*,1.e. « : V — R, and « is linear, let us define

To verify that ¢(v) is indeed linear, notice that for any t,s € R, and

for any «, § € V*, we have

¢(v)(ta+sB) = (ta +B)(v)
= ta(v) + sB(v)
= 1¢(0) (a) +5¢(0) (B)-

It remains to show that ¢ itself is linear: for any t,s € R, any

v,w € V,and any « € V*, we have

E(to+sw)(a) = a(tv + sw) = ta(v) + sa(w)
= 1§(0)(a) +5¢(v) ()
= [t6(v) + s¢(w)](w)

by addition of functions. O

@ Proposition 4 (Isomorphism Between The Space and Its Dual
Space)

The linear map in & Proposition 3 is an isomorphism.

As messy as this may seem, this is

really a follow your nose kind of proof.
Since we are proving that a map

exists, we need to construct it. Since

¢: V> V*=L(V"R), foranyv €V,

we must have ¢(v) as some linear map

from V* to R.
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# Proof
From @ Proposition 3, ¢ is linear. Let v € V such that &(v) =0, i.e.

v € ker(¢). Then by the same definition of ¢ as above, we have

0= (¢(v))(a) = a(v)

for any a € V*. By & Proposition 2, we must have that v = 0, i.e.
ker(&) = {0}. Thus by & Proposition A.2, & is injective.

Now, since
V> =L(V*,R) = L(L(V,R),R),

we have that
dim(V**) = dim(V*) = dim(V). 0

Thus, by the Rank-Nullity Theorem 2, we have that ¢ is surjective. 2See Appendix A.1, and especially
é Proposition A.3.

The above two proposition shows to use that we may identify V

with V** using ¢, and we can gleefully assume that V = V**.

Consequently, if v € V = V** and « € V*, we have

a(v) =v(a) = (a,0). (2.1)

Dual Map

& Definition 9 (Dual Map)

Let T € L(V,W), where V, W are finite dimensional real vector spaces.
Let
T : W — V*

be defined as follows: for p € W*, we have T*(B) € V*. Let v € V, and

so (T*(B))(v) € R 3. From here, we may define 31t shall be verified here that T* ()
is indeed linear: let v1,v, € V and
c1,¢2 € R. Indeed
T*(B)(c1o1 + c202)
=T (B)(v1) + 2T (B)(v2)

(T"(B))(v) = B(T(v))-
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The map T* is called the dual map.

Exercise 2.2.1

Prove that T* € L(W*,V*), i.e. that T* is linear.

& Proof
Let B1,B2 € W*, t1,to € R, and v € V. Then

T*(t181 + t2B2)(v) = (111 + t2B2)(T0)
= tl‘Bl(TU) aF tzﬁz(TU)
=t T°(B1)(v) + 2T (B2) (0).

O

66 Note 2.2.1

Note that in & Definition 9, our construction of T* is canonical, i.e. its

construction is independent of the choice of a basis.

Also, notice that in the language of pairings, we have
(T*B,v) = (T"())(v) = B(T(v)) = (B, T(v)),
where we note that

T"(B)e V' veV
BeW* T(v) € W.
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Dual Map (Continued)

66 Note 3.1.1

Elements in V* are also called co-vectors.

Recall from last lecture that if T € L(V, W), then it induces a dual
map T* € L(W*, V*) such that

(T*B)(v) = B(T(2)).

& Proposition 5 (Identity and Composition of the Dual Map)
Let V and W be finite dimensional real vector spaces.

1. Supppose V.= Wand T = Iy € L(V), then

(Iy)* = Iy= € L(V*).

2. Let T € L(V,W),S € L(W,U). Then So T € L(V,U). Moreover,

L(U*,V*) 3 (SoT)* = T*oS*
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& Proof
1. Observe that for any g € V*, and any v € V, we have

((Iv)*(B)) (v) = B((Iv)(0)) = B(0).
Therefore (Iy)* = Iy~.

2. Observe that for v € U* and v € V, we have

(5o T)*(7))(v) = 1((§ o T)(v))
= 7(5(T(v)))
=5"(1T(v))

= (T" o 5%)(7)(v),

and so (SoT)* = T* o §* as required. o

Let T € L(V), and the dual map T* € L(V*). Let B be a basis of V,
with the dual basis B*. We may write

A=[T|gand A* = [T*|g-.
Note that

T(e;) = Alej and T*(¢') = (A*)jej.

Consequently, we have
(¢, T(er)) = Af and (T*(e'), ex) = (A");

From here, notice that by applying ¢, € V = V** to both sides, we

have

—

*

(A" = ee(T*(e')) = (T*(¢), &) = (¢, T(er)) = AL

N

Thus A* is the transpose of A, and

[T*]p = [T] (3.1)

where M is the transpose of the matrix M.
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Application to Orientations

Let B be a basis of V. Then B determines an orientation of V. Let B*

be the dual basis of V*. So B* determines an orientation for V*.

Example 3.1.1

Suppose B and B determines the same orientation of V. Does it

follow that the dual bases B* and B* determine the same orientation
of V*? >

# Proof
Let

B={e,...,en} B={&,...,&:}
B*:{el,...,e"} B*:{él,...,é"}

Let T € L(V) such that T(e;) = ¢;. By assumption, detT > 0.
Notice that

==
3

5l =2(5) = &(Tej) = (T*(@))(e)),

and so we must have T*(&') = ¢'. By Equation (3.1), we have that
detT* =detT >0

as well. This shows that B* and B* determines the same orienta-

tion. O

The Space of k-forms on V

& Definition 10 (k-Form)

Let V be an ndimensional vector space. Let k > 1. A k-form on V is a
map
a:VxVx.. xV=R
—_———

k times

such that
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1. (k-linearity | multi-linearity) if we fix all but one of the arquments
of «, then it is a linear map from V to IR; i.e. if we fix
V1o rUj=1,Vj41s -+ Uk € Vv,
then the map
u— a(vy,. ..,Uj_l,u,vj+1,...,vk)

is linear in u.

2. (alternating property) « is alternating (aka totally skewed-

symmetric) in its k arguments; i.e.

a(vl,...,vi,...,v]-,...,vk) = oc(vl,...,v]-,...,vi,...,vk).

Example 3.2.1

The following is an example of the second condition: if k = 2, then

a:V xV —R. Then a(v,w) = —a(w,v).

Ifk=3,thena:V xV x V — R. Then we have

a(u,v,w) = —a(v,u,w) = —a(w,v,u) = —a(u,w,v)

=ua(v,w,u) = a(w,u,v). N

66 Note 3.2.1

Note that if k = 1, then condition 2 is vacuous. Therefore, a 1-form of V
is just an element of V* = L(W, R).

Remark 3.2.1 (Permutations)

From the last example, we notice that the ‘sign’ of the value changes as we
permute more times. To be precise, we are performing transpositions on the
arguments *, i.e. we only swap two of the arguments in a single move. Here ' See PMATH 347.

are several remarks about permutations from group theory:
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o A permutation o of {1,2,...,k} is a bijective map.

Compositions of permutations results in a permutation.

The set Sy of permutations on the set {1,2,...,k} is called a group.

There are k! such permutations.

For each transposition, we may assign a parity of either —1 or 1, and
the parity is determined by the number of times we need to perform a
transposition to get from (1,2,...,k) to (¢(1),0(2),...,0(k)). We
usually denote a parity by sgn (o).

The following is a fact proven in group theory: let o, T € Si. Then

sgn(ocoT) =sgn(o) -sgn(1)
sgn(id) =1
sgn(t) = sgn(T71). ®

Using the above remark, we can rewrite condition 2 as follows:

66 Note 3.2.2 (Rewrite of condition 2 for B Definition 10)

« is alternating, i.e.

a(Vs(1), - - -+ Vo)) = sg0(0) - (01, ..., Vk),

where o € Sk.

Remark 3.2.2

If w is a k-form on V, notice that
a(v1,...,00) =0

if any 2 of the arguments are equal. ®
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The Space of k-forms on V (Continued)

& Definition 11 (Space of k-forms on V)

The space of k-forms on V, denoted as A* (V*), is the set of all k-forms

on V, made into a vector space by setting

(ta +sB)(v1,...,v¢) = ta(vy,...,0%) +5B(v1,-.., k),

for ap € A¥(V*),t,5 € R.

66 Note 4.1.1

By convention, we define A° (V*) = R. The reasoning shall we shown

later.

66 Note 4.1.2

By the note on page 40, observe that A (V*) = V*,

@ Proposition 6 (A k-form is equivalently 0 if its arguments are

linearly dependent)
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Let « be a k-form. Then if vy, ..., vy are linearly dependent, then

a(v,...,0r) =0.

& Proof

Suppose one of the vy, ..., vy is a linear combination of the rest of

the other vectors; i.e.
0j = €101 + ... +Cj10j1 + Cj410j41 + ... A CkTk.

Then since & is multilinear, and by the last remark in Chapter 3, we

have

0((?}1,...,?Jj,l,?]]',U]‘Jrl,...,Uk) = (0. O

#= Corollary 7 (k-forms of even higher dimensions)

AR (V) ={0}ifk>n=dimV.

# Proof

Any set of k > n vectors is necessarily linearly dependent. O

66 Note 4.1.3

#= Corollary 7 implies that A* (V*) can only be non-trivial for 0 < k <
n=dimV.

Decomposable k-forms

There is a simple way to construct a k-form on V using k-many 1-

forms from V, i.e. k-many elements from V*. Let al,. .. ak e v*,
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Define a map

WAL A VXV X xV =R
—_— ————

k copies
by

(vcl /\.../\zxk) (V1,..., ) == Y (sgno) a?D(v1)a"@ (0;) ... 27" ().

O'ESk

(4.1)

We need, of course, to verify that the above formula is, indeed, a

k-form. Before that, consider the following example:

Example 4.2.1

If k = 2, we have
(041 A ocz) (v1,02) = 061(711)0(2(?]2) - 062(01)061(?]2).
and if k = 3, we have

(le Aa® A 043) (v1,v2,v3) = al(v1)a?(v2)a®(v3) + a2 (v1)a> (v;)al (v1)
+a°(01)a’ (02)0% (v3) — &' (01)a° (v2)a? (v3)

- 1362(01)061 (01)“3(03) - “3(01)“2(02)“}@3)-

Now consider a general case of k. It is clear that Equation (4.1) is
k-linear: if we fix any one of the arguments, then Equation (4.1) is

reduced to a linear equation.

For the alternating property, let T € S;. WTS

(alA...Aak) (vT(l),...,vT(k)) = (sgnT) (zx1 /\.../\uck) (v1,.--, V) -
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Observe that

(le A /\ock> (07(1),---/Ur(k)>
% s (o) o)

TESK

Y (sgnao T_1> (sgnT) MG ) (01(1)) L aloeT ) (E®) <vf(k)>

0ES)
=(sgn7) L (sgnoor )l )W (). LaleT O ()
oot leS,
= (sgnt) )_ D (o1)...a?®(v) - relabelling

UGSk

= (sgnT) (ocl/\...zxk) (v1,--,0%),

as claimed.

& Definition 12 (Decomposable k-form)

The k-form as discussed above is called a decomposable k-form, which for ease of reference shall be re-expressed

here:
(le A... /\ock) (01,...,0¢) :== ) (sgno) 2D (0)a7@ (v7) ... a7 ().

oES)

66 Note 4.2.1

Not all k-forms are decomposable. If k = 1,n — 1 and n, but not for
1<k<n-1

In A1Q5(c), we will show that there exists a 2-form in n = 4 that is

not decomposable.

é Proposition 8 (Permutation on k-forms)

Let T € Sg. Then
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# Proof
Firstly, note that sgn T = sgnt~!. Then for any (vy,...,7v;) € V¥,

we have

dTDA LA aT(k)(vl,. e, k)

= Y (sgno)a” W (o) ...a%"® ()

oESk

= ) (sgnoor) (sgn T71> a7 W (7). a7 ®) (1)
ooTSy

= (sgn7) Y (sgna)a’@(vy)...a"® (v)

TESK

= (sgn7)(al A... Aab).

This completes our proof. 0

Proof for @& Proposition g is in A1.

@ Proposition 9 (Alternate Definition of a Decomposable k-

form)

Another way we can define a decomposable k-form is

(@A ANdD) (v, o) = Y (sgno)a (v,(1)) - ..ak(va(k)).
oES)

®PTheorem 10 (Basis of A¥(V*))

Let B = {ey,...,en} bea basis of V, a n-dimensional real vector space,
and the dual basis B* = {e',...,e"} of V*. THen the set

{ejl/\.../\ejk‘lgjl <j2<...<jk§n}

is a basis of A¥(V*).

#= Corollary 11 (Dimension of A*(V*))
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The dimension of A¥(V*) is () = ("), which is also the dimension of

A"K(V*). This also works for k =0 ™. " This is why we wanted A°(V*) = R.

& Proof (R Theorem 10)
Firstly, let « be an arbitrary k-form, and let vy, ...,vx € V. We may
write

— o
0; = vie]-,

where v{ € R. Then

a(vy,...,v0) =« (v]fejl,. ..,v;(kejk)
= U]ll oo vikoc(eh, oo ,ejk)
by multilinearity and totally skew-symmetry of «, where j; €
{1,...,n}. Let

“(ejl’ et ’ejk) = ajl,...,jk/ (42)

represent the scalar. Then

_ J1 Jk
a(vy,.-.,0k) =&, 01 -0

= ucjlru_,]-kefl (v1) ...ek(vg).

Now since a;, _ ; is totally skew-symmetric, « = 0 if any of the
jk's are equal to one another. Thus we only need to consider the
terms where the ji’s are distinct. Now for any set of {ji, ..., i},
there exists a unique o € Sy such that ¢ rearranges the j;’s so that

j1,-- -, Ji is strictly increasing. Thus

a(o,...00)= Y, Y ucjgl()wﬂ(k)e]”(l) (v1) ...el70 (vy)
j1<...<Jx 0ESk

= ). Z(sgna)ucjlekejm)(vl)...ejﬂ(k)(vk)

j1<...<jx CESk

= 2 B4 el Z (sgng)ej0(1>(vl) el (ok)

j1<-<Jk oESk
= ) 8y (eh /\.../\e]k>(v1,...,vk).
J1<---<Jk
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Thus we have that

o= Z ' @iy, i€ A Ak (%))
J1<--<Jk

Hence e/t A ... A el spans AF(V*).

Now suppose that

. el Ji
4 ) @A Ae
J1<--<Jk

is the zero element in A¥(V*). Then the scalar in Equation (4.2)

must be 0 for any jy, ..., jr. Thus
{ejl/\.../\ejk 1<h <j2<...<jk§n}

is linearly independent. 0O
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Decomposable k-forms Continued

There exists an equivalent, and perhaps more useful, expression for
Equation (4.3), which we shall derive here. Sine «;, . ; and AN
el are both totally skew-symmetric in their k indices, and since there

are k! elements in Sy, we have that

. ) 1 ) ‘
ﬁ"‘h,w]'keh A Nelk = = Z wjy, i AL N ek
’ " ek
distinct
1 . .
= E Z Z “U(jl),~~~,7(jk)ea—(]l) A... N\ eg'(]k)
T <...<jx 0E€Sk
1 ) )
= Y ' ZS (sgno)aj,,. i (sgno)elt A... Aek
T i< <Jk o€k
1 ) ,
=4 Yo Y ap, et AL AT
. j1<...<jk O’GSk
= Y o i@ AL NER
J1<<Jik
The major advantage of the expression with % is that all k indices *Note that (sgno)(sgno) = 1.

j1,-- ., jx are summed over all possible values 1, ..., n instead of hav-

ing to start with a specific order.

Wedge Product of Forms

& Definition 13 (Wedge Product)

Leta € AN(V*)and B € A(V*). Wedefinea A B € AFH(V*) as
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ollows. Choose a basis B* = {el,..., ek of V*. Then we may write
f {eto e} of y

1 A . 1 ~ »
= gt 4 A A B B e A Al

We define the wedge product as

1
VAN ﬁ = mailr"'rik

_ . LR, .l ik 1 i
= Y. Y B A AN AL N
i1<...<ig j1<...<Jj

Sl ik A pht Ji
Bir,..j€t N Nek NeTA L Ne

One can then question if this definition is well-defined, since it ap-
pears to be reliant on the choice of a basis. In A1Q4(a), we will show
that this defintiion of A 8 is indeed well-defined. In particular, one
can show that we may express « A § in a way that does not involve

any of the basis vectors ¢!, ..., e".

& Definition 14 (Degree of a Form)

For a € AX(V*), we say that a has degree k, and write |a| = k.

66 Note 5.2.1

By our definition of a wedge product above, we have that
@ A Bl = |af +B]-

Note that since a O0-form lies in AK(V*) for all k, we let |k| be anything /
undefined.

Remark 5.2.1

1. a A B is linear in « and linear in B by its definition, i.e. for any t,ty €
R, a1, a € AN(V*), and any B € A'(V*),

(traq + o) A B = t1 (a1 A B) +t2(a2 A B),

and a similar equation works for linearity in p.
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2. The wedge product is associative; this follows almost immediately from its

construction.

3. The wedge product is not commutative. In fact, if |«| = kand || = 1,
then
BAaa=(—1)"anpB. (5.1)

We call this property of a wedge product graded commutative, super

commutative or skewed-commutative.

Note that this also means that even degree forms commute with any

form.

Also, note that if |«| is odd, then a N = 0. o

Example 5.2.1

Letx = e' Ae? and B = % + ¢3. Then

xA\p= (el/\e3> A (e2+e3)
:el/\e?’/\ez—i—el/\63/\63
=—elA NS +0
= el A A, >

The contrapositive of #=Corollary 12
is true as well: if the wedge product is

equivalently zero, then we can rewrite

#= Corollary 12 (Linearly Dependent 1-forms) il e pe [pra Ak £ el ome ol I
k-forms is expressed in terms of the

Suppose o, ..., a¥ are linearly dependent 1-forms on V. Then al A ... A oitiners,
k
a* = 0.

# Proof

Suppose at least one of the &/ is a linear combination of the rest, i.e.

o =cpal + o T T L gk

Since all of the a'’s are 1-forms, we will have a’ A &’ in the wedge

product, and so our result follows from our earlier remark. O
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Example 5.2.2
Let a = ae’, B = ﬁjej € V*. Then
xA\B= zxiﬁjei Ael
= Eaiﬁje Nel + Eaiﬁje Nel
= Etxiﬁje ANel — Etxjﬁ,'e Ae
1 .
= 5 (aipj —ajpi)e’ N

1 S
= E(uc A B)ije' Nel,

where (a A B);j = a;B; — a;B;- >
We shall prove the following in A1Q6.
Exercise 5.2.1
Let 0 = oqei e V*, and
1k A2
1= 51jke Net e AN (VF).

Show that
1 o
ANy = a(zx An)ijxe' Nel Ak,

where

(& A1p)ije = aatgje + ajpi + axtgij-

Pullback of Forms

For a linear map T € L(V,W), we have seen its induced dual map
T* € L (W*,V*). We shall now generalize this dual map to k-forms,
for k > 1.

& Definition 15 (Pullback)

Let T € L(V,W). For any k > 1, define a map
T* : AK(W*) — AF(VY),

called the pullback, as such: let B € AK(W*), and define T*B € AF(V*)
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such that

(TB) (o1, 08) = B(T(01), .., T(0y))..

66 Note 5.3.1

It is clear that T* B is multilinear and alternating, since T itself is linear,

and B is multilinear and alternating.

The pullback has the following properties which we shall prove in
A1Q8.

@ Proposition 13 (Properties of the Pullback)

1. The map T* : AK(W*) — AK(V*) is linear, i.e. Yo, B € AK(W*) and
s, t € R,
T*(ta+sB) = tT o +sT*B. (5.2)

2. The map T* is compatible fwth the wedge product operation in the
following sense: if & € AK(W*) and B € A (W*), then

T (aAB) = (T*a) A (T*B) .







Part 11

The Vector Space IR” as a Smooth
Manifold
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The space A*(V) of k-vectors and Determinants

Recall that we identified V with V**, and so we may consider AK(V) =

AX(V**) as the space of k-linear alternating maps

VEXV*x...xV* =R

k copies

Consequently (to an extent), the elements of A¥(V) are called k-
vectors. A k-vector is an alternating k-linear map that takes k covec-

tors (of 1-forms) to R.

Example 6.1.1

Let {e1,...,e,} be a basis of V with the dual basis {¢',...,¢"}, which
is a basis of V*. Then any A € A¥(V*) can be written uniquely as

A= Y Avdce A Ae

i1 <...<ip

where

AWW:A@MWW)

We also have that

1 . .
A= A A e >

66 Note 6.1.1
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Note that
n!

dim AF(V) = IR

& Definition 16 (k" Exterior Power of T)
Let T € L(V,W). Then T induces a linear map
AK(T) € L (AKW), Akw)),
defined as
(AkT) (01 A... Avg) = T(01) A ... AT(%),

where vy, . . ., vy are decomposable elements of AX(V'), and then extended

by linearity to all of A¥(V'). The map AXT is called the k' exterior
power of T.

66 Note 6.1.2

Consider the special case of when W = V andk = n = dim V. Then
T € L(V) induces a linear operator A"(T) € L(A"(V)). It is also
noteworthy to point out that any linear operator on a 1-dimensional

vector space is just scalar multiplication.

Furthermore, notice that in the above special case, we have

dim A"(V) = (Z) —1.

& Definition 17 (Determinant)

Let dimV = nand T € L(V). We have that dim A" (V) = 1. Then
A'"T € L(A"(V)) is a scalar multiple of the identity. We denote this
scalar multiple by det T, and call it the determinant of T, i.e.

A"(T)A = (detT)IA
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for any A € A"(V), where I is the identity operator.

66 Note 6.1.3

We should verify that this ‘new’ definition of a determinant agrees with

the ‘classical” definition of a determinant.

& Proof

Let B = {e1,...,e,} be abasis of V, and let A = [T|z be the n x n
matrix of T wrt the basis B. So T(¢;) = A{:ej. Then {e; A... Aey}is
a basis of A"(V), and

(A"T) (e A...New) =T(er) A... A T(en)
:Alfeil /\.../\Affe,»n
= ADAZ . Alne, N Ne,
= Z A;l...Ai;“ e, N...N\ej,

ﬁijn
distinct

= Z Az(l) e A(nf(n) €o(1) VAN €o(n)

ocEeS,

= 0 A‘lf(l) L AGW (sgno)er A...Aey

oES,

= ( ) (sgna)A‘;(l) ...Az(")> (1 A...Ney)

oEeS,

= ( Y (sgna)li[Af(i)> (e1 AL Ney).

0ESy i=1

We observe that we indeed have

no
detT = ) (sgnU)HA;.T(l). O

oceSy i=1

CoNsIDER the following general situation: Let T € L(V, W), where
dimV = nand dimW = m. Let B = {ey,...,e,} be a basis of V, and
C={f1,..., fm} abasis of W.


https://en.wikipedia.org/wiki/Determinant#n_%C3%97_n_matrices
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Then there exists a unique m x n matrix A = [T]¢ g with respect to

these bases that represents T. A is defined by the property

[T(0)]c = [Tle,8lv]8 = Alv]s,

which means that the left multiplication by A € R”*" on the coordi-
nate vector [v]z € R"*! of v, with respect to B, gives the coordinate

vector [T(v)]¢ € R™*! of T(v), with respect to C. Then, explicitly, let
T(e;) = Af.'fj, (6.1)
where 1 <i<nand 1 <j<m. Then forv = viei, we have
T(0) = v'T(e;) = W' Alf; = (Al)f,
which is what we could expect from the map T.

Note that the i" column of A is the coordinate vector [T(e;)]¢
of the vector T(¢;) € W, with respect to C. Then along with Equa-

tion (6.1), we have that

Al = fI(T(e;)). (62)

FOLLOWING THE ABOVE observation, now consider
AFT e L(AF(V), AK(W))
where 1 < k < min{m, n}. Then the set
AFB = {eg AoooNey |1<dp <. <@g <n}
is a basis for A¥(V) and the set
AC={fi N . Afi |1<jh<.. <jx<m}
is a basis of AK(W).

Let AFA denote the (%) x () matrix [AFT] AkeAkp Tepresenting
AKT with respect to the bases A¥B and AXC of A¥V and AW, re-
spectively. Let I = (i, ..., i) denote a strictly increasing k-tuple in

{1,...,n},and J = (j1,...,jx) denote a strictly increasing k-tuple in
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{1,...,m}. Then let

e =ejy N...Aegj,

1

f]:€j1/\.../\jjk.
Thus from Equation (6.1), we have
(AT)(er) = Alfy, (6.3)

where the sum over | is over all () strictly increasing k-tuples in

{1,...,m}.

& Proposition 14 (Structure of the Determinant of a Linear Map

of k-forms)

The entires A{ of AXA are given by
i i
Ail A ii
Al=det| : - 1. )
J J
Ai’lC . Ail’i
That is, A{ is the k x k minor obtained from A by deleting all rows

except ji, . . ., jx and all columns except iy, . . ., iy.
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& Proof
We shall explicitly compute Equation (6.4). Observe that

(AFT)(er)
= AfT(e;, A... Ney)
=T(e;) N-.-ANT(e;,)
= (ALf) Ao A (AR
:Aﬁ...Ag"th...Afjk
= L A Al A A Sy

J1r-rJk
distinct

_ Jo(1) Jo(k) ¢ )
- Z Z Ai1 "'Aik f]a(l) /\"'/\f]a(k)

1§j1<...<ijTl O'ESk

- T (z@@wﬁm. )m A S

1§j1<...<jk§n (TGSk

_Z<Z sgno A]”()...Afz(k))f]

o€Sk

= Alf]’

where the final line follows from the definition of a determinant,

and is precisely Equation (6.4).

