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1 Y Lecture 1 Sep 06th

1.1 Course Logistics

No content is covered in today’s lecture so this chapter will cover

some of the important logistical highlights that were mentioned in

class.

• Assignments are designed to help students understand the con-

tent.

• Due to shortage of manpower, not all assignment questions will

be graded; however, students are encouraged to attempt all of the

questions.

• To further motivate students to work on ungraded questions, the

midterm and final exam will likely recycle some of the assignment

questions.

• There are no required text, but the professor has prepared course

notes for reading. The course note are self-contained.

• The approach of the class will be more interactive than most math

courses.

• Due to the size of the class, students are encouraged to utilize

Waterloo Learn for questions, so that similar questions by multiple

students can be addressed at the same time.

1.2 Preview into the Introduction

How do we compare the size of two sets?
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• If the sets are finite, this is a relatively easy task.

• If the sets are infinite, we will have to rely on functions.

– Injective functions tell us that the domain is of size that is

lesser than or equal to the codomain.

– Surjective functions tell us that the codomain is of size that is

lesser than or equal to the domain.

– So does a bijective function tell us that the domain and codomain

have the same size? Yes, although this is not as intuitive as it

looks, as it relies on Cantor-Schröder-Bernstein Theorem.

Now, given two arbitrary sets, are we guaranteed to always be

able to compare their sizes? It is tempting to immediately say yes,

but to do that, one would have to agree on the Axiom of Choice.

Fortunately, within the realm of this course, the Axiom of Choice is

taken for granted.
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2.1 Basic Set Theory

We shall use the following notations for some of the common set of

numbers that we are already familiar with:

• N denotes the set of natural numbers {1, 2, 3, . . .};

• Z denotes the set of integers {. . . ,−2,−1, 0, 1, 2, . . .};

• Q denotes the set of rational numbers
{ a

b | a ∈ Z, b ∈N
}

; and

• R denotes the set of real numbers.

We shall start with having certain basic properties of N, Z, and Q.

We will use the notation A ⊂ B and A ⊆ B interchangably to

mean that A is a subset of B with the possibility that A = B. When

we wish to explicitly emphasize this possibility, we shall use A ⊆ B.

When we wish to explicitly state that A is a proper subset of B, we

will either specify that A 6= B or simply A ( B.

# Definition 1 (Universal Set) This is a hand-wavy definition, but it
is not in the interest of this course to
further explore on this topic.A universal set, which we shall generally give the label X, is a set that

contains all the mathematical objects that we are interested in.

With a universal set in place, we can have the following defini-
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tions:

# Definition 2 (Union)

Let X be a set. If {Aα}α∈I such that Aα ⊂ X, then the union for all Aα

is defined as ⋃
α∈I

Aα := {x ∈ X | ∃α ∈ I, x ∈ Aα}.

# Definition 3 (Intersection)

Let X be a set. If {Aα}α∈I such that Aα ⊂ X, then the intersection for

all Aα is defined as

⋂
α∈I

Aα := {x ∈ X | ∀α ∈ I, x ∈ Aα}.

# Definition 4 (Set Difference)

Let X be a set and A, B ⊆ X. The set difference of A from B is defined as

A \ B := {x ∈ X | x ∈ A, x /∈ B}.

On a similar notion:

# Definition 5 (Symmetric Difference)

Let X be a set and A, B ⊆ X. The symmetric difference of A and B is

defined as In words, for an element in the symmet-
ric difference of two sets, the element is
either in A or B but not both. We can
also think of the symmetric difference
as

(A ∪ B) \ (A ∩ B)

or
(A \ B) ∪ (B \ A).

A∆B := {x ∈ X | (x ∈ A ∧ x /∈ B) ∨ (x /∈ A ∧ x ∈ B)}.

We can also talk about the non-members of a set:
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# Definition 6 (Set Complement)

Let X be a set and A ⊂ X. The set of all non-members of A is called the

complement of A, which we denote as

Ac := {x ∈ X | x /∈ A}.

Ã Note 2.1.1

Note that

(Ac)c = {x ∈ X | x /∈ Ac} = {x ∈ X | x ∈ A} = A.

Now taking a step away from that, we define the following:

# Definition 7 (Empty Set)

An empty set, denoted by ∅, is a set that contains nothing.

Ã Note 2.1.2

The empty set is set to be a subset of all sets.

# Definition 8 (Power Set)

Let X be a set. The power set of X is the set that contains all subsets of X,

i.e.

P(X) := {A | A ⊂ X}.

Ã Note 2.1.3

A power set is always non-empty, since ∅ ∈ P(∅), and since ∅ ⊂ X for

any set X, we have ∅ ∈ P(X).
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Example 2.1.1

Let X = {1, 2, . . . , n}. There are several ways we can show that the

size of P(X) is 2n. One of the methods is by using a characteristic

function that maps from A to {0, 1}, defined by

XA : A→ {0, 1}

XA(x) =

1 x ∈ A

0 x /∈ A
.