The following corollary is important to us, not now, but later on
when we begin the section Submanifolds in Terms of Local Parame-

terizations.

#= Corollary 15 (Nonvanishing Minor)

Let A be an m X n matrix with rankk < min{m, n}. Then there exists a

k x k submatrix A of A such that det A # 0, i.e. A has a nonvanishing

k x k minor A.

& Proof
Consider the linear map T : R" x R", given by T(v) = Av. In

particular, we have A = [T]c_, 5, Where B is the standard basis
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of R" and Cgyq the standard basis of R”.

Note that rank T = dim Img T, which is exactly the dimension
of the span of the columns of A, since columns of A are the images
Aéq,...,Aé, of the standard basis vector of R”. From the rank-

nullity theorem, we have that rank T < min{m, n}.

By our supposition, rank T = k, and the columns of A span
Img T, we have that there exists a subset of k columns of A that are
linearly independent vectors, in R” *. Let us index the columns by * Note that the k vectors need not be
unique.

i1,...,ix. Then {A¢;,..., Aé; } is a linearly independent set in R™.

By the contrapositive of #=Corollary 12, we have that

(A*T)(;, ... 6,) = (A;)) A...A (&) # 0 € AYR™).

1

Thus AFT : A¥(R") — AK(IR™) is not the zero map. Therefore,
there exists at least one non-zero entry in the matrix AFA. The

desired result follows from @ Proposition 14. O

Orientation Revisited

Now that we have this notion, we may finally clarify to ourselves
what an orientation is without having to rely on roundabout methods

as before. Basically, we now have a more mathe-
matical way of saying ‘pick a direction
and consider it as the positive direction

of V, and that’ll be our orientation’.
& Definition 18 (Orientation)
Let V be an n-dimensional real vector space. Then A" (V) is a 1-dimensional
real vector space. An orientation on 'V is defined as a choice of a non-

zero element y € A"(V), up to positive scalar multiples.

66 Note 6.2.1

For any two such orientations y and fi, we have that fi = Ay for some
non-zero A € R, and by using the definition of having the same orienta-

tion, we say that y ~ fiif A > 0and p £ jiif A < 0.
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Exercise 6.2.1

Check that B Definition 18 agrees with & Definition 5. (Hint: Let B =
{e1,...,en} beabasis of V and let y = ey A ... Aey.)

Topology on K

We shall begin with a brief review of some ideas from multivariable

calculus.

We know that R" is an n-dimensional real vector space. It has a
canonical positive-definite inner product, aka the Euclidean inner
product, or the dot product: given x = (x1,..., %),y = (Y1,...,Yn) €

IR, we have

1=

X-y= ' xiyi = (Sijxiyf.

1

H
—

The following properties follow from above: for any t,s € R and

x,y,w e R",
o (tx+sy) - w=tx-w)=sy- w);
o x-(ty+sw)=t(x-y)+t(x w);

[ ] x-y:y~xl‘

(positive definiteness) x - x > 0 withx - x =0 <= x =0;

(Cauchy-Schwarz Ineq.) — ||x|| [|y|| < x-y < ||x]| |ly]], i-e.
x-y = |[x[ [yl cos

where 6 € [0, 77].

& Definition 19 (Distance)

The distance between x,y € R" is given as

dist(x,y) = [|x — y]|.




PMATH365 — Differential Geometry 67

66 Note 6.3.1 (Triangle Inequality)

Note that the triangle inequality holds for the distance function?: for any 2See also PMATH 351
x,z € R", for any y € R",

dist(x, z) < dist(x,y) + dist(y, z).

& Definition 20 (Open Ball)

Let x € R" and & > 0. The open ball of radius € centered at x is
Be(x) = {y € R" | dist(x,y) < €}.
A subset U C R" is called open if Vx € U, 3e > 0 such that

B:(x) C U.

Example 6.3.1
e @ and R" are open.
e If U and V are open,sois UNV.

o If {Uy}nen is open, sois Ugea Uq. >


https://tex.japorized.ink/PMATH351F18/classnotes.pdf
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Topology on R" (Continued)

& Definition 21 (Closed)

A subset F C R" is closed if its complement R™ \ F =: FC is open.

¥ Warning
A subset does not have to be either open or closed. Most subsets are nei-
ther.

66 Note 7.1.1
o Arbitrary intersections of closed sets is closed.

e Finite unions of closed sets is closed.

66 Note 7.1.2 (Notation)

We call
Be(x) :={y e R" | [[x —y|l < ¢}

the closed ball of radius e centered at x.
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& Definition 22 (Continuity)

Let ACR" Let f : A — R™, and x € A. We say that f is continuous
at x if Ve > 0, 36 > 0 such that

f(Bs(x) N A) C Be(f(x)).

We say that f is continuous on A if Vx € A, f is continuous on x.

& Proposition 16 (Inverse of a Continuous Map is Open) For a proof, see PMATH 351.

Let AC R"and f : A — R"™. Then f is continuous on A iff whenever
V CR™ is open, f~1(V) = AN U for some U C R" is open.

& Definition 23 (Homeomorphism)

Let AC R"and f : A — R™. Let B = f(A). We say that f isa
homeomorphism of A onto Bif f : A — B

* s a bijection;

e and f~1: B — A is continuous on A and B, respectively.

Calculus on R"

Let U € R" be open, and f : U — R"™ be a continuous map. Also, let
x=(,.. ., eR"andy = (y,...,y™) € R™
Then the component functions of f are defined by
vk = R, 0", wherey = (v, ..., y™) = f(x) = f(x!,...x").

Thus f = (f1,..., f™) is a collection of m-real-valued functions on
ucCRr".



https://tex.japorized.ink/PMATH351F18/classnotes.pdf
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& Definition 24 (Smoothness)

Let xo € U. We say that f is smooth (or C*, or infinitely differen-
tiable) if all partial derivatives of each component function f* exists
and are continuous at xq. Le., if we let % = 0; denote the operator of

partial differentiation in the x' direction, then
p o fk
9y ... f

exists and is continuous at xg, forallk =1,...,n, and all a; > 0.

& Definition 25 (Diffeomorphism)

Let U C R"beopen, f : U — R™,and V = f(U). Wesay fisa
diffeomorphism of U onto V if f : U — V is bijective®, smooth, and * A function that is not injective may

.. 1. not have a surjection from its image.
that its inverse {1 is smooth. ] &

We say that U and V are diffeomorphic if such a diffeomorphism

exists.

66 Note 7.2.1

A diffeomorphism preserves the ‘smoothness of a structure’, i.e. the notion

of calculus is the same for diffeomorphic spaces.

Example 7.2.1

gof
If f : U — Vis adiffeomorphism , then ¢ : V — R is smooth iff
U — Ri th.
gof is smoo i v R

Figure 7.1: Preservation of smoothness

via diffeomorphisms

66 Note 7.2.2

A diffeomorphism is also called a smooth reparameterization (or just a

parameterization for short).




72 Lecture 7 Jan 21st Calculus on R™

& Definition 26 (Differential)

Let f : U C R" — R"™ be a smooth mapping, and xo € U. The
differential of f at xo, denoted (df)y,, is a linear map (D f)y, : R" —

R™, or an m X n real matrix, given by

%(xo) %(Xo)
(Df)x(): ’

S (x) ... Lrlxo)

where the notation (xq) means evaluation at xo, and the (i, j) ™ entry of

(D f)x, is %(xo)- (D f)x, is also called the Jacobian or tangent map

of f at xg.

66 Note 7.2.3 (Change of notation)

We changed the notation for the differ-
ential on Feb 3rd to using D f. The old
notation was df.

& Proposition 17 (Differential of the Identity Map is the Iden-
tity Matrix)

Let f : U C R" — IR" be the identity mapping f(x) = x. Then
(D f)xy = In, the n x n matrix, then for any xo € U.

& Proof

Since f(x) = x, since x € R", we may consider the function f as

X1 0 0
0 X2

fx) =Inx =
0 0 ... x4

and it does not matter what x is. O
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66 Note 7.2.4

In multivariable calculus, we learned that if f is smooth at xq 2, then 2 Back in multivariable calculus, just

being C! at x is sufficient for being
smooth

f(x) = f(x0) + (D f)x (x — x0) + Q(x),

mx1 mx1 mxn nx1 mx1

where Q : U — R™ satisfies

lim M =0.
5% Tt — o]

66 Note 7.2.5

Note that when n = m = 1, the existence of the differential of a continu-
ous real-valued function f(x) at a real number xo € U C R is the same
of the usual derivative f'(x) at x = xq. In fact, f'(xg) = (Df)x, =
df

7 (x0)-

WP Theorem 18 (The Chain Rule)

Let

f:UCR"—R"
¢:VCR" 5 RP,

be two smooth maps, where U, V are open in R™ and R™, respectively,

and and such that V = f(U). Then the composition g o f is also smooth.
Further, if xg € U, then

(D(g°f))xo = (D&) f(x0) (D o (7.1)
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Smooth Curves in R" and Tangent Vectors

We shall now look into tangent vectors and the tangent space at
every point of R”. We need these two notions to construct objects
such as vector fields and differential forms. In particular, we need
to consider these objects in multiple abstract ways so as to be able
to generalize these notions in more abstract spaces, particularly to

submanifolds of R” later on.

Plan  We shall first consider the notion of smooth curves, which we
shall simply call a curve, and shall always (in this course) assume
curves as smooth objects. We shall then use velocities of curves to

define tangent vectors.

& Definition 27 (Smooth Curve)

Let I C R be an open interval. A smooth map ¢ : I — R" is called a

smooth curve, or curve, in R". Let t € 1. Then each of its component

functions ¢*(t) in @(t) = (¢'(t),...,¢"(t)) is a smooth real-valued e
function of t. :
U /7L\

1

,11%* - 05
Example 7.3.1 g
Let a,b > 0. Consider ¢ : I — R? given by Figure 7.2: A curve in R3
¢(t) = (acost,asint,bt). >
Since each of the components are smooth3, we have that ¢ itself is 3 Wait, do we actually consider bt
smooth when it’s only C!, in this

also smooth. The shape of the curve is as shown in Figure 7.3. course?

Figure 7.3: Helix curve
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Smooth Curves in R" and Tangent Vectors (Continued)

& Definition 28 (Velocity)

Let ¢ : I — R" be a curve. The velocity of the curve ¢ at the point
¢(tg) € R" for ty € I is defined as

@' (to) = (do)y, € R™1 ~ R",

66 Note 8.1.1

¢'(to) = (d@)y, is the instantaneous rate of change of ¢ at the point
¢(to) € R™.

Example 8.1.1

From the last example, we had ¢(t) = (acost,asint,bt) for a,b > 0.
Then
¢'(t) = (—asint,acost,b)

Let to = 7. Then the velocity of ¢ at

T bt

v(3)=007)

is
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& Definition 29 (Equivalent Curves)

Letp € R". Let ¢ : I — R"and ¢ : I — R" be two smooth curoves in
R such that both the open intervals I and I contain 0. We say that ¢ is

equivalent at p to ¢, and denote this as

¢ ~p i,

* ¢(0) =y(0) = p, and

* ¢'(0) =¢'(0).

66 Note 8.1.2

In other words, ¢ ~p ¥ iff both ¢ and ¢ passes through p at t = 0, and

have the same velocity at this point.

Example 8.1.2

Consider the two curves

@(t) = (cost,sint) and ¢(t) = (1,t), /

= (1,0
where t € R. p=(10)

Notice that at p = (1,0), i.e. t = 0, we have

gD,(O) = (0,1) and 1p/(0) = (0,1). Figure 8.1: Simple example of equiva-

lent curves in Example 8.1.2
Thus
¢ ~p P ¥l

@ Proposition 19 (Equivalent Curves as an Equivalence Rela-

tion)

~yp 1 an equivalence relation.
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Exercise 8.1.1

Proof of & Proposition 19 is really straightforward so try it yourself.

B Definition 30 (Tangent Vector)

A tangent vector to R at p is a vector v € R", thought of as  emanating ’

from p, is in a one-to-one correspondence with an equivalence class

[plp = {p: I > R"[¢p~p 9}

B Definition 31 (Tangent Space)

The tangent space to R™ at p, denoted T, (R") is the set of all equiva-

lence classes [, wrt ~p.

Now if ¢ : I — IR" is a smooth curve in R"” with 0 € I, and
¢'(0) = v € R", then we write v, to denote the element in T, (R")

that it represents.

& Proposition 20 (Canonical Bijection from T, (R") to R")

There exists a canonical bijection from T,,(R") to R". Using this bijec-
tion, we can equip the tangent space T,(IR") with the structure of a real

n-dimensional real vector space.

& Proof
Let v, = [¢]p, € Tp(IR"), where v = ¢'(0) € R”, for any ¢ € [¢],.
Let 7y, : R = R" by

Yo, (t) = (p+tv) = (p' + t0', pP* + 0%, ..., p" + to").

It follows by construction that 75, is smooth, 75,(0) = p, and
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fy;p (0) = v. Thus vy, ~p ¢. In particular, we have [y, |, = [¢], =
vp € Tp(R"). In fact, notice that 7y, is the straight line through p in

the direction of v.

Now consider the map T, : R" — T,(R"), given by

Tp(v) = [’va]p-

In other words, we defined the map T, to send a vector v € R"
to the equivalence class of all smooth curves passing through p
with velocity v at p. Note that since 7,, has a ‘dependency’ on v, it

follows that Ty is indeed a bijection.

We now get a vector space structure on Tj(IR") from that of R”"

by letting T}, be a linear isomorphism, i.e. we set
algly +bl9ly = Ty (aT; ([9ly) + 6T, ([¢],))

forall a,b € R and all [¢],, [¢], € Tp(R").

66 Note 8.1.3 z
Another way we can say the last line in the proof above is as follows: if Wp
vp, wy € Ty(R") and a,b € R, then we define av, + bwy, = (av + bw)p. o,
In other words, looking at the tangent vectors at p is similar to looking »
at the tangents vectors at the origin 0. !
v
y
0

X

66 Note 8.1.4

Figure 8.2: Canonical bijection from
The fact that there is a canonical isomorphism between R™ and the equiv- Tp(R") to R”

alence classes wrt ~y, is a pheonomenon that is particular to R".

For a k-dimensional submanifold M of R", or more generally, for an
abstract smooth k-dimensional manifold M, and a point p € M, it is
true that we can still define T,,(M) to be the set of equivalence classes of
curves wrt to some ‘natural” equivalence relation. However, there is no

canonical representation of each equivalence class, and so T,(M) ~ Rk,
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but not canonically so.
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Derivations and Tangent Vectors

Recall the notion of a directional derivative.

& Definition 32 (Directional Derivative)

Let p,v € R". Let f : U C R" — R be smooth, where U is an open set
that contains p (i.e. an open nbd of p). The directional derivative of f
at p in the direction of v, denoted vy f, is defined as

Remark 9.1.1

The above limit may or may not exist given an arbitrary f, p and v. How-

ever, since we’re working exclusively with smooth functions, this limit will

always exist for us. ®

66 Note 9.1.1

By definition, we may think of v,f € R as the instantaneous rate of

change of f at the point p as we ‘move in the direction of " the vector v.

Remark 9.1.2

In multivariable calculus, one may have seen this definition with the ad-
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ditional condition that v is a unit vector. We do not have that restriction

here.

Also, note that we have deliberately used the same notation v, that we
used for elements of T,(IR™), which seems awkward, but it shall be clarified
in §= Corollary 23. ®

Example 9.1.1

In the special case of when v = é;, where ¢; is the ith standard basis

vector. Then we have

fp+té) — f(p) _ %(p) = (fo7s,) (p)

(ei>pf = PB}) ;

for the directional derivative of f at p in the é; direction. This is
precisely the partial derivative of f in the x’ direction at the point

p € R" >

®PTheorem 21 (Linearity and Leibniz Rule for Directional

Derivatives)

Let p € R", and let f, g be smooth real-valued functions defined on open
neighbourhoods of p. Let a,b € R. Then

1. (Linearity) vy(af +bg) = av,f 4 bu,g;

2. (Leibniz Rule / Product Rule) v,(fg) = f(p)vpg + g(p)vpf.

& Proof

Proven on A2Q2. O

REcALL that given p,v € R", we denote 7, as the curve Yo, (t) =
p + tv, which is the straight line passing through p with constant

velocity v. Thus we mmay rewrite Equation (9.1) as

o/ = tim L) = £05,(0)

t—0 t

= (f°70,)'(0), (9-2)
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where f o7y, : R — Ris smooth as it is a composition of smooth

functions.

WP Theorem 22 (Canonical Directional Derivative, Free From the

Curve)

Suppose that ¢ ~, P are two curves on R". Let f : U — R where U is
an open neighbourhood of p. Then

(fo@)'(0) = (foy)'(0).

# Proof
By the chain rule,

(fo9)'(0) = (D(fop))o = (Df)@) (Do = (Df)yw¢(0),

and a similar expression holds for ¢. Our desired result follows

from the definition of ~ . O

#= Corollary 23 (Justification for the Notation v, f)

Let [¢], € T,R™. It follows that
vpf = (fo70,)(0) = (fo ) (0)

by Equation (9.2).

Remark 9.1.3

With that, we have established that tangent vectors give us directional
derivatives in a way compatible with the characterization of T,IR" as equiva-

lence classes wrt ~y,. ®

Now THE fact that Equation (9.1) depends only on the values of f in

some open neighbourhood of p motivates us towards the following
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definition.

B Definition 33 (f ~, g)

Letp e R". Let f : U CR" - Rand g: V C R" — R be smooth
where U and V are both open neighbourhoods of p. We say that | ~, ¢ if
IW C UNV such that f [w= g [w. That is, f ~, g iff f and g agree at
all points sufficiently closde to p.

66 Note 9.1.2

It is clear from Equation (9.1) that if f ~, g, then f(p) = g(p) and
Upf = vpg, ie. fand g agree at p and all possible directional derivatives

at p of f and g also agree with each other.

& Proposition 24 (~p for Smooth Functions is an Equivalence

Relation)

The relation ~, on the set of smooth real-valued functions defined on

some open neighbourhood of p is an equivalence relation.

Exercise 9.1.1

Prove @ Proposition 24.

Of course, what else is there to talk about an equivalence relation

if not for its equivalence class?

& Definition 34 (Germ of Functions)

An equivalence class of ~ is called a germ of functions at p. The set of

all such equivalence classes is denoted C;’, called the space of germs at

p.
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66 Note 9.1.3

Suppose f : U — R, where U is an open neighbourhood of p. Then it is
clear that [f], = [f Iv]p for any open neighbourhood V of p if V C U.

We can define the structure of a real vector space on C}’ as follows.

Let [f]p, [g]p € C, where the functions
f:U—Randg:V = R

represent [f], and [g],, respectively. Also, leta,b € R. Then we

define

alflp +blglp = [af + bglp, (X))

where af + bg is restricted to the open neighbourhood U NV of p on
which both f and g are defined.

We need to show that Equation (9.3) is well-defined. Well suppose
f ~p f and g ~, & Then what we need to show is

(af +bg) ~p (af +b3).
Since f ~, f and g ~, & we have that
f:U—Randg:V —R.

Then, in particular, there exists W C UN U and Y C V NV such that

flw=flw andgly=g¢ly.

Then Z = W NY is an open neighbourhood of p and thus we must
have

af +bg =af +bg

on Z. Thus Equation (9.3) is true and C} is indeed a vector space.

Further, we can even define a multiplication on Cp’ by setting

[flpl8lp = [f8lp- (9-4)
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Example 9.1.2

Check that Equation (9.4) is well-defined. >

@ Proposition 25 (Linearity of the Directional Derivative over

the Germs of Functions)

Let vy € T,R". Then the map v, : C;° — R defined by [f]p — vp[f]p =

vpf is well-defined. This map is also linear in the sense that

vp(alflp +blglp) = avp[fly + bvylgly.

Moreover, this map satisfies Leibniz’s rule:

& Proof
Our desired result follows almost immedaitely from & Definition 33

and @PTheorem 21. O
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Derivations and Tangent Vectors (Continued)

Recall #= Corollary 23.

& Definition 35 (Derivation)

A derivation at p is a linear map D : C° — R satisfying the additional
property that

D([flplglp) = f(p)DIglp + &(p)DIf]p-

Remark 10.1.1

& Proposition 25 tells us that any tangent vector v, € T,R" is a deriva-
p Yy tang p p

tion, so the set of derivations is not trivial. o

@ Proposition 26 (Set of Derivations as a Space)

Let Dery, be the set of all derivations at p. Then this is a subset of the

vector space L(Cy’, R). In fact, Dery is a linear subspace.

& Proof
We shall prove this in A2Qs3. O
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THis is likely surprising seeing that we just introduced yet another

definition but there are actually no other derivations at p aside from
the tangent vectors at p. In fact, any derivation must be a directional
differentiation wrt to some tangent vector v, € T,R". Before we can

show this, observe the following.

First Let us describe a tangent vector v, as a derivation at p in
terms of the standard basis. Let B = {éy,...,é,} be the standard
basis of R". Then

is a basis of T,R", which is called the standard basis of T,R". It is the

image of B under the canonical isomorphism
T, : R" — T,R".

Recall from Example 9.1.1 that

@0pf = L (o)

As a linear map, we can write

N d
(ek)p = P ) (10.1)

Let v € IR" be expressed as v = viéi, in terms of the standard basis.

By the chain rule, we have

00f = (072, (0) = (D ), 0)(D2p)e
= @f)po= L (p) =o' ] f.

From Equation (10.1), we can write the above as
— il
vp = 0'(&)p,

which we see is indeed the image of v = v'¢; under the linear iso-
morphism Tj,. Henceforth, we will often express tangent vectors

at p in the above form, using linear combinations of the operators

5.), = 2.
(el)}?  9xt p
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Second Consider the smooth function x/ : R” — R given by

forallg = (¢%,...,9") € R". So as a function of x!,...,x" we have
xj(xl,...,x") =, (10.2)

which is smooth. Let v, = vi% . Then
P
, ) . o ,
vpx! =v'—| ¥ = '8l =l
ox! lp !
Thus, we deduced that

vp =0’ , where v' = v,x'. (10.3)

oxi |y
Remark 10.1.2

Compare Equation (10.3) and Equation (1.1) and notice the similarity of

their v'’s. We shall look into why this is the case later on. ®

£ Lemma 27 (Derivations Annihilates Constant Functions)

Let Dy, be a derivation at p. Then D annihilates constant functions, i.e. if
f(q) =c € R forall g € R", then Dyf = 0.

# Proof
First, consider the constant function 1 : R" — R given by q — 1.
Note that 1-1 = 1. By Leibniz’s Rule, we have

Dy(1) = Dp(1-1) = 1(p)Dyl +1(p)Dyl = 2D, (1).

It follows that D) (1) = 0.

Now let f be a constant function. Then f = c1 for some ¢ € R. It

follows by linearity that

Dyf = Dp(cl) = cDpl = 0. o
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WP Theorem 28 (Derivations are Tangent Vectors)

Let Dy, be a derivation at p. Then D, = vy, for some v, € TpR".
Consequently, Der, = T,R".

& Proof
Note that if there exists a v, such that D, = v, then we must have
)

Up =05 with coefficients
“lp

. - ‘
v' = vpx! = Dpxl.
In particular, we can show that

N
Dy = (Ppr') 53]

Let f be a smooth function defined in an open neighbourhood of

p. By the integral form of Taylor’s Theorem, for x = (x!,...,x")

sufficiently close to p, we can write

af |

fO) =f(p)+ 55| ' = p') +8i(x) (' = 1),
X" 1p

where the functions g;(x) satisfy g;(p) = 0. More succinctly,

f=fp)+h] (- p) s (=P, (o)
P

where x' is the function x’(x) = x' as in Equation (10.2), and p’ and
f(p) are constant functions. Apply D, to Equation (10.4). By the
linearity and Leibniz’s rule, both of which are satisfied by D), and
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Lemma 27, we get

Dof =Dy (£ + 35| = P+ 1+ =)

dx?
=0+ | Dy~ p) + Dylsi- (<~ p))
oxt p P p\&i
o) ] ) . . _
= (D xi)i‘f+0+0: (D x")i f
o axi P P axi ) :

Since f was arbitrary, it follows that D, = (D, ) % , which is
what we desired. -

Remark 10.1.3

From Section 7.3 and Section 9.1, a tangent vector v, € T,R" can be

considered in any one of the following three ways:

1. as a vector v € R", enamating from the point p € R";
2. as a unique equivalence class of curves through p;

3. as a unique derivation at p.

The three different viewpoints are useful in their own ways, and we will be

alternating between these ideas as we go forward. ®

Smooth Vector Fields

The idea of a vector field on R” is the assignment of a tangent vector
at p for every p € R". A smooth vector field is where we attach these

tangent vectors to every point in a smoothly varying way.

& Definition 36 (Tangent Bundle)

The tangent bundle of R" is defined as

TR" = J T,R".
pER”
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Remark 10.2.1

For us, the tangent bundle is just a set, but it is a very important mathemat-
ical object which shall be studied in later courses (PMATH 465). |

& Definition 37 (Vector Field)

A vector field on R" is a map X : R" — TR" such that X(p) € T,R"
for all p € R™. We shall always denote X(p) by Xp.

LeT {é,...,6,} be the standard basis of R”. We have seen that
{(é1)p, ..., (én)p} is a basis of T,R". We can think of each ¢; as a
vector field, where &;(p) = (é;),. We call these the standard vector

fields on IR". Recall that we wrote that

N d
&) = =, 10.
which means that (&), = %‘ . Henceforth, we shall write the
P
standard vector fields on IR" as {%, ey ain }
e X

Now it follows that for any vector field X on R", since X, € T,R",

we can write

; 0
Xp=X (P)@

4

p

where each X' : R"” — R. More succinctly,

; d
X = Xlil.
oxt

The functions X’ : R” — R are called the component functions of

the vector field X wrt the standard vector fields.

WE ARE now ready to define smoothness of a vector field.

& Definition 38 (Smooth Vector Fields)

Let X be a vector field on R". Then X = Xi% for some uniquely deter-
mined function X' : R" — R. We say that X is smooth if X* is smooth
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or every i. We write X! € C®°(R").
Y

Remark 10.2.2

In multivariable calculus, a smooth field on R" is a smooth map X : R" —
R" given by
X(p) = (X'(p),--., X"(p)),

i.e. we could say that X = (X, ..., X") is an n-tuple of smooth functions

on R".

Note that this view is particular to R" due to the canonical isomorphism
between T,R™ and R" for all p € R". ®
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Smooth Vector Fields (Continued)

Let X be a vector field on IR", not necessarily smooth. For any p &
R", we have that X, is a derivation on smooth functions defined on
an open neighbourhood of p. In particular, for any f € C®(R"),
X,f € Ris a scalar. Then we can define a function Xf : R” — R by

(Xf)(p) = Xpf-

@ Proposition 29 (Equivalent Definition of a Smooth Vector
Field)

The vector field X on R" is smooth iff Xf € C®(R") forall f €
C®(R").

# Proof
Let X = X'-%;. Then
X
i i\ 9f
(XF)(p) = Xpf = X'(p) = X'(P) 55| -
ox 4

It follows that Xf : R" — R is Xi%. Now if X is smooth, then
each of the X/’s is smooth, and in particular X’ a—fi is smooth for

ox
any smooth f. On the other hand, suppose Xf is smooth for any
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smooth function f. Then, consider f = x/, which is smooth. Then

ox) . .
Xf =X = X=X,

is a smooth function. 0

66 Note 11.1.1

This equivalent characterization of smoothness of vector fields is indepen-
dent of any choice of basis of R". Due to this, it is the natural definition
of smoothness of vector fields on abstract smooth manifolds, where we

cannot obtain a canonical basis for each tangent space.

Ler U C R" is open’. We can define a smooth vector field on U to
be an element X = Xi% where each X! € C®(U) is smooth. From
@ Proposition 29, U is smooth iff Xf € C®(U) for all f € C*(U).

Hereafter, we shall assume that all our vector fields, regardless if it
is on R” or some open subset U C R", are smooth, even if we do not

explicitly say that they are.

66 Note 11.1.2 (Notation)

We write T(TR") for the set of smooth vector fields on R". More gener-
ally, we write T(TU) for U C R" open.

The set T'(TU) is a real vector space, where the structure is given
by
(aX +bY)p = aXp +bYy

forall X,Y € T(TU) and a,b € R. This is an infinite-dimensional 2

real vector space.

Further, VX € T(TU) and h € C*(U), hX is another smooth vector
field on U: Let X = X’% Then hX = (hX')-%, where hX' is the

oxi’

* Why do we need U to be open?

2 Why?
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product of elements of C*(U). Equivalently so,

(hX)p = h(p)Xp.

We say that [(TU) is a module over the ring 3 C*(U). 3 Whatever this means here in Ring
Theory.

LET X be a smooth vector field on U. Since Xpisa derivation on C;°

for all p € U, it motivates us to the following definition.

B Definition 39 (Derivation on C;’)

Let U C R" be open. A derivation on C*(U) is a linear map D :
C®(U) — C=(U) that satisfies Leibniz’s rule:

D(f-g)=f (Dg)+g-(Df),

where f - g denotes the multiplication of functions in C®(U).

Clearly, given X € T'(TU), X is a derivation on C*®(U) since for

each p € U, we have linearity
(X(af +bg))(p) = Xp(af +bg) = aXpf +bXpg = a(Xf)(p) +b(Xg)(p),
and Leibniz’s rule

(X(f8))(p) = Xp(fg) = f(p)Xpg +8(p)Xpf
= (fX)pg + (§X)pf = (f(Xg) +8(Xf))(p)-

Furthermore, if D is a derivation on C®(U), then we get that D :
U— Rbyp — Dyf = (Df)(p), which is a derivative at p. It follows
that D, € T,R". Thus D is a vector field, and since Df & Cinfty(U)
for all f € C®(U), from @ Proposition 29, we have that D is smooth.
Hence the derivations on C*(U) are exactly the smooth vector fields
on U.
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Smooth 1-Forms

& Definition 40 (Cotangent Spaces and Cotangent Vectors)

Let p € R". The cotangent space to R" at p is defined to be the dual
space (TpIR™)* of T,R", which is denoted as T;R". An element a) €

T;;]R”, which is a linear map & : Tp]R” — R, is called a cotangent

vector at p.
Remark 11.2.1 66 Note 11.2.1
This entire part is similar to our con-
The idea of a smooth 1-form is that we want to attach a cotangent vector struction of smooth vector fields plus
a, € TyR™ at every point p € R" in a smoothly varying manner. | it il et v Leniiel i ILiiie 5y G
P p
k-forms.
Let
* n __ * n
T'R"= |J T,R
pER"
be the union of all the cotangent spaces to R". This is called the
cotangent bundle of R" 4. 4 Again, for us, this is just a set. We

shall see this again in PMATH 465.

& Definition 41 (1-Form on the Cotangent Bundle)

A l-form a on R" is a map a : R" — T*R" such that a(p) € T;R" for
all p € R". We will always define (p) by .

Let {éy,...,&,} be the standard basis of R". Then {(¢é;)p,...,(é:)p}
is a basis for T,R". For now, we shall denote the dual basis of T; R"”
by {(¢}),,...,(¢"),}. We may think of each ¢’ as a 1-form, where
¢(p) = (¢'). We shall call these the standard 1-forms on R".

So for any 1-form « on R", since ) € T; R", we can write
ap = a;(p)(&')p,
where each «; : R" — R is a function. More succinctly,

X = uciéi, (11.1)
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for some uniquely determined functions &; : R” — R, where Equa-
tion (11.1) means that a, = a;(p)(¢’),. The functions a; : R" — R
are called the component functions of the 1-form a wrt the standard

1-forms.

With that, we can define smoothness on 1-forms. Again, we will

then find an equivalent definition that does not depend on a basis.

& Definition 42 (Smooth 1-Forms)

We say that a 1-form « on IR" is smooth if the component functions
a; : R" — R given in Equation (11.1) are all smooth functions, i.e. each
a; € C® (an)

Let « be a 1-form on R”, not necessarily smooth. Then for any
p € R", we know that a, € L(T,R",R). Thus for any vector field X
on RR” not necessarily smooth, a,(X,) € R is a scalar. We can then

define a function aX : R" — R by

(@(X))(p) = ap(Xp). (11.2)

& Proposition 30 (Equivalent Definition for Smoothness of 1-

Forms)

The 1-form « on R™ is smooth iff a(X) € C®°(R") for all X € T(TR").

& Proof
First, let X = Xi% = X'¢; and o = (x]-éj. Then we have
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Since p was arbitrary, we have

a(X) = a; X", (11.3)

Suppose that « is smooth, i.e. «; is smooth. Then for any smooth

vector field X, a; X! is smooth.

Conversely, if #(X) is smooth for any smooth X. Then in par-

ticular, if X = %, It follows that X! = 5]1: since X = Xi%. Then

a(X) =0 X' = ,Xi(;]zj = a; is smooth. -

Remark 11.2.2

Aguain, we see that this characterization is independent of the choice of ba-

sis. o

66 Note 11.2.2

In the last step of the proof for & Proposition 30, we observe that if
X = ¢; is the i'" standard vector field on R"™. Then

, 9
X=Xe¢ =X —
‘i ox/
where X/ = 5; Then if &« = e is a 1-form, we have that a(X) =
a(é;) = w;, ie.
x = a;¢l, where a; = a(8;) = il (11.4)
0x

Note that the above is a ‘parameterized version’ of Equation (1.1), where

the coefficients are smooth functions on R".

Ir U C IR" is open, we can define a smooth 1-form on U to be an ele-

ment & = ;6' where a; € C*(U) is smooth. We require U to be open

to be able to define smoothness> at all points of U. @ Proposition 30 5 Probably a similar question, but why?
generalizes to say that a 1-form on U is smooth iff a(X) € C*(U) for

all X e T(TU).



PMATH365 — Differential Geometry

We shall write T'(T*IR") for the set of smooth 1-forms on IR and
more generally I'(T*U) for te set of smooth 1-forms on U. The set
I(T*U) is a real vector space, where the vector space structure is
given by

(ax +bpB)p = any +bBy

foralla,p € T(T*U) and a,b € R. Again, this is an infinite-
dimensional real vector space. Moreover, for « € TI'(T*U) and

h € C®(U), ha is another smooth 1-form on U, given as follows:

Letw = a;¢'. Then ha = (ha;)é, where ha; is the product of

elements of C*(U). Equivalently so

(hzx)p = h(p)txp.

We say that I'(T*U) is a module over the ring C*®(U).

101
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Smooth 1-Forms (Continued)

Given a smooth function f on U, there is a way for us to obtain a

1-form on U:

& Definition 43 (Exterior Derivative of f (1-form))

Let f € C*(U). We definedf € T(T*U) by
(@df)(X) = Xf e C*(U)

forall X € T(TU). That is, for all p € U, we have (df),(Xp) =
(Xf)p = Xpf. This one form is called the exterior derivative of f.

66 Note 12.1.1

It is clear that (df), : T,R" — R is linear, since

(df)p(aXy +bYy) = (aXp + bYp)f = aX,f + bY,f
= a(df)p(Xp) +b(df)p(Yp).

Also, df is smooth since (df)(X) = Xf is smooth for all smooth X.

If f € C®°U), then f : U C R" — R is smooth, so its Jacobian
(or differential) at p € U has already been defined and was denoted
(df)p. It is linear from R" to R, which is representative by a 1 x n
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matrix. Of course, we need to clarify why we claimed that df is a

Jacobian.

@ Proposition 31 (Exterior Derivative as the Jacobian)

Under the canonical isomorphism between T,R" and R", the exterior
derivative (df ), : T,R" — R of f at p and the differential (D f), :
R" — R coincide. Moreover, wrt the standard 1-forms on IR", we have

af = ﬂé". (12.1)

~oxt

& Proof
For the 1-form df, we have

@)p(e)y = @)pf = 2L

B ox! pl

so by Equation (11.4), we have

which is Equation (12.1).

Now the differential (D f), : R" — R is the 1 x n matrix

© = (3],
Thus (D f),(&)p =

(Dfly = %‘

taking é; to (&;)p, the dual map (T,)* is an isomorphism from

% , 50 as an element of (R")*, we can write
p

(é'). Since T, is an isomorphism from R" to T,R"

T;R" — (R")*, taking (¢')p to é;. Thus we observe that
(df)p: T,R" = Ratp
is brought to the same basis as

(Df), :R" > Rat p,
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which is what we needed to show. 0

Now consider the smooth functions x/ on R”. We obtain a 1-form
dx/, which is expressible as dx/ = ;¢ for some smooth functions «;
on R”. By Equation (11.4), we have ; = (dx]')(a%) = g—’g — 5{ So
dxi = 51]. ¢' = &. We have thus showed that

dxl = ¢ forallje {1,...,n}. (12.2)

Equation (12.2) tells us that the standard 1-forms ¢/ on R" are
given by the exterior derivatives of the standard coordinate functions
x/, and consequently the action of & = dx/ on a vector field X is by
¢ (X) = (dx/)(X) = Xx/. Thus from hereon, we shall always write the

standard 1-forms on R" as {dx!,...,dx"}.

So by putting Equation (12.1) and Equation (12.2) together, we
obtain the familiar

df = g—fdxi, (12.3)

xi
which is the ‘differential” of f from multivariable calculus that is

usually not as rigourously defined in earlier courses.

WE ARE Now equipped with nice interpretations of the standard
vector fields and standard 1-forms on IR”. From Equation (10.5), we
know that standard vector fields are also partial differential operators
% on C®(R"), where y

eif = @/
and Equation (12.2) tells us the standard 1-forms should be regarded

as 1-forms dx/, whose action on a vector field X is the derivation of X

on the function x/. In other words,
¢(X) = (dx)(X) = X/,

Notice that if X = %,
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which gives us that at every point p € R”, the basis {(é!),,...,(¢"),}
of T;R" is the dual basis of the basis {(é1)p, ..., (én)p} of TpR".

Smooth Forms on R"

We shall continue the same game and define a smooth k-forms.

& Definition 44 (Space of k-Forms on R")

Let p € R" and 1 < k < n. The space Ak(T;]R”) is defined as the space
of k-forms on R" at p.

Remark 12.2.1

If k = 0, we before, we define A°(T;R") = RR. o

66 Note 12.2.1

For any element 17, € A(T;]R"), 1p is k-linear and skew-symmetric, i.e.

iy : (T,R™) % ... x (T,R") = R.

k copies

& Definition 45 (k-Forms at p)

Elements of Ak(T;,‘IR”) are called k-forms at p.

Again, we want to attach an element 77, € Ak(T; R") at every
p € R", in a smoothly varying way. Since AO(T;,‘]R”) = R, a 0-form
on R" is a smoothly varying assignment of a real number to every
p € R" ie. a 0-form on R" is a very familiar object: they are just

smooth functions on R”.

For 1 < k < n,let A*(T*R") = Upegrn A¥(T;R"), which is caled



PMATH365 — Differential Geometry 107

the bundle of k-forms on R". For us, this is just a set.

& Definition 46 (k-Form on R")

Let1 < k < n. A k-form n on R" is a map 17 : R" — A*(T*R") such
that n(p) € Ak(T;]R”)for all p € R™. We will always denote 1(p) by

Mp-

Recall from our discussions in Section 10.2 and Section 11.2,

i’ o
axlly " axt |y

is the standard basis of T,R", with dual basis

(et

if T;,‘]R”. Then by @ Theorem 10, the set

{dxil

is a basis for Ak(T;]R"). We can then define k-forms dx't A ... A dxk
on R" by

..., dx"
P

A ... Adxik :1§z’1<...<ik§n}

p

p

(dx AL Nifdx), = dxit, AL A,
We shall call these the standard k-forms on R".

Then for any k-form 7 on R", since 77, € Ak(T;‘ R"), we can write

mp= Y 1. (p)dxlt| AL Adak
1< <Jk P ’
1 . o
= —n;, i (p)dxt| A.. . Adxk (12.4)
k!ﬂhr r]k(p) P P 4

where each 7;, i : R" — R is a function. More succinctly,

. 1 . .
n= Y, Nigyoic BTN L N dtle = i Tt dx' AL A dxk, (12.5)
1< <k ’
for some uniquely determined functions ;. ; : R" — R, which
are skew-symmetric in their k indices jy, .. ., jx. The functions 7, ; :

R" — R are called the component functions of the k-form 7 with
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respect to the standard k-forms. We can now give our first definition

of smoothness.

& Definition 47 (Smooth k-Forms on R")

We say that a k-form n on R" is smooth if the component functions
Nirji * R" — Ras defined in Equation (12.5) are all smooth funtions.
In other words, each 17;, .. i € C*(IR").

66 Note 12.2.2

A smooth k-form is also called a differential k-form, but we will not be

using this terminology in this course.

Let 17 be a k-form that is not necessarily smooth. Then for any

p € R", we know

7yt (TR") x ... x (T,R") = R.

k copies

Soif Xj,..., Xy are arbitrary vector fields on IR” that are not necessar-

ily smooth, we get a scalar

p((X1)p, -, (Xk)p) €R.

Thus we can define a function 7(Xj, ..., X;) : R” — R by

(7(X1, -+, X)) (p) = mp((X1)p, -+, (Xi)p)- (12.6)

@ Proposition 32 (Equivalent Definition of Smothness of k-

Forms)

The k-form i on R" is smooth iff (Xy, ..., Xx) € C®(R") for all
X1, Xi € F(T]Rn).
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& Proof
Forl=1,...,k, write X; = Xlliﬁ, and 77 = %17]-1,__,]‘]( dxiv AL A dxk,
Then with Equation (12.4) and Equation (4.2), we have that

(X1, -+, X)) (P) = mp((Xa)p, -, (Xk)p)

=1 (X005 | oo X))
= X'(p)... X (p)p (ail] ,,axalk ,,>
= X7 (p) - X (P .1, (P)-
Since this holds for an arbitrary p € IR"”, we have that
n(Xy,..., Xx) = Xll1 ... Xilck’711,...,lk- (12.7)

So the function (X3, ..., Xi) : R" — R is in fact Xil .. X;l(kﬁll,...,lk'

Suppose that 77 is smooth. Then each of the 77;, . is smooth,
and so in particular Xil .. X,lc" 1n,...., s smooth for smooth vector
fields Xlr ooy Xk-

Conversely, sps n(Xy, ..., Xy) is smooth for any smooth Xj,..., X;.
Then consider Xfi = §lili. Then

o i
1 Xy, Xe) = 1y, 3 0V K =

is smooth. O

Remark 12.2.2

The proof above provides us a very useful observation. Let X; = ﬁ be the
ji" standard vector field on R". Then X = Xf" ﬁ where Xll.i = olili, Then
ify = %Wju---,]'k dxlt A ... A dx)k is a k-form, we have that 7(Xy,..., X;) =
ir,...j.- I other words,
1 ; ; d d
= —_py. ] ] L = _— _—
n= 7 Hig,ooji AN LN XK where ;oo =1 (axfl PR Bxfk>
(12.8)
®
Now if U C IR" is open, we define a smooth k-form on U to be

an element y = %le,...,jk dx/t A - - - A dxlk, where Tir,.ie € C(U) is
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smooth. We need U to be able to define smoothness at all points of
U. Again, it is clear that & Proposition 32 generalizes to say that k-
forms on U are smooth iff 7(Xy,..., X) € C*°(U) for all Xj,..., X} €
L(Tu).

We shall write T'(A¥(T*RR")) for the set of smooth k-forms on R”,
and more generally T'(AX(T*U)) for the set of smooth k-forms on U.
The set T(AF(T*U)) is a real vector space, where the vector space

structure is given by

(an 4 bQ)p = anp + bl

for all 7, € T(A¥(T*U)) and a,b € R. Again, this space is infinite-
dimensional. Moreover, given 7 € T(A¥(T*U)) and h € C*(U), hy is

another smooth k-form on U, defined as follows:

Let

i ) )
= M dxt A LA dxdk,

Then
1 i i
hop = 5 (higjy,__j ) Aot A A ded,

where hy;, i is the product of elements of C*(U). Or equivalently,

we can define
(hi1)p = h(p)np. (12.9)

We say that T(AF(T*U)) is a module over the ring C*(U). Also, note
that if k = 0, we have T(A%(T*U)) = C®(U).

66 Note 12.2.3 (Notation)

To minimize notation, we shall write
OF(U) = T(ANT = 1))

to be the space of smooth k-forms on U. Note that Q°(U) = C®(U).
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Wedge Product of Smooth Forms

We can now define wedge products on these smooth k-forms.

& Definition 48 (Wedge Product of k-Forms)

Let n € OF(U) and let € Q' (U). Then the wedge product 5 A is an
element of QK (U) defined by

(MAD)p=npNp-

By the properties of wedge products on forms at p for any p € U,
we may generalize the properties that were shown on page Re-

mark 5.2.1, which shall be shown here:

66 Note 13.1.1

Let ,¢ € QX(U) and p € Q' (U). Let f,g € C*°(U). Then

(fn+80) Ap=fnAp+glAp.

Similarly,
pA(f+80) = foAn+gpAd.

These show that the wedge product of smooth forms is linear in each

argument.

Further, we have that the wedge product of smooth forms is associative:
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we have
(CAn)Ap=CN(Ap),

for any smooth forms 1, C, p of any degree.

Finally, wedge product of smooth forms is also skew-commutative:

gAn = (=1)MlEly Az (13.1)

In particular, if |n| is odd, then Equation (13.1) says that y Ay = 0.

These properties makes it easier to compute wedge products of

smooth forms.
Example 13.1.1

Let 7 = ydx +sinzdy and { = x%dx A dz. Then we have

N AL = (ydx +sinzdy) A (x°dx A dz)
= x%ydx Adx Adz + x°sinzdy Adx A dz

= —x3sinzdx Ady A dz. >

Pullback of Smooth Forms

Recall that following Section 5.2 (wedge product of forms), we in-
troduced pullback of forms (Section 5.3). We shall be introducing an

analogue of pullbacks for smooth forms.

Let k > 1. From Section 5.3, if S € L(V < W), then S* : AK(W*) —
AF(V*) is an induced linear map that we called the pullback, defined
by

(S*a)(v1,...,0r) = a(Svy,...,Sv;) (13.2)

for all a € A¥(W*). There is, however, some preliminary results that

we need to understand before generalizing the above.

Let F : R" — R™ be a smooth map, x = (x!,...,x") for coor-
dinates on the domain R” and y = (y!,...,y™) for coordinates on

the codomain R™. Thus for p € RR", a basis for T,R" is given by
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} and, for g € R™, a basis for T;R" is given by

9
/"'Iaxﬂ

_ 9

— a9
o=,

For any p € R", we have an induced linear map (dF), : T,R" —
Tr(p)R™, which we defined in A2. The definition shall be restated

here. If X;, = [¢], € T,R", then (dF),X, = [F o ¢](,). We showed
that the m x n matrix for (dF), wrt the bases B and C is (DF),, the

0
/--'/aym

}. We write y = F(x) = (F'(x),..., F"(x)).
q

Jacobian of F at p. That is,

9 ;9| _oF

o)
p@‘p = )p)iayj F(p) 9

dF — .
(F) p oyl IF(p)

(13.3)

The element (dF),v, € Tp(,)R™ is called the pushforward of the
element v, € T,R" by the map F.

We can now talk about the pullback of smooth k-forms for k >
1. Given an element /g,y € Ak(T;(p)]Rm), we can pull it back by
(dF)p € L(TpR", Tr(,yR™) to an element (dF);1p(,) € Ak(T;,‘]R”) as in
Equation (13.2), where we let V = T,R" and W = T(,)R™. In other

words,

((@E)p () ) (X0)ps -0 (Xk)p) = 1E(p) (AE)p(X1)p, -, (AF)p(Xk)p)

for all (Xq)p, ..., (Xk)p € TyR".

B Definition 49 (Pullback by F of a k-Form)

Let F : R" — IR be a smooth map. Let 11 be a k-form on R™. The pull-
back by F of 11 is a k-form F*n on R" defined by (F*n), = (dF)p1p(p)-
Explicitly so, F*n is the k-form on R" defined by

(E)p((X1)ps -/ (Xi)p) = 1) (AF) p(X1) ps - -, (dF) p(Xic)p)-

& Proposition 33 (Pullbacks Preserve Smoothness)

The pullback by a smooth map F : R" — IR™ takes smooth k-forms to
smooth k-forms, i.e. if n € QF(R™), then F*y € QF(R™).
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& Proof

It suffices to show that the functions

F D = E) (5057505 )

are smooth on R". By Equation (13.3), we have

(F*U)p (axh

= 1F(p) ((dF)Paxj]

0] (

orh

&
(

oFh

)
)

orh
it

i1

327 h)
R
d 0 S
J (dF)pax—].k ‘p) . definition
0 oFk| 9
- 1 “ e - - 7 o E t. .
payll F(p), 7 ax]k paylk ‘P(p)) . qua 10N (13 3)
@ (8 i‘ > *.* lineari
p Bk |p ) TEW) oy le(p)” oy lE(p) ) 2l
OFk d d

ax]k> (p) -1 <8yllaxylk) (E(p)) . rewrite

Fh
=55

OF!k
ﬂ(;7,1,”_111( o F)) (p) . product of functions
x

Since p € R" was arbitrary, we have

. oF1  9Fk
Mo = 377+ 375 Wt © F)-

By assumption, we have that # is smooth, and so since F is always

assumed to be smooth, we have that (F*7) j1,.ji 18 sSMoOOth, as re-

quired.

& Proposition 34 (Different Linearities of The Pullback)

Let F : R" — R™ be smooth. Let k,1 > 1. Letn,{ € Qk(lR’”),
p € QN(R™), and let a,b € R. Then

F*(an +bl) = aF*'y + bF*g, F*(yAp) = (F'n) A (F'p). (13-4)
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# Proof
The proof for this follows almost immediately from @& Proposition 13.
(See A1Q8) O
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Pullback of Smooth Forms (Continued)

Up to this point, notice that our discussions have mostly been about
k > 1. Notice that for k = 0, the smooth 0-forms are just smooth
functions. It follows that if the pullback by a smooth map F : R" —
R™ will map from Q°(R™) to Q°(IR"), it is sensible that the defini-
tion of F*h = h o F for any h € Q°(R™) = C®(R™).

It goes without saying that F*h € Q°(R") = C®(R").

& Definition 50 (Pullback of 0-forms)

Let F: R" — R™ be smooth. Let h € Q°(R™). Then we define

F*h=hoF € Q°(R"). (14.1)

% Lemma 35 (Linearity of the Pullback over the 0-form that is a

Scalar)

Letk > 1. Let h € QO(R™) and y € QF(R™). Let F : R" — R™ be
smooth. The

F*(hyp) = (F*h)(F*).

# Proof
Recall from Equation (12.9), we had (h#); = h(q)n, for any g € R™.
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It follows that

(F*(hy))p = (dF)p(hy)p(p) = (dF)p (h(E(P))1E(p))

Thus we have F*(hn) = (F*h)(F*n).

This motivates the following definition.

& Definition 51 (Wedge Product of a 0-form and k-form)

Let h € QR™) and y € OF(R™), where k > 1. We define

h Ay = hy.

66 Note 14.1.1

This definition is consistent with the identity a A g = (—1)I*1FIg A a,

since the degree of h is 0, and so it commutes with all forms.

#= Corollary 36 (General Linearity of the Pullback)

Let F : R® — R™ besmooth. Letk,I > 0. Let ,& € QF(R™),
p € QN(R™), and let a,b € R. Then

F*(ay +b) = aF*y + bE'E F*(y Ap) = (F'n) A (Fp).

& Proof
If k,I > 0, the statement is simply & Proposition 34. If either

one or both of k, [ are 0, then the wedge product case follows from
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Lemma 35, while the other follows from the properties
(ah+bg)oF =a(hoF)+b(goF)

and

(hg)oF = (hoF)(goF),

for any g, h € C*(R™). o

BEFORE WE begin considering examples, let us derive an explicit

formula for the pullback.

66 Note 14.1.2

Consider the pullback of the standard 1-forms dy*, . ..,dy™ on R™. Then
for F: R" — R™, F*dy/ is a smooth 1-form on R", and it can hence be

written as
o . i ]‘ .
Frdy = A dxt

for some smooth function A{ on R". Observe that

(F gy (5

xlp

) = Altpyar

By the definition of the pullback, we also have that

: d d
* 4] i — it i
(E"dy)y (ax’ P) Y ‘F(P) ((dF)pax’ ‘P)

— 4y o
iy ‘F(p) (axl

It follows that A;(p) = 3713

Therefore, we have that

F*dy

9
p oy

oF!

F(P))
F(P))

oF!
ox!
oF!
ox!

‘ -9

dy/ <a i 2

P y’F(p) Yoy
z':ﬁ)_
p ' oxllp

. JF .
]:@dxl.

, (aaxl p) = Al(p)sl = Al(p).

ich implies Al — 9F
forall p € R", which implies A} = &7

(14.2)
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Following #= Corollary 36 and Equation (14.2), we have the fol-

lowing proposition.

& Proposition 37 (Explicit Formula for the Pullback of Smooth

1-forms)

Let o = a; dy! be a smooth 1-form on R™, and let F : R" — R™ be

smooth. Then F*w is the smooth 1-form

i
Fra = (a0 F)% dxt.

#= Corollary 38 (Commutativity of the Pullback and the Exterior

Derivative on Smooth 0-forms)

Let F : R" — R™ be smooth. Let h € C®(IR™). Then dh € Q'(R™) and
F*(dh) € QY(R"), In fact,

F*(dh) = d(ho F) = dF*h.

# Proof
By Equation (12.3) with f = ho F, we get

d(hoF) = (aaxz.(h o F)) dx'.

Using Equation (14.2) and the chain rule, we have

i :
d(hoF) = a—h.oP a—F.de: a—h.oF F*dyl.
oyl ox! ay/

Also, we have dh = 2% dyi. Then
ay!

oh oh .
(dh) ( o dy ) (ay] 0 ) i

by & Proposition 37. It follows that dF*h = F* dh, as claimed.
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We will make explicit the operation d on k-forms for any k in Sec-
tion 15.1. We will see that #=Corollary 38 works even in the general

case (see @ Proposition 40).

66 Note 14.1.3 (More abuses of notation)

Let y = F(x). Let us employ the usual abuse of notation and iden-
tify a function with its output. In particular, since we write yl =
oF/

Fi(x',...,x"), let us write %for o5+ Then Equation (14.2) becomes

Frdy = ﬁdx . (14.3)

Method to remember Equation (14.3) The smooth map F : R" — R™
allows us to think of the y/'s as smooth functions of the x'’s, and Equa-
tion (14.3) expresses the differential in the same sense as Equation (12.3)

or the smooth functions yi = yI(x1,...,x") in terms of the dx'’s.
Y=Y

We will use this abuse of notation frequently in this course. For
instance, it allows us to express the general formula for the pullback

as follows: for
1 . ,
1= M) Ay A Ay,
we have

L1 oyt oy 1
F ;7 = F’?]l”]k(y(x))axill 500 axilk dxl A... A dxk.

Example 14.1.1
Consider the map F : R® — R3, given by (p, ¢,0) > (x,y,z), where
x = psingcosd, y = psingsinb, and z = pcos ¢.

Then

9 9 9
F*(dx) = d(F*x) = (az dp + £ do -+ a% d6>

= sin ¢ cos 0 dp + p cos ¢ cos 0 dp — p sin ¢ sin 0 d6.

121
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Similarly, we have

N Iy Iy
= sin @ sinfdp + pcos ¢ sinf d¢ + p sin ¢ sin 6 df

and

) ) 9
F*(dz) = d(F*z) = <az dp + £ do -+ a—z d9>

= cos ¢dp — psinpdeg.
It follows that

F*(dx Ndy Ndz) = (F*dx) A (F xdy) A (F* dz)
= (sin g cosOdp + pcos ¢ cos O dg — psin ¢ sin 6 dO) A
(sin@sin®dp + p cos ¢ sinf de + p sin ¢ cos 6 d6) A
(cospdp —psingde)
= (dp Adg A db)(p?sin® ¢ cos? 6 + p? sin® ¢ sin® 6)
+ (dp Ade A dB)(p? sin ¢ cos? ¢ cos? O+
p? sin ¢ cos” @ sin® 6)

= (p*sin @) (dp Ade A dB).

Recall that this formula relates the ‘volume form’ dx A dy A dz of R3
in Cartesian coordinates to the ‘volume form’ p~sin pdp A dg A df
in spherical coordinates. We will see this again much later in the

couse. >
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The Exterior Derivative

Recall & Definition 43, where we defined a linear map from the

space QO (U) = C*(U) to the space Q!(U), given by f — df.
In this section, we shall

e generalize the above operation, giving ourselves a linear map
d : OF(U) — OF1(U) for all k > 0; and

e study the properties of this map.

P Theorem 39 (Defining Properties of the Exterior Derivative)

Let U C R" be open. Then there exists a unique linear map d : QF(U) —
QM L(U) with the following three properties:

df = % v feQu) =c®u) (15.1)
d(w A B) = (da) A B+ (—1)1*IFla A (dB) (15.2)
=0 (15.3)

& Proof
Since dx' is d of the smooth function x, Equation (15.3) states that
d(dx') = d?(x) = 0. It then follows from Equation (15.2) that we

must therefore have

d(dx A ... Ndxik) = 0. (15.4)

4 Strategy

1l

We will first derive a formula that this
map d must satisfy if it exists.

By defining d by this formula, it must
therefore have these properties that we
have built upon.
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Let 7 € OF(U). Then we can write

1 ‘ ,
= 1 M dxX)V A LA dxdk, (15.5)
Recall that fa = f Aa when f € Q°(U). Applying d to both
sides of Equation (15.5), and since 7;, i € Q%(U) = C*®(U) and
Equation (15.4), we have that

1 ) )
dn = d(k!thn_,jk dxt A dxfk)

!
Tk

1 : : .
+ w1l ANd(dxt A ... ANdx)k) - Equation (15.2)

_ 1 Mjy, i
k! oxP

anj,..j AU LA dxk

dxP Adxt A LA dadk.

It follows that if such a map d exists, it must be given by the for-

mula
_ 1 iy,

U= 1 oxp

dxP Adxt A LA dak. (15.6)

So let us define d as in Equation (15.6). We shall now check that

it satisfies the required properties.

Property by Equation (15.1) This is true by construction: for f &

Q%(U), we immediately have

19f

Property by Equation (15.2) Let

1

o= ﬁlxl’l,“

il . .
i and ﬁ — Eﬁj1/~-~fjl dxXV AL A dx!

be in OF(U) and QO (U), respectively. Then by construction of d, we



PMATH365 — Differential Geometry 125

have
danp) = <kl[|0‘11r JeBiv.i 4 AN NN N dx]1>
!l! w(“il,...,ikﬁjlek) dxP Ndx AL ANdxE ALY N LN da!
L 80{,-1 /K ,311, oAl ;
_k!l!< oxP Bi e i, i dxP Ndx'" AL

Adxik Adxlt AL A dad,
Simplifying this’, we get
d(a N\ B)
L%y g v p ndxik | A (LB it A A du
T 5P X X ... N\dx ﬁﬁhrmr]z 5 .o N\dx

+ (-1)F <klt“i—1,...,ik dxU A LA dxik)

1 ‘Bh AL 3.p J j
/\(l' 2P dxP NdxV N .. A dx)!

=da A B(-1)M A dB.
Property by Equation (15.3) Let a € QF(U). We have

' .
do = ﬁ% dxP Adxt A ... A dxc,

Applying d once more, we have

1 0%a; :
2., __ 11,00k x1 14 i i
da = k'avaqd ANdxP Ndx" AN dx'E
Since a is smooth, the functions &;, _ ; are smooth. It follows by

Clairaut’s that

Py, i P,
ox19xP oxPoxq -
Note, however, that dx7 A dx? = — dxP A dx17 is skew-symmetric.

Therefore, as we sum over all p and g, the non-zero terms, where

p # q will cancel in pairs. Thus d?a = 0 for any & € QF(U). o

& Definition 52 (Exterior Derivative)

The exterior derivative of a k-form y € Qk(ll), where U C R" and

* This uses a similar technique as in one
of the questions in A1


https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives
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k> 0,isamapd : QX(U) — QF1(U) such that for y € QF(U) is
given by n = %17]-1,”.,]-]{ dxit A ... A\ dxlk, we have

_ l 877]'1/~~-er

= 7 Ji
=7 o dy NdxdU A LN dxk,

as in Equation (15.6), satisfying @ Theorem 39.

Example 15.1.1

Let f € Q°(U) where U C R3. Then

df = fxdx + fydy + f.dz,
and

d°f = dfe Ndx +dfy Ady +df. Ndz
= (fax dx + frydy + fxzdz) ANdx
+ (fyxdx + fyy dy + fyzdz) Ady
+ (fax dx + faydy + frzdz) Ndz
= fwdy Ndx +dxzdz Ndx + fyrdx ANdy
+ fyzdz Ndy + foxdx Ndz + frydy Ndz
=00

Example 15.1.2
Let & =2 ydy — sin(y) dx € Q'(R?). Then
da = (d(x*y)) Ady — (d(siny)) A dx
= (2xydx + x2dy) Ady — (cosydy) A dx

= 2xydx ANdy + 0+ cosydx A dy
= (2xy + cosy) dx A dy € Q?(R?).

The property d? motivates the following definitions.

& Definition 53 (Closed and Exact Forms)
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An element a € QF(U) on U is called closed if da = 0. It is called exact
if Iy € OF1(U) such that « = d-y.

66 Note 15.1.1
By Equation (15.3), all exact forms are closed.

This is not true in general: a closed form need not be exact. It is, how-

ever, true if the topology of the open set U consists of certain properties.

Relationship between the Exterior Derivative and the Pullback

& Proposition 40 (Commutativity of the Pullback and the Exte-

rior Derivative)

Let F : R" — R™ be smooth. Let 1 € QOF(R™). Then dy € QF1(R™)
and F*(dy) € OF1(R™). We also have F*yy € QF(R") and d(F*n) €

QFL(R™). In particular, we have

F*(dn) = d(Fn),

i.e. the pullback and the exterior derivative commute.

# Proof

We proved this for the k = 0 case in #=Corollary 38. WMA

k > 1. Since both d and F* are linear, it is enough to show that

they commute on decomposable forms2. Suppose a = hdy' A 2 Remember that these are like the base
q Y . . L forms for k-forms.

L Ady e OF(R™) with h € C®°(R™). By #=Corollary 36 and

#= Corollary 38, we have

Fra = (F*h)F* dy" A ... A F* dy’
= (F*h)(dF*y"") A ... A (dF*y™).

Taking the exterior derivative of the above expression, which is a
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form on R”, and using @ Theorem 39, we get

d(F*a) = (dF*h) A (dF*y) AL A (dFFyi).

On the other hand, we have
da = (dh) Ady' A ... \dy'k,
and therefore

F*(da) = (F*dh) A (F*dy™") A ... A (F* dy’)
= (dF*h) A (dF*y"") A ... A (dF*y).

We have that the expressions agree, and so dF* = F* d as claimed.
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Submanifolds of R”
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We shall now® look into objects of which integration of differential * finally!

forms make sense.

Submanifolds in Terms of Local Parameterizations

& Definition 54 (Immersion)

Let k < n. Let U C R¥ be open. A smooth map ¢ : U — R" is called
an immersion if, for each u € V, the Jacobian (D ¢), : R¥ — R" is an

injective linear map.

66 Note 16.1.1

This means that (D ¢),, has maximal rank k. Equivalently, that k

columns of (D @)y, are linearly independent vectors in R".

We may also express the condition to be an immersion in a more in-
variant mannerm in particular, using the pushforward > map (d¢)y : 2See also Az, and Section 13.2.
T,RF — Ty (u)R". The linear maps (d¢)y and (D )y differs only by
pre- and post-compositions with linear isomorphisms. It follows that they

have the same rank, and so we may also define an immersion as

an immersion is a smooth map whose pushforward (de),, is injec-

tive for all u € U.
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B Definition 55 (Parameterizations and Parameterized Submani-
folds)

An immersion ¢ : U C R — R" that is also a homeomorphism
onto its image is called a parameterization. The image ¢(U) C R"
of a parameterization ¢ : U C RF — R" is called a k-dimensional

parameterized submanifold of R”.

66 Note 16.1.2

We see that a parameterization is an immersion which is also a continu-

ous bijection of U onto ¢(U), with a continuous inverse.

Let’s consider some examples.

Example 16.1.1

Suppose k =1, and F : U C R — R"” an immersion.

4R

Figure 16.1: Immersion from R to R"
Since F is an immersion, it follows that

1
% (o)

(DF)u =

0

% (o)
has rank 1. Thus (D F),, is non-zero, implying that when k = 1,

an immersion is just a smooth curve with a non-zero velocity in the

domain.3 ﬁ 3I'm not entirely sure if I follow. How
did an immersion go from having an
injective linear map to making sure that

Example 16.1.2 no points can the differential be 0?
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Suppose k = 1 and n = 2, and F(t) = (#?,#3) over U C R. Then

Thus F is not an immersion. >

% Lemma 41 (Parameterized Submanifolds are not Determined

by Immersions)

Let ¢ : U C RF — R" be a parameterization. Let h : U C R* — RF be a
diffeomorphism of U onto U = h(U). Then the composition

(P:(poh:l:lgle—HR"

is also an immersion.

# Proof
First, note that ¢ and & are both smooth#4. So ¢ o h is smooth. Also, 4 ¢ is an immersion, which is defined to
be smooth, and # is a diffeomorphism.

@ o h is a homeomorphism of U onto ¢(h(U)) = ¢(U), since it is a

composition of homeomorphism maps.

Now by the Chain Rule, we have

(D(@oh))u = (D))o (Dh)u.

The smoothness of ¢ and /i guarantees that D ¢ and D /1 are smooth,
respectively. Thus D(¢ o h) is smooth. Further, since & is a diffeo-
morphism, D is an invertible linear map. Thus the composition

(D @)n(uy © (Dh)y is injective.

Therefore ¢ o h is an immersion. 0

66 Note 16.1.3

Lemma 41 tells us that there are more ways than one to parameterization
a submanifold of R".
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66 Note 16.1.4

When k = 1, an immersion is just a smooth curve y : U C R — R”,

where its velocity is ' (to) = (dvy)s, non-zero for all ty € U.

B Definition 56 (j" Coordinate Curve)

Let ¢ : U C RF — R” be an immersion. if we fix all the coordinates
(ul,...,uk) except for the j" coordinate u, and think of ¢ as a function
of only w, then ¢ is a smooth curve on R", called the | coordinate
curve of the parameterization ¢. This is a smooth curve on R" with
velocity vector at u € U given by

2w = (2w, 2 w).

oul oul T oul

66 Note 16.1.5

The wvelocity vector %(u) is the j column of (D @),. This means that
the condition of being an immersion is equivalent to saying that for all
u € U, the k velocity vectors ;7(’)1 (u),..., %Pk(u) are linearly indepen-

dent, spanning the k-dimensional subspace of Ty, R".

& Definition 57 (Tangent Space on a Submanifold)

Let ¢ : U C RF — R" be a parameterization, so that (U) is a
k-dimensional parameterized submanifold of R". Then the tangent
space to p(U) at ¢(u), denoted as T, p(U), is defined to be the k-

dimensional subspace of T,,,)R" spanned by the k vectors

9 9
aT‘l”l(u), T$<<”>'
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With these, we can now define a submanifold of R” in a more

general way.

& Definition 58 (Submanifolds)

Let1 < k < n,and M C R". We say that M is a k-dimensional
submanifold of R" if there exists a covering of M by open subsets

{Vu CR" | « € A}, for some index set A, a collection of open subsets Uy
of R¥, and a collection of mappings @, : Uy — M C R”" such that the
following conditions hold:

5 Note that this means U, and V,, have
the same topological structure.

1. Each ¢, is a homeomorphism of Uy, onto V, N M 3.

2. Each ¢4 is a smooth immersion.

Figure 16.2: E Definition 58 in action

66 Note 16.1.6

We see that a k-dimensional submanifold M of R" is a subset of a not-

necessarily-disjoint union pieces of open sets, each of which is a k-

¢ Some authors call a k-dimensional
submanifold a regular submanifold of
R", and use the term regular map for a
parameterization.

dimensional parameterized submanifold of R™ ©.
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Submanifolds in Terms of Local parameterizations (Continued)

Given that the maps ¢., ¢p are homeomorphisms, we can consider

the map that goes from one parameterization to another.

& Definition 59 (Transition Map)

Let M be a k-dimensional submanifold of R". If Vo N Vg N M # @, the
transition map

Ppat @r (VaN VBN M) — golgl(va NVgN M)
is defined by

Ppa = (P;;l © Pu-

66 Note 17.1.1

Referring to Figure 16.2, we see that this is a map that goes from a subset
of Uy to a subset of Ug.

Also, notice that qolgwl = @up, and Quq is the identity mapping.

The following is a useful realization.

@ Proposition 42 (Transition Maps are Diffeomorphisms)
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Each transition map g, is a diffeomorphism.

The proof for & Proposition 42 is not

required for the course, but still useful
f Proof to know.

Suppose V, N Vg N M # @ and consider the transition map ¢g, =

(pgl o ¢y, which

Ppa @ (VaNVgN M) — qolgl(Va NVgNM).

We know that @g, is a homeomorphism since it is a composition
of two such maps. Therefore, it suffices for us to show that ¢g, is
smooth, which would analogously show that (p/;)‘l is smooth. Let

x = @u(ta) = @p(upg) € Vo N Vg N M, where

¢a(u) = (ga(u), .., 9i(w)),
9p(u) = (pp(w), ..., gf(u)).
Since @g is an immersion, the Jacobian (D go!;)uﬁ is an injec-

tive linear map with rank k. By #=Corollary 15, 3{ly,..., [} C
{1,...,n} such that the k x k minor of (D ¢g)u,, as described in

é Proposition 14, is invertible at u B-

Now define ¢4 : Ug — R* by
- 1 l
Fp(up) = (9 (g, gl (up))

which is smooth since each of the (pli's are smooth. By construc-
tion, and by our argument in the last paragraph, g has an in-
vertible Jacobian at ug. Applying @ Theorem A.4, we know that
Hlll’3 C Ug containing ug and an open subset Wy C R containing
@p(up), such that ¢g : Ué — Wp is a diffeomorphism. In particular,
we have that (f)gl : Wp — l,I;3 is smooth.

Using a similar argument for ¢4, we can define @, : Uy — R by
Fulita) = (2 (a), ., 91 (),

using the same subset {I1,...,lt} C {1,...,n}, and @, is smooth.

Let U, = (¢ o ®p) (U’ﬁ), which is an open subset of U,. It follows
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by construction that on U}, we have
Ppa = <P,§10(Pa :gb;lo@,x Ul — Ué.

Thus ¢g, is a composition of two smooth functions on the neigh-

bourhood of u,, so Ppa 18 smooth at u,. O

An informal discussion on why M is k-dimensional in a n-dimensional
space Informally, a subset M is a k-dimensional submanifold of R”

if it is locally homeomorphic to an open subset of R¥, via the identifi-
cation of V, N M with U, C R¥ through ¢,. From ) Proposition 42,
any two identifications of the same region of M with open subsets

of R are diffeomorphic, i.e. homeomorphic and preserves smooth-
ness. This realization of M being identifiable with such k-dimensional

subsets is why we say that M is k-dimensional.

& Definition 60 (Local parameterizations)

Under & Definition 55, each ¢, : Uy — M C R" is called a local

parameterization of M, and the collection
{pa : Uy > VuNM:ua € A}

of local parameterizations is called a cover of M. Given any such cover,
any other mapping  : U — V N M that satisfies B Definition 55 is
called an allowable local parameterization. The set of all possible al-
lowable local parameterizations under a given cover is called the maximal

cover of the cover.

66 Note 17.1.2

Allowable local parameterizations can be added to a cover and the cover

will still cover M, hence its name.

Example 17.1.1
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Consider the unit sphere §"=1 C R", which is
Sl ={xeR": |x|* =1},
where
x]|? = (") + ... (x")?
is the usual Euclidean norm .
Claim S"~!is an (n — 1)-dimensional submanifold of R".

Let p € S"~1. By the construct of S"~!, we know that 3j €
{1,...,n} such that p/ # 0. Then suppose p/ > 0, and consider
the set

1/j+::{x€R”:xk>O},

which is open in R”. Then p € V]-Jr N S"~1. Now let
U={uecR"|[ul® <1},

which is an open subset of R"~!. Define a map (p;r U — V]-Jr by
(p;r(u) = <u1,...,u71,+\/1 - ||u||2,uj,...,u”1> .

Notice that go;r is a bijection between U and VjJr N s"1. Also, (p;r
is smooth, since each of its terms are smooth. Its inverse (go;r)_l :

+ n—1 28 &F
V;mnstT = Uis given by

(q);’)_l(x) = (x',..., 7, dt,x") e R,

which is known at the stereographic projection from R" to R" 1.

The inverse is continuous because it is the restriction to Vj+ N S*=1 of

a continuous map on Vj+.

It remains to show that (p;r U — VjJr N $"~1 is an immersion.

Notice that its Jacobian is the (1 x (1 — 1))-matrix
Li—1x(-1)  Ogi—1)x(n—j)

Do) =1 *xin)  Faxe) |-
Otm—jyx(j-1)  Ltn—j)x(n—j)

expressed in block form, where 0,,,; denotes the m x | zero matrix,

*See PMATH 351

Figure 17.1: @3 in IR3


https://tex.japorized.ink/PMATH351F18/classnotes.pdf#eg.9.1.4
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Ixm denotes the m x m identity matrix, and *,,; is some m X [
matrix whose entries are irrelevant to us. Notice that if we move the
M row to the bottom, we obtain an (7 — 1) x (1 — 1) matrix in the
first n — 1 rows. Thus the matrix (D (p}*) is injective since it has rank

n — 1 (which is maximal).

It follows that goj+ U — VjJr is a local paramterization for 5" ~!
whose image contains p. Had we started, instead, with p/ < 0, then
we can define ¢ U=V analogously, taking the negative square

root.

In conclusion, we covered S"~! by 2n local parameterizations, and

thus proving that S"~! is an (n — 1)-dimensional submanifold of

R". >

Example 17.1.2

Leta < bandleth : (a,b) — R be a smooth function such that
h(t) > 0 for all t € (a,b). Consider the subset M of R3 given by

M={(x,y,z) ER}:a <z <b x*+1* = (h(z))?}.

Then M comprises all points in R® whose z coordinates lies strictly
between a and b, whose distance /x2 + y2 from the z-axis is deter-
mined by h(z) > 0.

In other words, the set M is obtained by taking the graph of the
curve r = h(z) on the r — z plane and resolving it around the z-axis.

We call such an M a surface of revolution.
Claim M is a 2-dimensional submanifold of R3.

To show this, we can show that every point in M lies in the image
of some local parameterization. Using cylindrical coordinates on R?,

the points on M are

x =h(z)cosb, y = h(z)sinb, and z =z, fora < z < b.

141
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Consider the following two maps:

¢ : (a,b) x (0,271) — R3
¢(t,0) = (h(t)cosb,h(t)sinb,t)

and

¢:(a,b) x (—m, ) = R®
@(F,0) = (h(F) cosd, h(f)sind, F). >
It is clear that these two maps are smooth maps from open subsets of
R? whose images are contained in M. It is also relatively easy to see

that both ¢ and ¢ are homeomorphisms:
e all the terms are continuous;

o the different 6’s (and similarly for 6) give us unique points for

every t (respectively, f).

For instance, the inverse of ¢ is ¢~ !(x,y,z) = (z,arctan %) at points

where x # 0, and by ¢~ (x,y,z) = (z, cot™1 ;) aty # 0, and in both

cases the inverse trigonometric functions are defined to take values
in (0,27) (which we may translate around as we please). Note that

when both x # 0 and y # 0, the two expressions of ¢! agree with

1

one another since cotf = L

It remains to show that these maps are immersions. We have

aa%l % W' (t)cos® —h(t)sin6
(Do) = aa—"f % = | K (t)sin® h(t)cosb

99 99>

5F oo 1 0

Notice that the columns are not scalar multiples of each other, and so
(D ¢) has rank 2, which, in this context, is maximal. It follows that
(D ¢) is injective at all points in its domain. Thus ¢ is an immersion.
Therefore, M is indeed a 2-dimensional submanifold of R?, and we

have successfully covered M with two local parameterizations.
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Submanifolds as Level Sets

Quite often, submanifolds of R" appear in an implicitly , i.e. as a set
of points in IR” which satisfy some equation. In this section, we shall

see that locally so, all submanifolds show up in this manner.

& Definition 61 (Maximal Rank)

Let1<k<n-—1,andlet F: U C R" — R"* be a smooth map, where
U is open in R"™. We say that F has maximal rank on U if the Jacobian

(D F)y has maximal rank n — k at each point x € U.

66 Note 18.1.1

The above definition is equivalent to (D F/) being linearly independent
forallx € Uforj=1,...,n —k, where (DF!)y is the Jacobian of the
component function F/ : U C R" — Rat x € W.

& Definition 62 (Level Set)

The level set of a smooth function F : U C R" — R ' corresponding to

a value ¢ € R is the set of points *

{(x1,...,%4) € R" | F(x1,...,%n) =}.

We saw the terminology maximal rank
arise in & Definition 54, but in either
case, in terms of how the word maximal
is used, we know what it means.

* Note that the definition of a level set is
only for smooth functions with R as its

codomain.
2 Weisstein, E. W. (n.d.). Level set.

MathWorld — A Wolfram Math Re-
source. http://mathworld.wolfram.
com/LevelSet.html


http://mathworld.wolfram.com/LevelSet.html
http://mathworld.wolfram.com/LevelSet.html
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P Theorem 43 (Implicit Submanifold Theorem)

Letl1 <k <n—1andlet F: W C R" — R" ¥ pe a smooth map,
where W is open in R". Suppose that the subset M = F~1(0) C R" is
nonempty. If F has maximal rank on W N M, then M is a k-dimensional
submanifold of R™.

# Proof

Let xo € M = F~1(0). Then F(xp) = 0. Since (D F)y, has maximal
rank n — k on W N M, by the non-vanishing minor corollary, there
exists a subset {I1,...,1,_x} C {1,...,n} such that the matrix a—F,i,

dx/
is invertible at xq. Let {my,...,m} = {Iy,..., L} € {1,...,n}.

Now let y/ = xli, so that

and let w/ = x™, so that
w = (wl,...,wk) € R-.

Let F : R(*=K+k  R"=k by F(y,w) = F(x). Then by our hypoth-

o o A 5 o q q 9 a4
esis, the matrix 7 18 invertible at (o, wp). Applying the implicit

function theorem, there exists

¢ an open neighbourhood U’ C U C R" of (yo, wp),
e an open neighbourhood V C R of wp, and

e asmooth map ¢: V C RF — R" K,

such that

{(y,w) eU": F(y,w) = 0} = {(¢(w),w) : w € V}.

Translating back to the original notation, we can define the map
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¢:V CRF = R" by
" = w = x™i, and (pli (w) = (pj(w).

By the construction above, we know that ¢ is smooth. Now notice
that 9! : @(V) — Visgiven by ¢~ !(x) = w, where w/ =
x"~J, and thus ¢! is continuous on ¢(V). Also, it is clear that ¢ is

continuous. So we do have that ¢ is a homeomorphism.

Finally to show that ¢ is an immersion, notice that for j =
1,...,k, the m]-th row of (D ¢)y has a 1 in the j column and zeroes
everywhere else. Thus the columns of (D @), is linearly indepen-

dent.

Thus we have that U’ N F~1(0) = U' N M = ¢(V), with ¢ :
V C RF — (V) C R” satisfying B Definition 55. Since xg € M
was arbitrarily chosen, it follows that M is indeed a k-dimensional

submanifold of R". 0

Example 18.1.1

Ifn—k =1,then F : U C R" — R has a maximal rank on U if
the 1-form dF is never zero on U. Following the above, M = F~1(0)
is an (n — 1)-dimensional submanifold of R", and is also called a

hypersurface of R”, or a codimension one submanifold.

Note that when n = 3, this is a surface M in R? in the sense that

we can perceive. >

Example 18.1.2

Ifn—k =n—1thenF : U C R" — R" ! has maximal rank
on U if the 1-forms dF! of the n — 1 functions F!,...,F" 1 are all
linearly independent from one another at each point in U. Then by
W Theorem 43, M = F~1(0) is a 1-dimensional submanifold of R",

called a curve in IR"”, which is the usual curve that we know.

Putting this together with the last example, we deduce that a
curve in IR” is obtainable as the intersection of n — 1 hypersurfaces
(F')~1(0) in R", where the 1-forms dF?,...,dF"~! are linearly inde-
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pendent at all points on the intersection. »

Example 18.1.3

Consider the sphere S"~! C R” from Example 17.1.1. Note that we
may now write this as $"~! = F~1(0) where F : R" — Ris the

smooth function

F(x) = ||x][?—1= (D)2 +...+ ("2 -1

We notice that (DF), = <2x1 . 2x”), which is never 0 on F~1(0).

Thus from rank-nullity, (D F), has maximal rank 1 on F~1(0). By

B Theorem 43, once again, we have that S"~! = F~1(0) is an (n — 1)-

dimensional submanifold of IR”.

Example 18.1.4

Consider the surface of revolution M C R® from Example 17.1.2. We
can write this set as M = F~1(0), where F : R3 — R is the smooth

function
F(x,y,z) = x% + y2 - (h(z))Z.

Notice that (DF)y,,.) = <2x 2y —2h(z)W'(z )) For (DF) (4,

have 0 at (x,y,z), we must have x = y = I/(z) = 0, since h(z )

In particular, for (D F) o) to have rank 0, we must have h(z) = az
for some scalar a € R. However, note that F(0,0,z) = —(h(z))? <

0. Therefore, the points (x,y,z) € R3 where (D F)(x,y,2) does not
have maximal rank are not on the level set M = F~1(0). It follows
again from ®Theorem 43 that M = F~1(0) is a 2-dimensional
submanifold of R3. N

Let us look at an example with higher codimension, i.e. an exam-
ple of an explicitly defined k-dimensional submanifold of R” with

n—k>1.

Example 18.1.5
Let (x,y,z,w) € R* and consider the set

M = {(x/yrzlw) S R4 o x2+y2 = 1, Zz+w2 — 1}

Remark 18.1.1

Notice that Example 18.1.3 is a much faster

way than Example 17.1.1 to finding a
cover!
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We can write this set as M = F~1(0) where F : R* — R? is the

smooth function
F(x,y,z,w) = (> +y* -1, 22 +w® - 1).

We have that

2x 2y 0 0
DF = ’
( )(x,y,z,w) ( 0 0 2z Zw)

which clearly has rank 2 at all points on M. It follows from @ Theorem 43
that M = F~1(0) is a 2-dimensional submanifold of R*.

Note that M can be thought of as the Cartesian product of two
copies of $* C R2. Consequently, we write M = S! x S!, and call M
the standard 2-torus in R*. >

Local Description of Submanifolds of R"

In this section we shall look into more results about the local struc-

ture of submanifolds.

®PTheorem 44 (Points on the Parameterization)

Let M be a k-dimensional submanifold of R", and let x € M. Then there
exists a local parameterization 1 : W C R¥ — R" for M with x € p(W)
such that 3{1ly, ..., It} C {1,...,n} with complement {my, ..., m, }
such that x = (w) satisfies

i =yli(w) =wl, j=1,...,k

XM= i (w) = i (wt,...,wk), j=1,...,n—k

# Proof

Since M is a submanifold of R”, 3¢ : U C Rf — R", alo-

cal parameterization, with x € ¢(U). Since ¢ is an immersion,

the Jacobian (D ¢), has rank k, and so #=Corollary 15 gives us
{h,..., Ik} €{1,...,n} with complement {m;,...,m, i} such that
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i, . q ~
the matrix —aaq’- is invertible at u. Let ¢ : U — R¥ by
11/

lu) = (@' (u),..., @ (w)).

It is clear that @ is smooth on U, since its components are subsets

of the component functions of the smooth map ¢ on U. By con-

fi
struction of @, the Jacobian % is invertible at #. Thus by applying

the inverse function theorem, there exists
* an open subset U’ C U containing u,

e an open subset W C R containing w = ¢(u) such that ¢ : U’ —

W is a diffeomorphism.
In particular, ¢! : W — U’ is smooth.
Note that w/ = ¢/(u) = ¢'i(u) = x'. Thus we can define
p: W CRF = R"by ¢: go@ L It follows from Lemma 41 that ¢
is a local parameterization of M. Therefore, we have
¥ (@) = g7 (w)) = ¢i(x) = £ = wl and
P (w) = 9"l W),

as we wanted. 0

66 Note 18.2.1

B Theorem 44 shows that locally (on (W)) the submanifold is given as
the graph of a function of k variables. We can explicitly write n — k of the

coordinates x/ as smooth functions of the other k variables.
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Local Description of Submanifolds of R" (Continued)

& Proposition 45 (Local Version of the Implicit Submanifold

Theorem)

Let M be a subset of R" with the following property. For each x € M,
W an open neighbourhood of x € R" such that W N M = F~1(0) for
some smooth mapping F : W C R" — R" ¥ which has maximal rank on
W. Then M is a k-dimensional submanifold of R".

# Proof

Letx e M,F: W CR" — R"* which has maximal rank on W,
and x € W. It follows that if we let M = W N M in the Implicit
Submanifold Theorem, then there exists a local parameterization
f:U C RF — F(U) for some open neighbourhood f(U) of x.
Since x is arbitrary, it follows that M is indeed a k-dimensional

submanifold of IR". 0

Interestingly, and fortunate to some extent, the converse of

é Proposition 45 is true.

@ Proposition 46 (Converse of the Local Version of the Implicit

Submanifold Theorem)
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Let M be a k-dimensional submanifold of R", and let x € M. Then
IW C IR" an open set containing x, and a smooth mapping F : W C
R" — R"*~* which has maximal rank on W, such that WO M = F~1(0).

& Proof
By ®Theorem 44, 3 : U C RF — R" a local parameterization
such that x € (U), with

i = ¢lf(w) = w/ and

"= p"i(w) = wmf(xll, . ..,xl")

for some {ly,..., It} € {1,...,n} with complement {m,...,m, ;}.
Then let W C R" be the open set defined by

W={xeR": (x",...,x%) eU},
as define the smooth map F: W C R" — R" ¥ by
Fi(xt, ..., x") = x"i — 1,bmf(xll,...,xlk),

where j = 1,...,n — k. By construction, we have that W N M =
F~10).

Now note that the j row of (D F)y is (D F/), which has a 1 in



the mjth component and zeroes in the m;!" components for i # j:

oF! or! or!

ox! ox2 axm]

oF2 oF2 oF2

ox1 ox2 ox

DE)x=1 3o o5 OF"

oxl 0x2 mej

aank aPn—k aank

oxt ox?2 oxi

oF! oF! oF!

ox1l ox2 axm]

oF2 oF2 oF2

oxt ox? oxi

| e ™ 1
oxl ox?

apn—k aPn—k apn—k

ox1l ox2 axm]

oF!
ox"
oF?2
dx"

aPnfk
ox"
oF!
ox"
oF?
ox"

1

oF '/
ox’

apn—k
ox"
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It follows that the n — k rows (D F/) are therefore linearly indepen-

dent, i.e. (D F), has maximal rank #n — k as required.

O

Smooth Functions and Curves on a Submanifold

B Definition 63 (Smooth Functions on Submanifolds)

Let f : M — R. We say that f is smooth if the composition f o ¢, :
U, — R is a smooth function for any allowable local parameterization
@u : Uy — R" of M (cf. Figure 19.1).

Let F : M — RY be a vector-valued map. We say that F is smooth if

all the components F' : M — R are smooth real-valued functions on M,

fori=1,...,q.

Remark 19.2.1

Note that smoothness of functions is a local property, i.e. a function f is

smooth on M if and only if it is smooth on V N M for every open set V in
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R". o

& Definition 64 (Smooth Curve on a Submanifold)

Let v € I — M, where I C R is open. We say that vy is a smooth curve
in M if the composition o' o : I — R¥ is a smooth curve * on R* for

any allowable local parameterization ¢, : Uy — R" (cf. Figure 19.1).

& Proposition 47 (Smooth Curves on a Submanifold is a Smooth

Curve on R")

Let 7y : I — M be a smooth curve on M. Let 1 : M — R" be the inclusion
map. Then 1o vy : I — IR" is a smooth curve on R" whose image lies in
the subset M C IR".

Remark 19.2.2

& Proposition 47 tells us that we can think of a smooth curve in M as a

smooth curve on R" whose image lies in the subset M C R". ®

Figure 19.1: Visual representation
of smooth functions and curves on
submanifolds

* Note that we are using an earlier
definition of a smooth curve on R¥ to
define a smooth curve on submanifolds.
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& Proof
Let t € I. Then we have

(toy)(t) = 7(t) = @al(@x ' 0 7) (1)),

since y(t) € M C R". Therefore, as a map from I — R", we have
that

1oy = a0 (@y o).
By our hypothesis, we have that both ¢, : U, € R¥ — R" and
@y ! oy are both smooth, thus 1o : [ — R" is a composition of

smooth maps. O

Remark 19.2.3

It can be shown that the converse of & Proposition 47 holds, i.e. if y: [ —
R" is a smooth map such that (t) € M for all t € I, then as a map from I
to M, vy is a smooth curve in M as in the sense of E] Definition 64.

Howeuver, the proof of this statement is currently beyond is and not

within the scope of this course. L

@ Proposition 48 (Composing a Smooth Function and a Smooth

Curve)

Let M be a submanifold of R". Let f : M — R be a smooth function on
M, and let v : I — M be a smooth curve on M. Then the composition
foy : I = R"isasmooth map in the usual sense in multivariable

calculus.

& Proof

For any t € I, the point p = 7(tf) € M lies in the image of
some local parameterization ¢, of M. By B Definition 64 and
& Definition 63 on M, we know that both

fopy:Uy —Rand gyloy: T — R
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are smooth. Then on some open neighbourhood of t € I, we have

fop=(fogu)o(ps o),

which is a composition of smooth maps and is therefore smooth. It

follows that f oy : I — R is smooth on I. O

Tangent Vectors and Cotangent Vectors on a Submanifold

In a similar fashion to how we defined a tangent space on IR" (cf.
Section 8.1), in this section, we shall show an analogous construction

of a tangent space on submanifolds.

Let ¢ : U — R" be a parameterization of M. From Section 8.1,
we would have the k-dimensional subspace T,,)R" spanned by the k

vectors
d¢ d¢
gt W) oo e ()-

These vectors form the k columns of the n x k matrix (D ¢),, i.e.
Ty(u)9(U) is the image of R" of the linear map (D ¢),). More pre-
cisely, Ty, ¢(U) is the image in T,,(,,)R" of the linear map (d¢), :
TRk — Tp(uyR".
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Tangent Vectors and Cotangent Vectors on a Submanifold (Con-

tinued)

Recall that in B Definition 57 we defined the tangent space T,M

of M at p to be the tangent space of the parameterized submanifold
@(U) C R" at ¢(u) for any local parameterization ¢ : U — R" of M
with p = ¢(u).

For this notion to be well-defined, we need to show that T, M does

not depend on the choice of the local parameterization.

& Proposition 49 (Well-Definedness of the Tangent Space of a
Submanifold)

Let @y : Uy — R" and @p : Ug — R" be two local parameterizations for
Mwith p € Vo N Vg N M. Then p = @u(uy) = @g(ug) for some unique
uy € Uy and ug € Up. Then we have

T (1) P (Ua) = Ty ) 9 (Up)-

# Proof
The first implication follows immediately from the choosing of the

unique u, and u, since ¢, and @g are homeomorphisms.

Now recall that the transition map

Ppo: @r  (Va N VN M) — q)ﬁ_l(Va NVgN M)
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was defined to be g, = cplgl o ¢s, and we proved in @ Proposition 42

that ¢, is a diffeomorphism. It follows that

PO Ppa = Pas

and so we obtain ¢z and ¢, maps on the open subset ¢, Ly n

VgN M) C R. By the chain rule, we have that
(APa)u, = (dﬁoﬁ)uﬁ (APpa)us-

Since @p, is a diffeomorphism, it follows that the linear map
(d9pa)ug : Tug RS — Ty R¥

is an isomorphism, and therefore (d¢a)u, and (dgg)u, have the

same image in R". O

66 Note 20.1.1

Note that the proof of & Proposition 49 is almost a restatement of
Lemma 41. We see that, once again, the result says that the image of the
induced linear map (d¢), of a parameterization is independent of any parameterization

such that ¢(u) = p.

WE Now consider characterizing elements of T, M as velocity vectors

at p of smooth curves of M passing through p, just as we did for R".

B Definition 65 (Velocity Vectors on a Submanifold)

Let v : I — M be a smooth curve on M with 0 € I and v(0) = p. Then
p lies in the image of at least one local parameterization ¢ : U — R"
for M, with ¢(u) = p for some u € U. The velocity vector of the
smooth curve 9~ o : I — R¥ on R at the point u is a tangent vector
(97107)'(0) € LR

We define the velocity vector of y at p to be the image of (p~! o
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7)'(0) under the linear map (d)y : T,RF — T,IR". We denote the
velocity vector of v at p by 7'(0) € T, (o)M, and the velocity vector at p

of a smooth curve on M passing through p is a tangent vector at p to M.

66 Note 20.1.2

The argqument in the proof of @ Proposition 49 tells us that this def-
inition is well-defined, i.e. the velocity vector on a point p is the same

regardless of the choice of parameterization.

Remark 20.1.1
Figure 20.1: Borrowing the velocity

To explain the definition in a more intuitive manner, notice that the way we vector
defined a velocity vector at p in M is by looking at the velocity vector of p

when it was still u in U. [ J

The have the following fact that makes our definition even better.

@ Proposition 50 (All Velocity Vectors on a Submanifold are
Determined by & Definition 65)

Let v, € Ty M. Then there exists a (non-unique) smooth curve vy : I —
Mon Mwith0 € Iand y(0) = p such that ' (0) = v},. That is,
any v, € TpM can be realized as the velocity at p of a sooth curve on M

passing through p.

& Proof

Let ¢ : U — R” be any local parameterization of M whose image
contains p. Then u = ¢~!(p) € U C RF. Then (d¢), : T,RF —
T,R" is a linear injection, whose image is precisely T,M. Let v, €
T,M. Then 3tw, € T,RF such that (de).(W,) = v,.

Now let o be a smooth curve on R* with ¢(0) = u and ¢/(0) =

w,. Notice that we have ¢ = ¢! o (¢ o ). Since ¢ and ¢ are



158 Lecture 20 Mar o4th Tangent Vectors and Cotangent Vectors on a Submanifold (Continued)

smooth, it follows that v = ¢ o ¢ is a smooth curve on M, with

7(0) = ¢(u) = pand 77! = (dg)u(c'(0)) = (d@)u(wu) =vp. O

66 Note 20.1.3

Recall that a smooth curve y on M C R" can be thought of as a smooth

curve on R" whose image lies in M. Since T, M is a subspace of T,IR",
& Proposition 50 tells us that y'(0) € T, M, as a curve on M, precisely

coincides with the velocity of y in T,IR" when we think of <y as a smooth

curve on R".

Let’s examine the consequences of the above observation. Let
@ : U — IR" be a local parameterization of M. If we fix all the
components in u € U except the jth component, we get exactly a
smooth curve on M, which we called the j* coordinate curve of ¢.
Once again, we can think of this as a smooth curve on R" whose

image lies in M.

Let p = ¢(u), where u = (u!,...,u*) € U C Rk, Then %(u) is
a tangent vector to M at p. Let ¢ : I — RF be a smooth curve on R¥
such that o(t) € U forallt € I, and ¢(0) = u. Then as discussed
above, ¢ o ¢ is a smooth curve on M, which can be thought of as a
smooth curve on R” whose image lies in M, with (¢ o 0)(u) = p. By

the chain rule, we have

du/

7(0) = 2 (0(0) 200) = = 22 (w)

for some scalars c/. We see that T, M is spanned by the k elements of

_foe . .
A{auj(u).]l,...,k},

which is the set of velocity vectors at p of the coordinate curves on

the set

M as determined by the local parameterization ¢. Since T, M is k-

dimensional, A is necessarily a basis for T, M.

We see that for each choice of a local parameterization ¢ of M

whose image contains p determines a particular basis of T, M. Thus
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we see that there is no canonical choice for a local parameterization.

Now let us consider tangent vectors as derivations. The set of real-
valued functions on M is both a vector space and an algebra with
respect to multiplication of real-valued functions, i.e. (fg)(p) =
f(p)g(p) *. We denote this space as C*(M).

As before, let us denote the set of germs of smooth functions at p
as Cyoo(M), where f ~, g if and only if 3V C R" open that contains
p, such that

f lvam= g lvam -

Just as when we were in R", C;?(M) is an algebra over R 2.

& Definition 66 (Derivation on Submanifolds)

Let M be a submanifold of R" and let p € M. A derivation at pisa
linear map D : C;’ (M) — R with the property that

D([flplglp) = f(p)DIglp + &(p)DIf]p-

66 Note 20.1.4

& Definition 66 is formally the same as B Definition 35.

Exercise 20.1.2

Check that the space of derivations at p is indeed a real vector space.

1

Exercise 20.1.1

Verify that linear combinations of products
of smooth real-valued functions on M are
still smooth.

*> Note again that this means that
Cp?(M) is a real vector space with
multiplication.
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Tangent Vectors and Cotangent Vectors on a Submanifold (Con-

tinued 2)

The space of germs of smooth functions on M at p only depends on
the intersection of M with an arbitrary open neighbourhood of p in
R".

Exercise 21.1.1

Let M be a submanifold of R" and p € M. Let V be an open subset of
R" containing p. We know that the subset V. N M is a submanifold of R"
containing p. Show that

CP (M) = C2(V N M).

% Lemma 51 (Correspondence of Smooth Maps between a Sub-

manifold and Its Parameterization)

Let M be a submanifold of R", and ¢ : U — M a local parameterization
of M. Then (U) = V N M for some open set V in R" containing p.

Consider the map
12 CP (VN M) — C(U) given by f — fog.

This map is a linear isomorphism of vector spaces and a homomorphism of

algebras.
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Figure 21.1: Visualization of Lemma 51

# Proof
Linearity Let f,g € C*(VN M) and f,s € R. Then

(tf +sg)og=1tfop)+s(go9)
and so the map is linear.

Homomorphism of algebras Furthermore, we also have

(f8)op=(fog)gog)
and so we have that our map is a homomorphism of algebras.

Isomorphism of Vector Spaces Let f € Coo(V N M) be such that
foge : U — Ris the zero function. Since ¢ : U — VN Misa

bijection, it follows that

-1
f=(fop)op
is a zero function, thus showing that ¢ is injective.

Now suppose h € C*(U). Then

h=(hop ')og,

and by definition ho ¢! : VN M — R is smooth since & is smooth

on U. It follows that ¢ is injective as well. O

$= Corollary 52 (Isomorphism Between Algebra of Germs)
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Consider the assumptions in Lemma 51. Let p € VN M with p = ¢(u)
for u € U. Then the linear isomorphism C*®(V N M) — C*®(U) given by
f = f o ¢ induces an isomorphism between the algebra of germs C;’ (M)
at p € M and the algebra of terms C(R¥) at u € R, given by

[flp = [f © ¢lu-

& Proof
Let fi ~y fo. Then 3W C R” such that p € W such that

f Twam= f2 Twnm -

Let U = ¢~ (WN V) C U. Since ¢ is continuous and WN V is
open, we have that U is open. Since ¢(U) C W, we have

(fiog) Ig= (f20 )

It follows that [f; 0 @]y = [f2 0 ¢lu if [fi]p = [f2],- Thus, the map
[flp = [f © ¢lu is well-defined.

It remains to show that the map is bijective. Let [h], € C(RF).
Then h is a smooth function defined on some open neighbourhood
U C U of u. Then by restricting ¢ to U, following the proof of
Lemma 51, we have that h = (ho ¢~ 1) o @. Thus [h], € CP(RF) is
the image of [ o ¢~ '], € C;°(M). Thus our map is surjective.

Now if [f o ¢], = 0, then f o ¢ is identically zero on some open
neighbourhood U C U of u. Since ¢ is a bijection from U onto
its image, f must be identically zero on some open neighbour-
hood ¢(U) of p. It follows that our map is an isomorphism, as

required. O

66 Note 21.1.1

We see that a local parameterization ¢ : U — V N M allows us to identify

germs of smooth functions on M at p with germs of smooth functions on
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Uatu= ¢ (p).

WE sHALL NOow investigate how is the tangent space T,M of M at p
precisely the space of derivations at p. Let M be a submanifold of R”
and let p € M.

Let ¢ be a local parameterization of M whose image contains
p = ¢(u). Again, we have ¢(U) = V N M for some open V C R", and
V N M is a submanifold of R", containing p. Let

Ly : Cp*(M) — C(R¥)
be the isomorphism of algebras from #=Corollary 52, given by

Lq)([f]p) = [fo (P}u‘

Now let D : C;7(M) — R be a derivation. Then D o L(;l : CP(RF) —
R is linear. Furthermore, since D is a derivation and L;l is a homo-

morphism of algebras, we have

Do L, ([m]ulhalu) = D(Ly ([1]ulhalu))
=D([h o9 plhaop™']p)
= (ho9 ") (p)Dlhao 9™,
+(ha09™")(p)Dlhio 97,

=h(u)(Do L(;l)[hz]u + hy(u)(Do L(;l)[hl]u.

Thus we see that D o L,,* is a derivation at u. By @ Theorem 28,
we know that D o L(;l is a tangent vector at u in R¥, i.e. Do qul is a

directional derivative in some direction w, € T,R.

This means that if we let [f], € C;’(M), then JV C Vof pin R"
such that f : VN M — R is a smooth function on V N M. Thus we
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have

Dlflp, = Dl(fe @)oo',
= Dngl[fo ¢lu

= wyu(fog)
o (Fo@)uttw) — (Fog)w)

t—0 t
o flolut ) — F(p)

t—0 t

Consider y(t) = ¢(u + tw), which is, by construction, a smooth
curve on M with (0) = p and 7/(0) = (d¢)u(wy). Note that this
is a velocity vector v, in M at p. Thus it makes sense to consider the
expression D|f], above as the directional derivative in the v, =
(dg)ywy € TyM direction of the smooth function f on M at the point
p.

This motivates us to define, Vo, € T,M, and any [f], € C;*(M),

flo(u+tw)) - f(p)

op(f) = lim t
= wu(f o 9) = ((dg), " (vp))(f © ). (21.1)

We have therefore proven the following theorem:

WP Theorem 53 (Derivations are Tangent Vectors Even on Sub-

manifolds)

Let M be a submanifold of R" and p € M. Any tangent vector v, €
T, M gives a derivation v, : Cyoo(M) — R, defined by

op(f) = (dg) () (f o )

for any local parameterization ¢ : U — R" of M such that ¢(u) = p.
Moreover, any derivation D : C;?(M) — R is of this form for a unique
vp € TyM.

Exercise 21.1.2
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Show that f — ((dg), (vp))(f o @) is a derivation. Moreover, show that
the map is independent of the local parameterization ¢, i.e. if 3¢ another

local parameterization of M with ¢(ii) = p, then show that

((d@)i (@) (f 0 @) = ((d@)i " (vp))(f © §)-
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Tangent Vectors and Cotangent Vectors on a Submanifold (Con-
tinued 3)

Example 22.1.1

Let ¢ be a local parameterization of M with p = ¢(u), and the tan-

gent vector %(u) € T,M given by the velocity at p of the j* coordi-
. ) A

nate curve on M induced by ¢. Note that a—f](u) = (dp)u(éj)u. Then

by Equation (21.1), we have

ol

o lu

99 (w)(f) = @)u(fo p) =

oul

(foo),

which is the partial derivative of f o ¢ at u in the ¢; direction . Be-

cause of this, we shall write this tangent vector —g ? (1) as %| €
u ou/ p
T, M.
Thus

o) )
Lol 3l )

is a basis of T, M, but this depends on the choice of parameteriza-

tion. >

Smooth Vector Fields and Forms on a Submanifold

One should notice how similar these

parts are to Part II.

& Definition 67 (Cotangent Space on a Submanifold)

Let p € M. Let T;M = (T, M)* be the dual space of T, M. We call T, M
the cotangent space of M at p.
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Following Part II, we can consider the space A’(T;M ) of r-forms

on the k-dimensional real vector space T, M. Again, we note that we look at a vector
field as a function that attaches a vector
to each point in the space.

& Definition 68 (Vector Fields on Submanifold)

A wvector field on M is a map X : M — Uyep TyM such that

X(p) = X, € T,M, Vpe M.

See also & Definition 11

& Definition 69 (Forms on Submanifolds)

An r-form on M is a map 11 : M — Ugem A" (T, M) such that

n(p) =np € N'(T;M), VpeM.

66 Note 22.2.1

Note that since A°(T; M) = R, a O-form on M is just a real-valued
function on M.

Remark 22.2.1

Given a vector field X on M and a smooth function f on M, we get a func-
tion Xf : M — R defined by (Xf)(p) = X,f, where X, € T,Misa

derivation at p *. If 17 is an r-form with r > 1, then given any r vector fields *We saw this in ®Theorem 53.
X1,..., Xy on M, we have that 1(Xy,...,X;) : M — R is a function given
by

(1(X1,-- -, X)) (P) = 1p((Xa)ps -/ (Xr)p)- ®

& Definition 70 (Wedge Product on Submanifolds)

Let 1 be an r-form on M and let { be an |-form on M. We define the
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wedge product §y A, an (r + 1)-form on M, by

(WAé)p =1p N Cp,

where the wedge product on the RHS is the usual wedge product of forms

on the vector space Ty M.

66 Note 22.2.2

We still have that
n AT = (=1)MElz Aq.

& Definition 71 (Smooth Vector Fields on Submanifolds)

We say that a vector field X is smooth on M if Xf € C®(M) for all
f € C®(M). We denote the set of smooth vector fields on M by T(TM).

& Definition 72 (Smooth 0-forms on Submanifolds)

Fora O-formh : M — IR, we say that h is smooth if it is smooth by
& Definition 63. We denote the set of smooth 0-forms on M both by
C®(M) and Q°(M).

& Definition 73 (Smooth r-forms on Submanifolds)

For1 <r <k, an r-form 1 on M is smooth if
n(Xy,...,Xy) € C®(M), VXy,..., X, eT(TM).

We denote the set of smooth r-forms on M by Q' (M) = T(A"(T*M)).

Remark 22.2.2
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From Remark 19.2.1, we know that smoothness of vector fields and forms
is a local property. In other words, a vector field X is smooth on M iff it is

smooth on V.01 M for every open V in IR", and similarly so for an r-form

1. ®
Example 22.2.1 (W)

Let ¢ : U — R" be a local parameterization for M with image
VNM. Let p € VN M with p = ¢(u). Recall that the tangent vector
%p € TyM was defined to be (d¢).(¢;)u, where (¢;)y € T,RF is the
j™ standard basis vector.

Define a vector field % on the submanifold V N M by letting its
value at p € VN M be % . That is, let
u p

5} R _
o , = (d(p)u(ej)u, where u = ¢ 1(;9).
(@ % is a smooth vector field on V N M. To show this, let

f € C®°(V N M). By Example 22.1.1, we have

(- (52 - (520

We see that the function % f VN M — Ris the function ¢ =

W o ¢~ 1. Notice that go ¢ = a(é(l%q’) is smooth on U. Thus
the function g is smooth by B Definition 63. It follows that % is
a smooth vector field on V. N M. N

& Proposition 54 (Structures of I'(TM) and Q" (M))

We know that the spaces T(TM) and Q) (M) are (infinite-dimensional)
real vector spaces, and modules over C*°(M). The vector space structure

and module structure are defined in the usual way by

(aX 4+ bY)p = aXp + bYy, (fX)p = f(p)Xp
(an +bg)p = anp + by, (fmp = f(p)up,

foralla,b e R, X,Y € I(TM), n¢ € Q"(M), and f € C®(M).



PMATH365 — Differential Geometry

& Proof
to be added 0

& Proposition 55 (Smoothness of Wedge Products on Submani-
folds)

Letn € O (M) and { € Q'(M). Then y AT € Q"TH(M).

# Proof
For an arbitrary p € M, by B Definition 70, we have that

(MAD)p=1pAEp-

By & Definition 47, since each # and ( are smooth, it follows that

the RHS is also smooth, which is what we want. 0

& Definition 74 (Pullback Maps on Submanifolds)

Let M be a submanifold on R", and let ¢ : U C R¥ — R* be a local
parameterization for M. Then ¢ is a smooth map, and it induces a linear

isomorphism (d¢), : T,RF — To(u)M. We define the pullback map as
9" = (dg); : N (Tj(, M) = A(T;RY),
where if 1 is an r-form on M, then ¢*1 is an r-form on U such that

(@ Mu((Wi)u, - .., (Wr)u) = 77<p(u)((d§0)u(wl)u/- o (d)u(Wr)u),
(22.1)
for tangent vectors (Wy)u, - .., (Wy)u € T,RE.

66 Note 22.2.3

171
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Since (dg)y : T,RF — Ty M is an isomorphism, the map ¢* is also an

isomorphism.
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Smooth Vector Fields and Forms on a Submanifold (Continued)

% Lemma 56 (Smoothness of Pullbacks and Forms)

Suppose that 1 is an r-form on M. then vy is smooth iff the pullback ¢*n

is a smooth r-form on U for every local parameterization ¢ : U — R" of

M.
Recall from much earlier on that any
smooth vector fields on R¥ is ex-
pressible as a linear combination of
{é1,...,8}. So, for Lemma 56 it suffices
# Proof for us to show that the statement holds
Let {1,...,8} be the standard smooth vector fields on R¥. We o ffises grye.

want to show that (¢*77)(¢,,...,¢é,) is a smooth function on U for
alll <} <... <[, << kiff 5 is smooth. From Equation (22.1), we

have

(@ 1m)u((@h)us- -, (&1 )u) = M) (AP)u(8ryus - -, (AP)u(@r,)u)-
(23.1)
In Example 22.2.1, we saw that the vector field % on VN M given

by
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was smooth on V N M. Thus Equation (23.1) becomes
* 3 . d
(¢ W)u((ell)u:-‘-r(el,)u) =M\ 3 T

ouh p, Y oulr p)

= (,7 (azzl""'azlr»(’?)
= (;7 <azll"“’azlr>)(¢(u))'

N N 0 0
(q)*ﬂ)(elll--'relr) = <7] (aull’/aulr>> oQ: u— M. (23.2)

)

Thus, we see that

We see that, under the definitions B Definition 63 and B Definition 73,
and the fact that each of the %’s are smooth on V N M, Equa-

tion (23.2) is smooth iff 7 is smooth on # is smooth on V N M. O

Now recall that transition maps are diffeomorphic.

% Lemma 57 (Composition of Pullbacks of Transition Maps and

parameterizations)

Let ¢o : Uy — Vo N M and ¢g : Ug — Vg N M be two local parameter-
izations for M such that Vo, N Vg N M # @. Let 17 be a smooth r-form on
M. Then

Ppu Pl = Pall- (23-3)

# Proof
Notice that we have ¢g o ¢g, = @n. Thus

P95 = (9p 0 Ppa) 1 = Pi1]- 0

#= Corollary 58 tells us that the r-
forms on M stays consistent across the

$= Corollary 58 (r-forms on a Submanifold and Its parameteriza- it permszions, endl £

equivalence comes from the transition

tions are Equlvalent) map between parameterizations.

A smooth r-form 1 on M is equivalent to the smooth 11, on each Uy, an
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allowable local parameterization of M, subject to the compatibility relation
that

Ppallp = Ma-

# Proof
We may choose 7, = ¢77. Then by choosing 175 = ¢;7, we can

apply Lemma 57 and Lemma 56 and complete our proof. O

Remark 23.1.1

Note that if M can be covered by the image of a single parameterization ¢ :
U — R", then #=Corollary 58 says that a smooth r-form  on M = ¢(U)
is equivalent to a smooth r-form ¢*1n on U, since there the compatibility

relation is trivially satisfied. ®

& Definition 75 (Exterior Derivative on Submanifolds)

Let M be a k-dimensional submanifold of R". Let 5 € Q" (M). Then we
define the exterior derivative of y as dy € Q1 (M), given by

@udn = deyn (23.4)

for any local parameterization @, of M.

66 Note 23.1.1

The d on the RHS is the usual exterior derivative on QO (Uy).

Remark 23.1.2

It appears that B Definition 75 was defined to be dependent on the choice

of parameterization. However, if we make use of & Proposition 40 and
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Equation (23.3), we can compute
Aoy = dPp, Pl = Ppa APpT]-

We also have that
Pa i) = P ppd,

which we see that it agrees with $= Corollary 58. o

& Proposition 59 (Square of the exterior derivative is a zero map

on submanifolds)

The operator d : OO (M) — w1 (M) is linear and satisfies d*> = 0 and

d(n A Q) = (dn) AT+ (=1)1"y A (dQ).

# Proof
This is essentially just restating ® Theorem 39 and @ Proposition 13.5
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Our current goal is to define integration. However, there are certain
submanifolds that we cannot have a sensible definition for integra-
tion. This section give us the basics to understand why integrability

cannot be defined on these submanifolds.

In particular, we shall see that not every submanifold can be

endowed with an orientation.

Orientability and Orientation of Submanifolds

Recall that in @& Definition 18 we defined an orientation of a k-
dimensional real vector space V as a choice of a nonzero element
i € AX(V), up to scaling by a positive real number. Equivalently so,

it is an equivalence class of ordered bases of V.

There is a correspondence between the two characterizations:
if B = {ey,...e;} is an ordered basis of V, then the orientation it
determines is the equivalence class 4 = e; A ... Ae, € AF(V).
Furthermore, we saw, in Section 3.1.1 that an orientation on V is

equivalent to an orientation on its dual space V*.

By the above notes, we know that an orientation on V is equivalent
to an nonzero elements y € AX(V*), where y ~ i iff i = Ay, where
A > 0.

We shall apply the above ideas to k-dimensional submanifolds of
R". The main idea is to attach an orientation to each tangent space
TyM of M ', in a “smoothly varying way”. Since an orientation of

Ty M corresponds to a non-zero element p, € Ak(T;M), we give the

* Note that we cannot attach an orien-
tation on M itself without taking about
its tangent space T, M, because T, M de-
scribes exactly how points of M ‘move
around’.
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following definition.

& Definition 76 (Orientable Submanifolds)

Let M be a k-dimensional submanifold on R". We say that M is ori-
entable if there exist a nowhere vanishing smooth k-form on M, i.e.
Ju € OF(M) such that p, # 0 for all p € M.

Submanifolds that are not orientable are said to be non-orientable.

66 Note 24.1.1

Suppose M is orientable and let y and fi be two nowhere vanishing k-
forms on M. Then 3f € C*(M) such that ji = fu. We say that p ~ ji if
f>0,ie f(p) > 0forall p € M. This is, quite clearly, an equivalence

relation.

Thus, an orientation on an orientable M is a choice of equivalence

class [p] of nowhere vainishing smooth k-forms on M.

Example 24.1.1

Let U be open in R, and let ¢ : U — " be a single parameteri-
zation. Then M = ¢(U) is a k-dimensional submanifold of R". By
Remark 23.1.1, a k-form y on M = ¢(U) is equivalent to a k-form ¢*u
on U.

Following that, we may define a k-form y on M by requiring
¢o*u = du' A... Aduk. Since (¢*u), # 0, forall u € U 2, we must 2How do we know this?
have that y, # 0 for all p € M. Thus, for any p € M, we can define
an orientation on T; M by taking the equivalence class of [p]. This
means that given an ordered basis {oc},, e, uclr‘,} of T;,‘ M, it induces an

OIleIltatIOIl ﬂp on ’IPM lff
4 /\ .. /\ N, = A]/l
p . p 4

for some A > 0 (by B Definition 76).
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This is called the orientation on M = ¢(U) induced by the pa-

rameterization ¢. >

In particular, the above example tells us that any submanifold that
can be covered by a single parameterization is always orientable, and

the parameterization provides a preferred orientation.

& Definition 77 (Compatible Orientation)

Let M be a k-dimensional submanifold. Suppose that M is orientable and
let y be an orientation for M. Let ¢ : U — M be a local parameterization
for M with image V N M. Let v be the orientation on W N M given by
@, where W C V. If the coordinates on W are ul ... u", then we have

v =dul A... Aduk.

On V. N M, we would have v = fu for some nowhere vanishing f &
C*®(V N M). We say that the local parameterization ¢ is compatible
with the orientation w if f > 0 everywhere on V N M.

66 Note 24.1.2

The above definition says that the two nowhere vanishing k-forms y and
von V N M are equivalent, i.e. they determine the same orientation on
TyM for each p € V. N M.

@ Proposition 60 (Compatibility of Parameterizations with the

Orientation)

Let M be an orientable k-dimensional submanifold, and let y be a nowhere
vanishing k-form on M. Suppose that ¢ and ¢ are two local param-
eterizations for M, with respective images V N M and V N M, with
VNnVNM#Q.

Then the transition map

H: ¢ log:¢g7H(VNVNM) = ¢ L (VNV N M)
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is a diffeomorphism. Furthermore, if ¢ and ¢ are both compatible with u,
then det(D H) > 0 everywhere on the domain of H.

# Proof

The transition map H is a diffeomorphism by @& Proposition 42.

By our assumption, we may let v and 7 be the orientation on
VN M and V capM induced by ¢ and ¢ respectively. In particular,

we have that

v =du' A...Ndu¥, and u = fv on V N M for some f > 0,
and

¢ v =da' A...Adi*, and u = f on V N M for some f > 0

By Lemma 57, we have

*

H*¢*p = ¢™p.

Now on V N M, we have that 4 = fv, and so on ¢~ (V N M) we

have
¢ =" (fv) = (fop)p'v=(fop)du' A...Adu,
where ¢* f = f o ¢ by B Definition 50.

Similarly, on V N M, we have u = f#, and so on ¢~ 1(V N M) we

have

It follows that on ¢~1(V NV N M), we have

(fo@)du' A...NduF = o*u = H*¢*u
= H*(fo@)da' A... Ndil*
= (fo@oH)H*(da' A ... Addb).
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Thus, we see that
(fo)du' A...ANduF = (Fo@)H*(da' A ... Adid").

In A3Q2, we show(ed) that H* (dii* A ... A dit*) = det(D H) du® A
... Aduk. Follow that, we have

(fo@)dul A...Adu* = (f o ¢)det(DH)du' A...AduF.

Since f, f > 0, it follows that we must have det(D H) > 0. o
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Orientability and Orientation of Submanifolds (Continued)

& Proposition 61 can be thought
of in the following way: if we can

find two disjoint connected sets of

& Proposition 61 (Non-orientability Checker) which det(D H) is positive on one and
negative on the other, we know that
Let M be a k-dimensional submanifold. Suppose that M can be covered by e
orientable.

the images of two local parameterizations ¢ : U — R" and ¢ : U — R",
with respective imgaes V. N M and U N M. Suppose that V N\ M and
V N M are both connected sets, and that their intersection VNV N M

consists of exactly two disjoint connected sets Wy and W.

Let
H=¢log=¢"(VAVNAM) = ¢ L (VAVNM)

be the transition map. If the nowhere vanishing smooth function det(D H) >
0 on ¢~ 1 (Wy) and det(D H) < 0 on ¢~ '(W>), then M is not orientable.

& Proof
As given, we have M = W; U W, where Wy N W, = @, and
W31, W, are both connected. Since q)‘l is continuous, it follows that

(p_1 (W) and (p_l (W,) are both connected and disjoint *. By the ' This step requires one understand
certain results about continuity and
connectedness. See notes on PMATH

our assumption that det(D H) > 0 on ¢~ '(W;) and det(DH) < 0 351

Intermediate Value Theorem, since det(D H) is non-zero, and by

on ¢~ 1(W>), it follows that det(D H) must have a constant sign on
each of ¢~ 1(W;) and ¢~ 1 (Ws).

Suppose M is orientable, i.e. Iu € QOF(M) such that u # 0. By


https://tex.japorized.ink/PMATH351F18/classnotes.pdf
https://tex.japorized.ink/PMATH351F18/classnotes.pdf
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what's given, let 2 2 Why is this legal?
o u=hdu' A... \duF

for some nowhere vanishing smooth function & on U, and
¢ p = hda* A... A\did*

for some nowhere vanishing smooth function /1 on U. Since U =
¢ Y (VN M) and VN M is connected and ¢! is continuous, again,
by the same reason about connectedness in the last paragraph, U
is connected. Similarly, I = @(V N M) is connected. Again, by the
Intermediate Value Theorem, & and % never change sign on their

respective domains. However, we have

hdul A...NduF = ¢*u = H ¢
= H*(hdi' A ... A\did¥)
= (ho H)(det(DH)) du' A duF,

where the last equality is by B Definition 50. Thus, we have
h = (ho H)det(DH) (25.1)
everywhere on ¢ (VN VN M) = ¢ (W UW,) = ¢~ (W) U

@~ 1(W>). Since h and /1 o H 3 do not change sign on ¢~ (W) U 3 How did we know that H does not
change signs?

¢~ 1(W>), and so Equation (25.1) tells us that det(D H) does not
change sign on ¢~ (W;) U ¢~ (W>), which is a contradiction.

Therefore, M must have been non-orientable to start with. 0

66 Note 25.1.1

The converse of @ Proposition 61 is also true, but we do not yet have the

machinery to prove this. Note that the converse says:

If there exists a cover of M by local parameterizations such that
all the transition maps @p, satisfy det(D ¢g,) > 0, then M is

oriented.
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See & Proposition 65.

Example 25.1.1 (Non-orientability of the Mo6bius strip)

The Mobius strip can be obtained by taking a rectangular strip of
paper, and gluing two ends of the paper together after a twist. Math-
ematically, we can construct this as a surface of revolution, in particu-

lar by taking a curve in the yz-plane and rotating it about the z-axis.

Consider a straight line segment y = R truncated so that the line
segment only extends within —L < z < L,for R > L > 0 4(cf.
Figure 25.1).

If we rotate this line segment around the z-axis, we get a cylinder,

as shown in Figure 25.2.

However, we suppose that the straight line also rotates coun-
terclockwise about its center at a rate % (of 271), so that when it
returns to the starting point, the line segment is now inverted (cf.

Figure 25.3).

Note that we require R > L > 0 so that we do not end up with an

intersection in the resulting surface.

We can write down a parameterization for this new surface: let ¢
be the parameterization such that x = rcosv, y = rsinv, and z = z,

and we have

¢:(=L,L)x (0,21) —» R3

p(t,0) = ((R — tsing) Cos v, (R — tsin%) sin o, f cos g) .

4 We make this assumption so that it is
useful when we construct the Mobius
strip.

zZ

>

il

Figure 25.1: Straight line segment y = R
truncated to within —L <z < L

Figure 25.2: Cylinder as a surface of
revolution

z

>

Figure 25.3: Same setup as in Fig-

ure 25.1 but with a counterclockwise
rotation at its center. The arrows on the
line segment is a dummy orientation
indicating where is up and down.
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The resulting surface of ¢ is as shown in Figure 25.4.

Figure 25.4: Mobius strip coming from

@.

It is easy to see that we can adjust the values of the second space
in the domain for other parameterizations of the Mobius strip. In

particular, we can have ¢ defined as
¢:(—L,L)x (—m,m) = R>
¢(f,0) = ((R — fsin Z) cos 7, (R — fsin z) sin @, f cos Z) .
The resulting surface of ¢ is shown in Figure 25.5.

Figure 25.5: Mobius strip coming from

@.

Claim: the M&bius strip is not orientable Notice that the domains of

¢ and ¢, which are
U= (-L,L)x (0,2r) and U = (—L,L) x (=7, ),

are both connected. Since ¢ and ¢ are both homeomorphisms, in
particular continuous, both ¢(U) and @(U) are both connected. The

intersection of these two parameterizations, which we give as W; U
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W, are

Wi = ¢((=L,L) x (0, ))

I
st
—
—

|

=
h
SN—
X
—
L
2
S—

that takes (t,v) to (,9).

Now in W;, we have that = v and f = ¢. It follows that

10
-

and so det(DH) =1 on Wj.

However, on W5, we have that & = v — 271. Then ny — 71. So we
-2
have
sin o _ sin ¢ and cos o _ cos ¢
2 T2 2 2
We must therefore have that f = —t. This is expected from our

counterclockwise rotation around the anchored point as we revolve
around the z-axis, and eventually turning the line segment upside

down. We thus have

and so det(DH) = —1 on W;.

It follows from @& Proposition 61 that the Mobius strip is non-
orientable. ¥l
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Partitions of Unity

A partition of unity is a tool that allows us to decompose geometric
objects into smaller pieces, each of which can be treated with meth-

ods of standard multivariable calculus.

66 Note 26.1.1

My understanding is that it is a tool to assign a fair weight to each of
these smaller pieces. Thinking ahead, we want to be able to define inte-
gration over manifolds, and we know that a manifold can have infinitely
many parameterizations that cover it. If we simply take a sum of all the
integration over each of the parameterizations, we will end up “double
counting” the contribution of many of the points to the integral, which

would render the tool inaccurate.

To amend this problem, first, we want to be able to cover over each
point of M using parameterizations as “tiny” as possibly can. This still
makes it difficult for us: there may just be too many parameterizations for
us to calculate, and even more so when M is a ‘big” manifold. Thus, we
will require that M is compact. This will now give us a finite number of

parameterzations to work with.

This makes taking care of double counting in the smaller areas become
easier to deal with. In particular, we will define smooth bump functions
which will be our way of giving a weight to each point on the small area,
and the closer we get to the centre, the greater a value we assign. Since

each of the parameterzations are tiny, this gives us a rather fair assign-
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ment of weights.

We can do better with this refinement. We can also assign a weight
to each of these parameterzations depending on its contribution, which
effectively gives us a way to average out parameterzations across the
board.

The above ideas will be reflected mathematically in the rest of this

lecture, and especially so when we finally define a partition of unity.

To DEFINE a partition of unity, we need to first construct smooth

bump functions.

66 Note 26.1.2

There is no deep meaning behind the
choice of 1 and 2 as thresholds. They
are simply numbers representing some

£ Lemma 62 (Smooth Bump Functions)

. . threshold, and Il relabel
There exists a smooth function x : R* — R such that * restotd, and twe may 75 etk el e
them as e and ¢ respectively. Choosing 1

and 2 is just for conveience.

x(u) =1 Jull <1
x(u) €(0,1) 1< fjul] <2

* We can adjust the thresholds 1 and 2
X(u) =0 Hu” > 2. so that we still have x as in the lemma.

& Proof

On A4Q7, we showed that there exists a smooth function f : R —
R such that f(t) = 0forall t < 0and f(t) > 0 for all + > 0. Using
such an f, we define & : R — R such that

h(t) f2-1 . Figure 26.1: Heat map of the smooth
f<2_t)+f(t_1) bump function x : R?> — R

Notice that

t<1 = 2—-t>1 = f(2—t)>0and f(t—1) =0
t>1 = t—-1>0 = f(t—1)>0and f(2—1t) > 0.
We see the the denominator of  is strictly positive for all ¢+ € R. So

h : R — R is well-defined. Also, / is smooth, since it is composed

of smooth functions.
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Now, when t > 2, we have 2 —t < 0, and so f(2 —t) = 0. We
have that
h(t) =0 when t > 2.

When 1 < t < 2, by our above observation, we have
h(t) € (0,1) for1 <t < 2.
Whent <1, wehavet—1<0,and f(t —1) = 0. Thus
h(t) =1 fort < 1.

Our desired result follows by taking x(u) = h(||u|). o

We also need a special class of local parameterizations, given in

the following lemma.

66 Note 26.1.3

Aguain, there is no deep meaning behind
choosing 3 as the radius of the ball. It
simply is out of convenience, and we

4 Lemma 63 (Special Parameterizations to Construct Partitions

of Unity)

may as well relabel it as, say, .

Let M be a k-dimensional submanifold of R" and let ¢ : U — R" be any
local parameterization of M, with image V. N\ M. Let p € V. N M. Then

we can find a local parameterization ¢ : B3(0) — R" of M, where
Bs(0) = {u € R¥ ] Jull <3},

such that p(0) = p and P(B3(0)) C @(U) = VN M.

. 4 Strategy
# Proof The idea of the proof is simple: we know

Let ug € U be the unique preimage of p € VN M, ie. ¢(up) = p. pedeslduay v ndibararedls

. ) 0 and U may not be big enough to contain
Since U is open, 36 > 0 such that Bs(ug) C U.

Bs(0). So we just need to translate U and

then scale it accordingly.
Let L : R" — R* be a translation map that ‘makes’ g the new

origin, i.e. L(u) = u — ug. Let U’ be L(U). We have that
¢ L is a homeomorphism between U and U’; and

e itis clear that L(Bs(up)) = Bs(0).
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In particular, ¢ o L~! is another parameterization of M.

Now let F : R¥ — R¥ be the map F(u) = 3(u), and write
F(U') = U". Then

* [ is a homeomorphism between U’ and U”; and
e again, F(Bs(0)) = B3(0).
We also have that ¢ o L' o F~! is another parameterization of M.
In particular, we have that
p=¢oL loF!

is a homeomorphism, and in particular, »(B3(0)) € ¢(U) = VN M.
Also, we have that (0) = ¢(ug) = p. o

Remark 26.1.1

The proof of Lemma 63 shows that we can always find a local parameter-
ization ¢ of M such that ¢(0) = p, and we can find an open ball of any
radius around the origin such that we contain p in a small open set. In ef-
fect, we are can construct an open ball around p of any radius induced by a

parameterization. |

We also require the following definition in order to define a parti-

tion of unity.

& Definition 78 (Support of a Function)

Let f: V. — R. The support of f is defined as

supp f = {x € R" : f(x) £0},

where the bar denotes closure.

66 Note 26.1.4
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By the above definition, we know that R" \ supp f is an open subset of

R"™ where f is identically zero.

We are now ready to plough through constructing a partition of

unity.

WP Theorem 64 (Partition of Unity)

Let M be a compact k-dimensional submanifold of R", and let {V, N

M : « € A} bea cover of M by the images of local parameterizations
@a : Uy — R™. Then there exists a finite collection of smooth functions
pj: M — Rforj=1,...,msuch that

1. for each j, the smooth function p; satisfies 0 < p;(p) < 1 for all
pEM;

2. for each j, supp pj C V,(;y N M for some a(j) € A; and
3. Z]'-”:l pj(p) = 1forallp € M.

Such a collection of smooth functions is called a partition of unity

subordinate to this cover.

& Proof
By Lemma 63, for each p € M, we can find ¢, : B3(0) — W, N M
such that

° 1/’;7(0) =P
* Y,(B1(0)) =W, C Vo N M for some & € A. 2

Then {W,, : p € M} forms an open cover of M. Since M is compact,
there exists {W,,;}; C {W, : p € M} that covers M. 3

Define ¢; : M — R given by

[ — X (9)) q € i(B3(0))

0 q € M\ i(B2(0))

It might be helpful to read Note 26.1.1
before ploughing ahead.

* Notice that we defined W, as the im-
age of ¢,(B1(0)) instead of 1, (B3(0)).
This is a sneaky step that we can do to
allow ourselves to choose the smallest
open ball so that it will be useful for us
later.

3 With this, we have completed the
setup, putting a finite cover of small
open balls on M.
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X B:ilo)— R
= | (o] < 1

X(u) e(0) relluli<s

=0 Yoz 2

Figure 26.2: Constructing a partition of
unity

where x is a smooth bump function. 4 4+ With this, we have assigned a weigh-
tage to each point on the manifold

1 given a parameterization.

Notice that each of the {;’s is smooth since x o ¢~ is smooth for

each p € ¢;(B3(0)). Since supp x C B,(0), {; is identically zero on

M\ ¢(B3(0)). This implies that {; is indeed smooth on M. > 51t is important to us that all the ;s
are continuous, since we want to assign
a weight to each parameterization in

a smooth” manner. Its importance will
surface later on.

Now define p; : M — R such that

oy Gilp)
pi(p) TG0

for any p € M. Note that that the denominator of each p; is greater
than 0, since p € W, ; = ¢;(B1(0)) for some j, since the W, ;’s form

a cover of M. © 6 This is where we use the sneaky step.
Notice that should we not have picked
the W)'s in such a way the definition of

We shall now verify the conditions: the p;’s would be in deep trouble.

1. Itis clear that 0 < p;(p) < 1, since we clearly have

0<7Zi(p) < i@i(r’)/‘
=

2. Notice that

pi(p) =0 < Gi(p) =0 < p€ M\ By(0) < p ¢ W,;

Thus supp p; € W,;; N M C V,(;y N M for some a(i) € A; and
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3. it is clear that

- vy Gilp)
;pl(p)*z 7 Q’(P) 1.

i=1 j=1

Finally, we note that since p; is a composition of smooth functions,

p; itself is also smooth, which is what we need. 0

Remark 26.1.2

By Karigiannis (2019), the compactness assumption is actually not neces-
sary; we can construct partitions of unity even on noncompact submanifolds

on R", but the process is considerably more difficult. ®
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Partitions of Unity (Continued)

& Proposition 65 (Compatible Local Parameterizations Implies

Orientability)

Let M be a k-dimemensional submanifold of R" and suppose that there
exists a cover of M by local parameterizations such that all the transi-
tion maps g, satisfy det(D @p,) > 0. Then M is oriented. That is,
there exists a nowhere vanishing k-form y on M, such that all these local

parameterizations are compatible with .

66 Note 27.1.1

The above result is true in general when used with a general partition of

unity. We shall, however, only prove for when M is compact.

4 Strategy

f Proof We need to construct an a smooth k-form p
. » on M, and show that it is non-zero. We do

Let Va(l), eeey sz(m) be the finite open cover of M from ®Theorem 64, 5 B G

so that suppp; C Vi(jy N M. Let v; be an orientation on Vi) "M

induced by the parameterization ¢, ;), so that we have

(pz(j)vj =du A... AduF.
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We now define a k-form p on M by

m
w= ) e
=1
It remains to show that y is indeed an orientation, i.e. it is a non-

vanishing smooth k-form on M.

By our proof in ®Theorem 64, 3j such that p;, (p) > 0.

Let vj; be the orientation on V, ;) N M associated to ¢, ;). Let

(jo
{(e1)p, .-, (ex)p} be an oriented basis for T, M with respect to v;,,
ie.

(Vjo)((el)pl 000y (ek)P) > 0.
Letu = (p;(}o)(p) and (e;)p = (d@y(jy))u(wi)u for some (w;), €
T.RF.

Let us observe that

Wip)p((en)p, - -, (er)p) = (Vo) p((APaio) ) u(@W1)us - - -, (APao) )u(Wi)u)
= ((dPu(jo))ivio) (W1)us - -, (Wk)u)

Proof left as to-be-finished, cause I just noticed what the next

step was and realized that that really came out of nowhere. O

66 Note 27.1.2

Combining @ Proposition 60 and @& Proposition 65, we have an if and
only if statement, which says that a submanifold M is orientable if and
only if given any two local parameterizations ¢u, g of M, we must have

that det(Agy) > 0.

Integration of Forms

Let us first define integration for a more ‘atomic’ case.

* There is quite some work to do here.

* We need to ensure that all of the pa-
rameterizations remain compatible
with p.

e We want y, # 0 for any p € M.

As things look like now, one may
wonder if the p;v;’s may cancel each
other out. It turns out that, indirectly so
by @ Theorem 64, around any point,
the relevant k-forms all turn out to be
positive.
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B Definition 79 (Integration of Forms on Euclidean Space)

Let U C R be an open set, and 1 € QF(U), i.e.
n=hdul A... Adu

for some h € C*(U). Note that suppn = supp h, since du' A ... A

duk #0.2 *it is not interesting otherwise.

Suppose supp 1 is a compact subset of RX. The integral of 1 over U,
denoted [, 1, is defined as

/q:/mMAmmM:/hmkdw
u u u

where the final integral is the usual integral of a compactly-supported
h € C®(U) over an open set U C R-.

Next, we define an integral over a manifold that has a single pa-

rameterization.

66 Note 27.2.1

If we define integration on manifolds using exactly B Definition 79 by
simply bringing what we have to do on the manifold onto the parameteri-
zation, we quickly run into the following problem: we may reparameterize

M simply by switching one of the basis to its negative, i.e. taking
{Z)l — —1,[1, Z)z = uz, coog Uk = uk},

then we would have

= hd%zndk:—/hdwzndk:_/ oy
/uqaﬂ /U 0 aov (Y U u u u uqo;?

where 1 is a k-form on M, @ is the single parameterization. Then this
definition of an integration would not be well-defined. This is where
the orientation of the manifold comes in. With an orientation on M,
we will now have to choose parameterizations that are compatible with
the orientation. This also takes care of weird reparameterizations (cf.

& Proposition 61).
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& Definition 80 (Integral over Manifolds with a Single Parame-

terization)

Let M be a k-dimensional submanifold such that M = ¢(U) is the image
of a single local parameterization ¢ : U — R". Let u be the orientation of

M as determined by ¢, i.e.
o =du' A AdiF,

Let w € OF(M). Then ¢*w is a smooth k-form on U, and suppose that

supp w is a compact subset of M. 3 We define the integral of w over 3 Since @ is a homeomorphism, it
follows that suppw = ¢(supp ¢*w),
M= (p(U) e and so w is compact if and only if
/ i — / ¢t w supp h, where ¢*w = hdu' A... Aduk,
() u ’ is a compact subset of RX.

where the RHS uses the B Definition 79.

#= Corollary 66 (Well-Definedness of the Integral over Manifolds

with a Single Parameterization)

Let M be a k-dimensional submanifold such that M = ¢(U), where

@ : U — R" is the single local parameterzation of M. Let w € QX(M).
Then [y, w is well-defined, i.e. it is independent of reparameterizations
of M, if we restrict to reparameterizations which all induce the same

orientation on M.

# Proof
This is just Note 27.2.1. O




A Lecture 28 Mar 22nd

Integration of Forms (Continued)

From last time, let M = ¢(U) = ¢@(U) be a parameterized k-

dimensional submanifold.

Let w € OF(M). We defined

We showed that this is well-defined iff ¢, $§ determine the same orien-

tation, i.e. det(D(¢~1o @)) > 0.

Now LET M be a compact k-dimensional submanifold of IR". Let w &
OF(M), where supp(w) is a closed subset of M, which is compact,

and so supp(w) is compact. We want to define

/wE]R.
M

The idea is to use partitions of unity to decompose w into a finite
sum of smooth k-forms, with each of them compactly supported in

the image of the single parameterization.

Given a partition of unity {p;}, observe that

w=1w= (ip,»)w )
j=1 j=1

and )
supp(pjw) S supp(p;) € V;N M. (28.1)

' Note that the p;’s here act as scalars
to the k-form. Also note that w : M —
Ugem A¥(Ty M) (cf. B Definition 69),
and
wp: M x ... x T;M — R.
~—_———

k times
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?Hence, we can consider p;jw as a smooth k-form on V; and define 3 2 () is true because supp(pjw) =

supp (p;) N supp(w).
3 This is sensible because pjw vanishes

*
/ pjw = / pjw = / (P]' (ij)- outside of V; N M.
M VinM e !

& Definition 81 (Integral over Manifolds)

Let {V, "M : a € A} bea cover of a compact manifold M given by
images of local parameterizations ¢, : Uy — IR"™ of M, all of which are
compatible with the given orientation on M. Let {p; : j = 1,...,m} be
a partition of unity subordinate to the above cover. Let us denote Vy ;) =

Vj, and @,;) = @;. Note that

We define an integration over forms on manifolds as

Now we need to show that the result is independent of the choice

of the parameterization and partition of unity.

@ Proposition 67 (Independence of the Integral from the Choice

of Parameterization and Partition of Unity)

Given a different set of parameterization {§, } that covers M, and a

different partition of unity {p,} subordinate to this cover, we have that

m r
i; /M o l; /M i

# Proof
Let {Wg N M : B € B} be a cover of M by images of local param-
eterizations ¢5 of M compatible with the given orientation. Let

{o; : i = 1,...,1} be a partition of unity for this cover, with the



PMATH365 — Differential Geometry 205

usual properties. As shown in Equation (28.1), we have
By our first choice, we have supp(pjw) € V; N M,
and
m m
/ w = 2/ pjw = 2/ 2 o | pjw supp(oipjw) € W;NV; N M.
] ] g
m 1 I m
=Y [ apw=1) [ paw
j=1li=1 i=1j=1
l m l
-y [ (Lo)aw=Y [ o= [ @
i=1/M \ ;=1 i=1
where the final equality is by our second choice. o

We shall now provide a basic version of Stokes” Theorem.

WP Theorem 68 (Stokes’ Theorem (First Version))

Suppose M is a compact and oriented k-dimensional submanifold of IR",
and w € OF1(M) and dw € OF(M), then

/ dw = 0.
M

We will prove a result more general than the above.

More generally, if M is a k-dimensional, compact, and oriented
submanifold, with boundary, then dM (the boundary) is a compact,

oriented (k — 1)-dimensional submanifold, such that

/ oM = w.
M oM

Submanifolds with Boundary

& Definition 82 (Half Space)

We define the half space of R" as

]H”::{xe]R”:xlgo}.
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66 Note 28.2.1

The half space is closed but unbounded.

& Definition 83 (Boundary of the Half Space)

We define the boundary of the half space as

OH" :— {x eR": x! = 0} ~ R" 1,

& Definition 84 (Open Subset in a Half Space)

A subset A of H" is said to be open in H" if A = U N H" where
U C R" is open.

66 Note 28.2.2

A subset A which is open in H" may or may not be open in R".

% Lemma 69 (Characterization of Open Sets in a Half Space)

Let A,B C H". If A C R" is open, then A is open in H". Suppose
BNoH" = @. If B is open in H", then B is open in R".

# Proof

We have that A is open in R” and contained in H”. Then we sim-
ply need to take U = A C R". Thus A = ANH" is open in
H".

Suppose BN oH" = @, and let B be open in H". By definition,
JU C R" open such that B = UNH". Let W = H" \ 0H" =
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{x € R" : x! <0}, which is open in R". Then BNoH" = @ =
B C W and so B = U N W, which is an intersection of open sets in

R". Thus B is open in IR". O

& Definition 85 (Interior point in the Half Space)

Let A C IH" be open in H". Then p € A is called a interior point of A

ifp ¢ oH" 4. 4+ We have that 3¢ > 0 such that
B(p,e) C A.

& Definition 86 (Boundary point in the Half Space)

Let A C H" be open in H". Then p € A is called an boundary point of

A lf pE oH" 5, 5 In this case, we have that Ve > 0 such
that B(p,¢) C A.

=

& Definition 87 (Smooth functions in the Half Space)

Let A C H" beopeninH", f : A — H" and p € A. We say that
f is smooth at p if 3 an open neighbourhood U C R" of p and a map
f:U — R" such that

o Jf fumA:f [una and

2. f is smooth at p.

Remark 28.2.1

1. If p is an interior point of A, then this agrees with the usual definition
of smoothness because we can just talk about U = B(p,e) C A, and
f = f lu. Soif f is smooth at p, we define

(Df)p = (Df)p- o

Claim (D f), is well-defined, i.e. independent of the choice of f.
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& Definition 88 (Submanifold with Boundary)

Let M C R". We say that M is a k-dimensional submanifold with
boundary of R™ if there exists a cover of M by subsets {V, : « € A} and
a collection of subsets {U, : « € A} C P(HF), each U, open in HF, and
maps @q : Uy, — R", such that each

1. @q is a homeomorphism of Uy onto @ (Uy) = Vi N M, and

2. @q is a smooth immersion.
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Submanifold with Boundary (Continued)

We saw that a k-dimensional submanifold with boundary is a collec-
tion of | overlapping pieces , each homeomorphic to an open set in
HE.

Suppose ¢u(Ax) N @p(Ag) # ©. We define the transition map
Ppe : Pu ' (@a(Ax) N @p(Ap)) = 957 (9u(Ax) N pp(Ap))

by
Ppe = 9" © Pu.

This is the same definition as & Definition 59, but this time, our

open sets come from TH.

We still have @ Proposition 42, i.e. transition maps are diffeomor-

phisms, and the same proof can be applied.
Remark 29.1.1

Using the local parameterizations ¢, for a submanifold with boundary M,

and the fact that transition maps are diffeomorphisms, we can now define
* smooth functions on M,

* smooth curves on M,

e smooth vector fields on M,

* smooth differential forms (r-forms) on M for 0 <r <k,

e orientations and orientability,
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* partitions of unity, and
* integration of smooth k-forms if M is oriented and compact,

all exactly as before. The only difference is that we replace open set in R* by
®

open sets in HF,

Remark 29.1.2

Ifall the A,'s are actually open in R, then M is a k-dimensional submani-

fold in the previous sense. ®

So WE DEFINED what a submanifold with boundary is, but what

exactly is a boundary?

& Definition 89 (Boundary Point on a Submanifold)

Let M be a k-dimensional submanifol with boundary. A point p € M
is called a boundary point of M if there exists a local parameterization

Pu : Ay — Mwith p € @, (Ay) such that ;' (p) € aHE.

Of course, we can ask ourselves if the above definition is well-

defined. That is, can there be a ¢g such that qolgl( p) is not on 0Ag?

& Proposition 70 (Well-definedness of the Boundary of a Mani-
fold)

Let M be a k-dimensional submanifold with boundary of R". Let p €
Vo 0 M. If ¢, 1 (p) is a boundary point of Uy , then ¢g(p) is a boundary
point of Ug for all B € A such that Vo NV, N M = @. That is, being a

boundary point of M is independent of local parametrization.

# Proof
Suppose not. Let u, = ¢ '(p) € HF so that u, is a boundary
point of A,, and suppose there exists pg a parameterization such

that ug = (pﬁ_l(p) ¢ 0H, i.e. ug is an interior point of Ag.
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Now the transition map

Pap = @z ' 0 Pp

is a diffeomorphism between the opens subsets of H* that takes u B
to @up(up) = uq. Since ug is an interior point of Ag, there exists an
open set W C RF such that ug € W in the domain of ¢,4. Then
WnoH' = @.

Restrict the diffeomorphism ¢, to W, and 5o (D ¢yp)u, is in-
vertble. By the inverse function theorem, JWw C W open in R,
with u, € W such that ¢,3 maps W diffeomorphically onto
@ap(W), which is an open set in R. Thus

Uy = @ap(up) € @ap(W) C RK open.

So 3y C Rk open, with ug € Y C goaﬁ(W) - goaﬁ(W) C A,. Thus
there exists points in A, with u! > 0, which is impossible since we

are in H. 0O

& Definition 9o (Boundary of a Submanifold)

Let M be a k-dimensional submanifold with boundary. The boundary of
M is denoted dM and is the subset of M consisting of all boundary points
of M.

66 Note 29.1.1

A submanifold M with boundary is an ordinary submanifold (i.e. sub-
manifold without boundary) iff oM = @.

@ Proposition 71 (Dimension of the Boundary of a Submani-
fold)

Let M be a k-dimensional submanifold with boundary. Suppose oM # @.

Then oM is a (k — 1)-dimensional submanifold without boundary, i.e.

In all honesty, I do not like this proof,
because ¢, has a fixed domain and

that is a subset of H¥, and so the
diffeomorphism should not be able to
map to some set that is outside of H
in the first place. Also, after showing
that ¢,3(W) C R¥ is open, should it not
follow by Lemma 69 that ¢,z is open

in H*? Tt can sit on H* and include

the boundary and remain an open set.
Unless if I am making a huge confusion
over a subtle point that is going on
here, I don’t think I can agree with this
proof.

That said, if we may assume the
invariance of the domain, then there is
a more mathematically intuitive proof
to this proposition.
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(M) = @.

# Proof
We need to find a cover of dM by local parameterizations whose

domains are open sets in R*~1.

Letp € oM C M, and M is a manifold with boundary, there
exists a local parameterization ¢ of M such that ¢ : A — IR", where
A is open in HF, with p € @(A). Let ¢ be the restriction of ¢ to
AN (0HF).

Let A = AN (9HX). Note that A # 0 since ¢~ 1(p) € A. Indeed
A is open in 9IHF ~ RF-1 1. Let

¢(p) = (0,u%,...,u") € (AHF) N A,

and

Then
p(1) = p € OM.

We need to show that ¢ : A — R" is a parameterization of dM, i.e.

smooth immersion and a homeomorphism onto its image.

Since ¢ is smooth atv € AN oH¥, we have that ¢ is smooth at
© € A. The Jacobian is thus

a9l dg!
ou? |, ouk |,
(D (/A’)ﬁ = :
99" 99"
ou? |, T ouk |y

Since ¢ is an immersion, the columns of (D ¢); are linearly inde-
pendent, so columns are (D @), are still linearly independent (cf.

alternative definition of immersion), hence ¢ is an immersion.

So ¢ is continuous because it is the restriction of a continuous

map. Thus

N

(@)1 9(A) » A

* Note that 9H¥ ~ RK1 by the map

0,22,...,45 = (2,...,5).

It is easy to verify that the above is a
homeomorphism.
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is the restriction of ¢! to ¢(A), and so it is also continuous. Thus
¢ is a homeomorphism onto its image. Thus ¢ is a local parameter-

ization for oM. O
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Submanifold with Boundary (Continued 2)

& Proposition 72 (Oriented Manifolds with Boundary has an
Oriented Boundary)

Let M be a k-dimensional submanifold with boundary. Suppose that M is

oriented. Then there is an induced orientation on the boundary oM.

We shall use Note 27.1.2 to prove this.

# Proof

Let {¢a : Uy — R"},ca be a cover of M, where each U, is open
in HX. Since M is oriented, by & Proposition 60, we have that
det(D ¢g,) > O for all o, p € A. By & Proposition 72, we know that
this induces a cover {¢, : U, — R"} on dM. It suffices to show

that given any a, B € A, det(D ¢p,) > 0.

By @ Proposition 70, the transition map Ppa et (Va N Vg N
oM) — (pgl(V,x N Vg N dM) is bijective. In particular, u, € Uy,

where u} = 0 is brought to ug = @pa(ta) € Ug, where u}g =0.
. A ) k a“é
Thus, at any point @, = (0,ug, ..., uy), we have that —*| =0
Uy My

for j > 1, and

au}é Ty t—0— t

t—0— t
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since ulﬁ < 0ast— 0. By expanding the determinant det(D ¢g ),

along the first row, we have that

aué .
det(D (Pﬁzx) = au}é " det(D (P‘Bzx)ﬁa'
Jul
Since LHS > 0 by hypothesis and # >0, we have that
a i,

det(D ¢pa)a, > O,

which is what we want to show. 0O

The converse of the above is not true.

Example 30.1.1

Figure 30.1: Boundary of a Mobius strip
The Mdbius strip is an example of a non-orientable submanifold

whose boundary, which is just a circle, is orientable. >

Stokes’ Theorem

First, note that if M is a compact oriented k-dimensional submanifold
with boundary, of R”, then since its boundary is a closed subset, oM
is a compact oriented (cf. @ Proposition 72) (k — 1)-dimensional

submanifold of R" (cf. & Proposition 71).

% Lemma 73 (Inclusion Map as a Smooth Map between Sub-

manifolds)

Let 1 : oM — M be the of the boundary oM to M. Then «

is a smooth map between manifolds.
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& Proof
We have actually showed this before, indirectly so. This follows

from the fact that
q)j_l oLo (pj(uz,...,uk) =(0,u%,...,u"),

which is, as mentioned before, smooth. 0

B Theorem 74 (Stokes’ Theorem)

Let w € OF1(M). Then dw € QX(M). Let 1 : 9M — M be the

inclusion map. Then
/ dw = / .
M M

& Proof
By our definitions, the two sides do not have much resemblance,
despite seemingly symbolically sensible. We shall try to derive

from both sides and make the two meet in between.

Let’s first set things up. Let {¢y : Uy — Vo N M},ecnq bea
covering of M, with {¢; : U; — V; " M}!" | being the finite covering
of M since M is compact (we shall assume this in this course). Let
{pi : M — R}" , be the partition of unity subordinate to this cover.
Then let {¢; : U; — V; N dM} be the induced paramterization from
M (cf. & Proposition 71). Now let w € QF~1(M).
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From the LHS, we have

/ dw —/ (ipw) = /Mid(piw) " linearity of d
= ;/M d(piw) = i/ d(piw) i =01in M\ @i(Us)

|
NgE
—
=
e
=
=
&
Q.
(€}
=)
2
.
o
=]
o
=
-
=]
=
®
aQ
=
S
=

m
:Z/ dpfoiw - dof = ¢id
i=1 /Ui
From the RHS, since ¢ fixes dM, we have
m . m
/E)Ml w:.AM;pit w:./aM;t piw
m m
_ Koo *
_Z/aML 0iw ;/f(ﬁi)L 0w
—Z/ o; (Fpiw
=i§/ai(toqvi) piw
m .
—i_Zl/aifmpiw Jio @i = ¢

3 \

It is clear that the proof would be complete if we can show that

/ui de;piw = /u ¢ piw

for all i. Recall that U; = U; N 9H*. Note that piw is a smooth form

that is compactly support on p;(U;) * Therefore, it suffices to show * Recall that p; is defined such that
/ de*y = / 1. (30.1) sLenp
u u . where

o1 € o;(U;
for any parameterization ¢ : U — R" of M, and any 7 € Q(e(U)) Gilp) = {g(q)l W) P <ol

peM\pi(ll)
such that suppy C ¢(U).

We shall continue this proof in the next lecture.
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Stokes’ Theorem (Continued)

# Proof (Stokes’ Theorem (Continued))
Let us write
k

OfU) 3 9 = Y (D) dut AL AdU AL AdUE,  (31.1)
i=1

where the (—1)"~! instead of (—1)*~! for convenience *, and k; € * What in the world allowed us to
make such a claim?

C*(U) has compact support in ¢(U). Now note that § = ¢ o,

where ; : RE=1 — RF is the smooth map

Thus we have that ¢* = j*¢*. In particular, j* du’ = du’ fori > 1,
and j* du' = 0. By taking j* on Equation (31.1), we have
¢ =71
k . n
=" (Z(—l)l_lhi dul AL duin. . /\duk>

i=1

7 (hydu® A .. A dub)
=hdu® A, NduF, 1)

where fi; = 7*hy. That is, we have

hl(uz,...,uk) :hl(O,uz,...,uk).
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Now taking d of Equation (31.1), we have

k
oh; A
do*n) = Y (=1)11 —taul Y Adul AL Adui AL A duE
(¢*n7) i;( ) <,_Zlau )
£ oh; Ny
= V(1) 18 du Adut A A dul AL A du

k on
_ (2 gz> du' AL A du. *)

We are now ready to take on what we want to show.

Case 1 Suppose U is open in R¥, with U N 9HX = @ and supp(h;)
is compact. So there exists a box K = [a',b'] x ... x [k, bK] be

a box in R¥ that completely contains supp #; in its interior. Now
extend each of the h; by zero to a smooth function on R¥. Using

Equation (*), we have that the LHS of Equation (30.1) is

do*n = —Ldy! du*
/u ¢ /(Zau AR u>
22/ L dut
aul
bl bk 37,
:Z/ a—hl.dul...duk.
l:l Ell .ﬂk aul

By Fubini’s Theorem, we can integrate in any order. For the ith
integral, integrate first wrt u’. Then by the Fundamental Theorem

of Calculus, we have

l
Vol
at au'
i1 i i+l 1 i1 i il
= hi(ut, .. 0 Y — T d b
=0—-0=0,

since h; is supported inside the interior of K. Thus all the integrals

above are zero, i.e. the LHS of what we want is zero in this case.

On the other hand, since U is an open set in R¥, we have that
UNoHF = @,sosupph; C U does not intersect HX. Thus
1 = j*h = 0. By Equation (1) and the fact that K N 9HF =
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[a%,b?] x ... x [a,bX], we have

5y = 5y = hydu® A .. A du®
Ja 1= f 971 = T A A

b2 bk
_/ hydu? . duF =0,

This completes Case 1.

Case 2 Suppose U is not open in RX. Then U N aHF # @. This
time, let
K =[a',0] x [a2,b?] x ... x [a¥, b"]

be a box in H* such that supp /; is contained in the union of the
interior of K with dH¥. Once again, extend each %; by zero to a

smooth function on H¥. Using Equation (*), we have
/ / d(¢™n)
k

/ Z (ah> A du*

Kiz1 ou!

0 rb? ,
L (f’h) d

al Ja? a \ = out

k e b 9k,
_ Z k
= / / " aul M coodu”.

i=

=

—

Since the h;’s are smooth, we can apply Fubini’s Theorem and
integrate in any order we want. For the i" integral, integrate first
wrt u'. If i > 1, then by the Fundamental Theorem of Calculus, we

have

00h , 4
/ auld

= hl(O,uz,...,uk) —hl(al,...,uk)

Thus we have that the LHS of our desired equation is

b2 bk "
d(o* :/ oo Bk
/u gl = 1, =e ), tnl

By Equation (*) and the fact that K N dHX = [a%,b?] x ... x [aX,bK],
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we have that

Jo#7 = hoors 97

= e khlduz/\.../\duk
KNoH

b2 bk
:/2 . g du? ... duF,
a a

thus the RHS of Equation (30.1) agree with the LHS in this case as

well. 0

Remark 31.1.1

In the special case when oM = @, Stokes” Theorem says that

/dw:O. o
M

Remark 31.1.2

We saw that the proof reduces to using the Fundamental Theorem of
Calculus (FTC). In fact, the FTC is a special case of Stokes” Theorem.

What is a 0-dimensional submanifold? Locally, it ‘looks like” open sets in
R® = {0}. So a O-dimensional submanifold of R" is a collection of points
in R". If M is 0-dimensional and compact, then it is a finite set of (distinct)

points.

An orientation on 0-dimensional V. = {0} is simply a choice of sign.
Hence a compact 0-dimensional submanifold on R" is a finite set of points
{p1,- .., pm} with sign 1 attached to each point. Let M = {p1,..., px}

be a oriented, compact, 0-dimensional submanifold of R".

Consider Q°(M) = C®(M) = {f : {p1,...,pr} — R}. Then for every
fe(m),
Juf = )

where = corresponds to the choice of the orientation.

Let M = [a,b] be a closed and bounded interval. Then M is a compact,
oriented, 1-dimensional submanifold of R'. Let f € C%(|[a,b]). Then
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af = % dt € QY (M). Then Stokes’ Theorem says that

/Mdf: /aMf: (+1)f(b) + (—1)f(a) P






Part V

Differential Geometry






& Lecture 32 Apr o1st

More Linear Algebra
Hodge Star Operators

& Definition 91 (Inner Product)

Let V' be n-dimensional real vector space. An inner product on the space

V is a function
():VxV—=>R

such that
1. (bilinearity) (v, w) is linear in v and linear in w;
2. (symmetry) (v, w) = (w,v) ; and

3. (positive definite) (v,v) > 0and (v,v) =0 < v =0.

Recall from A5Q8 that in a vector space V endowed with an inner
product, we get an induced inner product on A¥(V), for 1 < k < n,
given by

(V1 A AW AL Awg) = det((v;, wj)).
When k = 0, then A°(V) = R, where our inner product will just be
good ol regular dot product.

66 Note 32.1.1

To define the Hodge Star operator on an n-dimensional vector space, we



228 Lecture 32 Apr o1st More Linear Algebra

require a non-vanishing n-form. Note that we may pick u € A" (V) such
that y # 0 and especially that |i| = 1, since we may just rescale y by a

positive factor.

& Definition 92 (Hodge Star Operator)

Let 0 # pu € A"(V) where V is an n-dimensional real vector space. Let

a € AK(V), where k < n. The Hodge Star Operator * is a map
w1 AF(V) = APR(Y),
such that is satisfies the equation
(va, B)p = a A B (CERY

forall B € A"K(V).

66 Note 32.1.2
The definition above does not provide an explicit formula for *.

o we will try to play around with it in this section to figure out what the

Hodge Star operator really does.

66 Note 32.1.3

So we defined the Hodge Star operator to satisfy Equation (32.1). Let’s
study the equation for a little bit. let B be arbitrary. The different parts of

the equation is broken down as in Figure 32.1.

We see that xa € A"%(V) needs to be tailored to the choice of B,
which suggests that xu is uniquely determined by p.

& Proposition 75 ( is linear)
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n-#ﬂrtﬂs Con l’t an

/(’ onntation 1 a WLM“"’;’;M‘
K, (ﬂ? i = xAPp

%
An—k(v)

Figure 32.1: Breaking down the criteria
for the Hodge Star operator

* 18 linear.

# Proof
Let a1, ay € A¥(V) and s € R. Then for any g € A" ¥(V), we have

(x(sap +ap), B) = (saq +ax) A B
=sx; AB+ax AP

= s(xay, B) + (*xap, B). 0

& Proposition 76 (x is an isomorphism)

* is an isomorphism.

# Proof
Suppose *a = 0 € A" ¥(V). We have « A B = 0 for all B, which

means « = 0. Notice that

dim(AK(V)) = (Z) - (ﬂk) = dim(A" K (V).

With Rank-Nullity, the proof is complete. O
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Let’s look at * in terms of orthonormal basis. Let ¢y, ..., e, be an
orthonormal basis of V (this exists by Gram-Schmidt). By A5Q8, we
know that

e N Nejp, for1 <ip<ip<...<i <n

is an othonormal basis for A¥(V). Then let
u=erN...Ney,

which has length one and represent the orientation induced by

{61,. o .,en}.

Let I = (i1, ip,...,ix) be a strictly-increasing multi-index. Then for

ep N...Nej € AX(V), we have that

*(eli VAN eik) = ZC]Ejl VAN € i
]
where | is a strictly-increasing multi-index of length n — k. Then

(x(ey Ao Nei)en Ao Nep )

=e; Nej Ney N...Ne
where L is some strictly-increasing multi-index.

Note
<*(€l’1 A... /\eik),ell AL /\eln—k> = CL]/l,

for some C; € R. We can work out what Cj is.

Let [ be the complementary ! multi-index of I. *For example, if I = (1,3,5) inn = 5,
then [ = (2,4).

Then C; = 0 unless L = I. Then

Cip=ey N...Ney, Ao..Ney = £},
where =+ is due to skew-symmetry.
Therefore, we have that
*(ej N...Ne) =ce N...Nep



when L = [, such that

tu=e  A...Neg Ney A...ep .

PMATH365 — Differential Geometry 231

66 Note 32.1.4

This tells us quite a bit about *, especially since * is linear.

Example 32.1.1

When n = 3, let ey, ep, €3 be an oriented basis of V. Then let y =

e1 N ey Aes. Then
<>I<€1,62 /\€3>]/t =eNeyNes=u

Thus (xeq,ep Aez) = 1.

Let’s consider one of the possibilities: if xe; = cej A ep, then the

matrix of the determinant of the inner product of forms looks like

(e1,€2) (e1,€3) Y
<€2,62> <82,€3> 1 0

4

which has determinant 0. We notice that this will always happen
in *e; has a e; term in the 2-form. Also, it is rather clear from our

previous observation and here that c = £1.

So it must be that xe; = £ep A e3. However, if xe; = —ep A e3, then
we have
(—ez,e2) (—ep,e3) _ -1 0
(e3,2)  (e3,€3) 0 1

which has determinant —1.

It follows that we must therefore have

*e1 = ey N\ es.
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Through similar steps, we can derive

*ep = e3/Nep = —eyp Ne3
and

*e3 = e1 N\ ep.
Example 32.1.2

We shall use the same setup as above, except now we consider *
A?(V) — AY(V). Then for instance, we have

(x(e1 ANep),ez)p =e1 Nex Nes,
and so

(x(e1 Nep),e3) =1,
but that can only happen when

*(61 VAN 62) = e3.

Note that by the bilinearity of the inner product, and linearity of *,
we have

(x(exNe1),—e3) = =1 = x(exNep) = —e3

Using the same methods, we can calculate

*(6’2 A 63) = ¢ and

*(63/\61) =e

66 Note 32.1.5

* Note that ¥1 = p and xu = 1, for any dimension

* By @ Proposition 76.

A (V) 5 AHV) 5 AK(V)
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& Proposition 77 (¥2 = (—1)k(2—K))

Let 1 : AK(V) — A" K(V) and %, : A" K(V) = A==k (y) =
AX(V). Then

*2 O *1 = (—1)
Lazily so, we shall usually write

o — (_1)k(n—k)’

which is an abuse of notation.

# Proof
Suppose
*1(e, Ao Nej) =cep N...N\egj

and so we have

ey N Nejy Nep Ao Nej *1(en Ao Nep) ey A Nej

1

Ao Nej, K

=cley N Nej, e N Nej, )0

=
= (cej, N...Nej, .. €

C.

Similarly, if we consider
*2(e, N Nej, ) =ei Ao Nej,
then we get

bu=ey N...Nej,  Nei, A...Nej,

= (1) Rey A Ney Nejy AL Nej

In particular, note that

x2(*1(e; A.. Ney)) = xalej Ao Nej, ) =bele; A... Nej,).
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Therefore, we have

(—1)k(n7k)€il N...ej Nejy N...N\ej

= (*2(*1 (e A ...Ae,-k),ez-1 /\.../\eik)m = bep.
It thus follows that
%9 0 %1 = be = (—=1)kn=k),

We can do almost exactly the same thing for *; o *,. O

Example 32.1.3

We have already seen an example of the above proposition. Recall

that in the last two examples, we showed that

*(e1) =eaNes *(e2Ne3) = e
*(ep) = —eg Aes and * (e3Aey) = e
*(63) =e1Nex *(€1A€2) = e3. >

66 Note 32.1.6

From @& Proposition 77, we have

w2 — (_1)k(n—k) _ (_1>nk—k2‘

o Ifnis odd, then

— if k is odd, then nk and k2 are both odd, and so nk — k? is even.
Thus

— if k is even, then nk and k2 are both even, and so is nk — k2. Thus

*2 = +1.

* Ifnis even, then

— if k is odd, then nk is even and k2 is odd, and so nk — k2 is odd.



Thus

e ——

— if k is even, then nk and k2 are both even, and so is nk — k2. Thus

*2 = 4+1.

In conclusion, we have that if n is odd, then x2 = +1, but when n is
even, then
%2 = (—1)k.
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& Definition 93 (Isometry)

Amap ¢ : X — Y is called an isometry if

(p(x1), @(x2)) = (x1,x2).

@ Proposition 78 (* is an isometry)

* is an isometry, i.e.
(xa, %) = (a,7)

for all a,y € A¥(V).

& Proof
Let « € AK(V) and B € A" ¥(V). Then

(va, By = a N B = ()" Mg ra
= ()M («B, )y
= (=), «B)p.
So
(va, B) = (—1)F" D) (a, xB)
in R.
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If B = %7 for some v € A¥(V). Then
(v, B) = (=1, ) = (=1)* O (a, 7).
Since 2k(n — k) is even, we have that

<*“r *7> = <Lt, 7>- O

The following is more common as the definition of the Hodge star

in the literature.

#= Corollary 79 (Alternative Definition of the Hodge Star Opera-
tor)

Ya,y € AX(V), we have

(o, v)p = & A\ .

# Proof

Let B = * for some unique v, then

(xa, B)p = A B

and

(o, %Y)p = a A xy = (@, 7). O

Physical and Geometric Interpretations of Stokes” Theorem

Inner product on the Tangent Space of a Submanifold

Let’s put all these on submanifolds of R”. On IR”, we have the stan-

dard inner product:

n . .
(x,y) =) x'y".
i=1



This induces an inner product on each tangent space to R” via the
canonical isomorphism.

Explicitly, if X, = a' i , and Y, = bi% ‘p then

(X o) = 2 a'l',

o L2
axlly " axmlp

is an orthonormal basis of Tle".
Let M be a k-dimensional submanifold of R”. Then

ie.

T,M C T,R

The restriction of (-, -) to T, M is an inner product on T, M.

Now if M is oriented, then T, M has an orientation and an inner

product. Furhtermore, from A6Q6, we know that

where N, M denotes the orthogonal complement of T, M, which is
called the normal space at p of M. N,M is a (n — k)-dimensional

vector space.
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@ Lecture 33 Apr o3rd [inc]

Physical and Geometric Interpretations of Stokes” Theorem (Con-

33.1.1

tinued)

Volume Form

& Definition 94 (Volume Form)

Suppose M is oriented. Then we can choose an oriented orthonormal
basis {ey,...,ex} of TyM. Then the dual basis is also oriented and or-

thonormal.

This gives us a preferred orientation form u € QF(M) such that at
any p € M, we have
Hp =el AL NE,

which we call the volume form. *

66 Note 33.1.1

Note that y is the unique smooth k-form on M such that

uley, ..., ex) = +1

whenever {ey, ..., ey} is an oriented orthonormal basis of T M.

* A volume form is sort of like a higher-
dimensional way of naming a "volume".
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The reason why we call such an y a volume form is as follows.

66 Note 33.1.2

Let M be compact and oriented, and y the volume form of M. Then

= vol %8
/M u = volume of

o If M is 1-dimensional, then the above measures “length”;
e if M is 2-dimensional, then the above measures “area”; and
e if M is 3-dimensional, then the above measures “volume”,

etc.

Example 33.1.1
Example incomplete. Source notes don’t make sense.

Consider a circle with radius R in R?, centered on the origin. N

Musical Isomorphisms

Recall that from A5Qy, we saw that
g V-V
is an isomorphism determined by the inner product defined by
(#(v)) (w) = (v, w),

forany v, w € TPM. We shall write this operation as vh.

We also had the operation
=41V >V,

which is also an isomorphism as shown on the same assignment

problem. We shall write this operation as v’.
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& Definition 95 (Metric dual 1-form)

Given a smooth vector field X on M, we get a “metric dual” 1-form X*
on M defined by
XHY) =(X,Y),

forany Y € T(TM).

& Definition 96 (Metric dual vector field)

Given a smooth 1-form & on M, we get a “metric dual” vector field a’
on M defined by

B(’) = (a,B),

for any B € QY (M).

& Definition 97 (Local Frame)

Given a set of smooth basis vectors A = {ey,...,er} C T(V N M), where

V is an open set R" and M is a k-dimensional submanifold, we call A a

local frame on M if
{61 pooog ek‘ }
p p

is a basis of TyM for all p € VN M.

Let {e1,..., e} be a local frame for M, defined on some open
V C R". Then let

8ij = <€i,€]‘> eC®(VNM).






A Additional Topics / Review

Rank-Nullity Theorem

& Definition A.1 (Kernel and Image)

Let V and W be vector spaces, and let T € L(V,W). The kernel (or null
space) of T is defined as

ker(T) :={ve V| Tv=0},
i.e. the set of vectors in V such that they are mapped to O under T.

The image (or range) of T is defined as
Img(T) ={Tv |ve V},

that is the set of all images of vectors of V under T.

It can be shown that for a linear map T € L(V, W), ker(T) and
Img(T) are subspaces of V and W, respectively. As such, we can

define the following:

& Definition A.2 (Rank and Nullity)

Let V, W be vector spaces, and let T € L(V,W). If ker(T) and Img(T)

are finite-dimensional *, then we define the nullity of T as *In this course, this is always the case,
since we are only dealing with finite
dimensional real vector spaces.

nullity(T) := dimker(T),



244 Additional Topics / Review Rank-Nullity Theorem

and the rank of T as

rank(T) := dim Img(T).

66 Note A.1.1

From the action of a linear transformation, we observe that the
larger the nullity, the smaller the rank . Put in another way, the more

vectors are sent to 0 by the linear transformation, the smaller the range.

Similarly, the larger the rank, the smaller the nullity.

This observation gives us the Rank-Nullity Theorem.

WP Theorem A.1 (Rank-Nullity Theorem)

Let V and W be vector spaces, and T € L(V,W). If V is finie-dimensional,
then
nullity(T) 4 rank(T) = dim(V).

From the Rank-Nullity Theorem, we can make the following obser-
vations about the relationships between injection and surjection, and

the nullity and rank.

@ Proposition A.2 (Nullity of Only 0 and Injectivity)

Let V and W be vector spaces, and T € L(V,W). Then T is injective iff
nullity(T) = {0}.

Surjection and injectivity come hand-in-hand when we have the

following special case.
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& Proposition A.3 (When Rank Equals The Dimension of the
Space)

Let V and W be vector spaces of equal (finite) dimension, and let T &
L(V,W). TFAE

1. T is injective;
2. T is surjective;

3. rank(T) = dim(V).

Note that the proof for & Proposition A.3 requires the under-
standing that ker(T) = {0} implies that nullity(T) = 0. See this
explanation on Math SE.

Inverse and Implicit Function Theorems

This space is dedicated to a little exploration of the inverse and im-
plicit function theorems. For now, the theorems themselves will be

noted down.

®PTheorem A.4 (Inverse Function Theorem)

Let F : U C R" — R" be a smooth mapping, and let V. = F(U).
Suppose p is a point in U where the Jacobian (D F), is invertible. Then

® there exists an open subset U' C U C R" such that p € U’, and
e an open subset V' C V C R" such that g = F(p) € V', and

* a smooth function G : V! C R" — R" with U' = G(V') that satisfies
G(F(x)) =xforallx € U, and F(G(y)) =y forally € V'.

66 Note A.2.1

* When restricted to U’, the mapping F is invertible with a smooth

inverse F'—1 = G.


https://math.stackexchange.com/questions/664594/why-mathbf0-has-dimension-zero
https://math.stackexchange.com/questions/664594/why-mathbf0-has-dimension-zero
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* This means that the restriction of F to the neighbourhood U’ of p is a
diffeomorphism of U’ onto V' = F(U'), its image.

®PTheorem A.5 (Implicit Function Theorem)

Let F: W C R"*" — R" be a smooth mapping, and suppose F(q, p) =
0 for some (q,p) € W. Let A be the n X n matrix A;; = g—i(q,p).
Suppose det A # 0. Then there exists

* an open neighbourhood W' C W of (q, p) and
* an open neighbourhood U of p in R™ and
® g smooth mapping H : U C R" — R"

such that
{(y,x) e W :F(y,x) =0} = {(H(x),x) : x € U}

That is, for a set of points (y,x) € W' that satify F(y,x) = 0, we can

write y as a smooth function H(x) of x.
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Leibniz Rule for Directional
Derivatives, 82

Level Set, 143

Linear Isomorphism, 28

Linear Map, 25

Linearity of Directional Deriva-
tives, 82

Local Frame, 241

Local parameterizations, 139

Local Version of the Implicit

Submanifold Theorem, 149

maximal cover, 139
Maximal Rank, 143

Metric dual 1-form, 241
Metric dual vector field, 241

module, 97, 101, 110

Natural Pairing, 32
non-orientable, 178
non-standard basis, 27
normal space, 237
null space, 243

Nullity, 243

open, 67
Open Ball, 67
Open set in a Half Space, 206
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Opposite orientation, 29
Orientable Submanifolds, 178

Orientation, 65

parameterization, 71, 132
parameterized Submanifold, 132
Partition of Unity, 195

Pullback, 54, 113

Pullback Maps, 171

Pullback of 0-forms, 117

pushforward, 113, 131

range, 243
Rank, 243
Rank-Nullity Theorem, 244

Same orientation, 29

skew-commutative, 112

skewed-commutative, 53

Smooth 1-Forms, 99

Smooth k-Forms on IR”, 108

Smooth Bump Functions, 192

Smooth Curve, 74, 152

Smooth Functions, 151

Smooth functions in the Half
Space, 207

smooth reparameterization, 71

Smooth Vector Fields, 92, 169

Smoothness, 71

Space of k-Forms on IR", 106

Space of k-forms on V, 43

space of germs, 84

space of linear operators on V, 25

standard 1-forms, 98

standard 2-torus, 147

standard k-forms, 107

standard basis, 27

standard orientation, 30
standard vector fields, 92
stereographic projection, 140
Stokes” Theorem, 205, 217
Submanifold with Boundary, 208
Submanifolds, 135

subordinate, 195

super commutative, 53

Support, 194
surface of revolution, 141

Tangent Bundle, 91
tangent map, 72
Tangent Space, 77, 134
Tangent Vector, 77
The Chain Rule, 73
Transition Map, 137

Vector Field, 92
Vector Fields, 168
Velocity, 75

Velocity Vectors, 156

Volume Form, 239

Wedge Product, 51, 168
Wedge Product of k-Forms, 111
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