Using this function, each element in X have 2 states: one being in the

subset, and the other being not in the subset, which are represented

by 1 and 0 respectively. It is then clear that there are 2n of such con-

figurations. ¥

¯Theorem 1 (De Morgan’s Laws)

Let X be a set. Given {Aα}α∈I ⊂ P(X), we have

1.
( ⋃

α∈I
Aα

)c
=
⋂

α∈I
Ac

α; and

2.
( ⋂

α∈I
Aα

)c
=
⋃

α∈I
Ac

α.

´ Proof

1. Note that

x ∈
(⋃

α∈I
Aα

)c

⇐⇒ @α ∈ I x ∈ Aα

⇐⇒ ∀α ∈ I x /∈ Aα

⇐⇒ ∀α ∈ I x ∈ Ac
α by set complementation

⇐⇒ x ∈
⋂
α∈I

Ac
α.
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2. Observe that, by part 1,(⋂
α∈I

Aα

)c

=

((⋃
α∈I

Ac
α

)c)c

=
⋃
α∈I

Ac
α.

Example 2.1.2

Suppose I = ∅. Then what is
⋃

α∈∅
Aα? It is sensible to think that all

we are left with is simply a union of empty sets, and so

⋃
α∈∅

Aα = ∅. (2.1)

And what about
⋂

α∈∅
Aα? By ¯Theorem 1, it is quite clear from

Equation (2.1) that ⋂
α∈∅

Aα = X. ¥

2.2 Products of Sets

# Definition 9 (Product of Sets)

Given 2 sets X and Y, the product of X and Y is given by

X×Y := {(x, y) | x ∈ X, y ∈ Y}.

We often refer to elements of X×Y as tuples.

Ã Note 2.2.1

Now if

X = {x1, x2, . . . , xn},

Y = {y1, y2, . . . , ym},
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then

X×Y = {(xi, yj) | i = 1, 2, . . . , n, j = 1, 2, . . . , m}

and so the size of X×Y is mn.

Consequently, we can think of tuples as two elements being in

some “relation”.

# Definition 10 (Relation)

A relation on sets X and Y is a subset R of the product X×Y. We write

xRy if (x, y) ∈ R ⊂ X×Y.

We call

• {x ∈ X | ∃y ∈ Y, (x, y) ∈ R} as the domain of R; and

• {y ∈ Y | ∃x ∈ X, (x, y) ∈ R} as the range of R.

In relation to that, functions are, essentially, relations.

# Definition 11 (Function)

A function from X to Y is a relation R such that

∀x ∈ X ∃!y ∈ Y (x, y) ∈ R.

Suppose X1, X2, . . . , Xn are non-empty1 sets. We can define 1 We are typically only interested
in non-empty sets, since empty sets
usually lead us to vacuous truths,
which are not interesting.X1 × X2 × . . .× Xn =

n

∏
i=1

Xi := {(x1, x2, . . . , xn) | xi ∈ Xi}.

Now if Xi = Xj = X for all i, j = 1, 2, . . . , n, we write

n

∏
i=1

Xi =
n

∏
i=1

X = Xn.
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And now comes the problem: given a collection {Xα}α∈I of

non-empty sets2, what do we mean by 2 i.e. we now talk about arbitrary α ∈ I.

∏
α∈I

Xα?

To motivate for what comes next, consider

n

∏
i=1

Xi = X1 × . . .× Xn = {(x1, . . . , xn) | xi ∈ Xi}.

Choose (x1, . . . , xn) ∈
n
∏
i=1

Xi. This induces a function

f(x1,...,xn) : {1, . . . , n} →
n⋃

i=1

Xi

with

f (1) = x1 ∈ X1

f (2) = x2 ∈ X2

...

f (n) = xn ∈ Xn

Now assume for a more general f such that

f : {1, . . . , n} →
n⋃

i=1

Xi

is defined by

f (i) ∈ Xi.

Then, we have

( f (1), f (2), . . . , f (n)) ∈
n

∏
i=1

Xi,

which leads us to the following notion:

# Definition 12 (Choice Function)
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Given a collection {Xα}α∈I of non-empty sets, let

∏
α∈I

Xα =

{
f : I →

⋃
α∈I

Xα

}

such that f (α) ∈ Xα. Such an f is called a choice function.

And so we may ask a similar question as before: if each Xα is non-

empty, is ∏
α∈I

Xα non-empty? Turns out this is not as easy to show. In

fact, it is essentially impossible to show, because this is exactly the

Axiom of Choice.
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3.1 Axiom of Choice

Recall our final question of last lecture: If {Xα}α∈I is a non-empty

collection of non-empty sets, is

∏
α∈I

Xα 6= ∅ ?

Turns out this is widely known (in the world of mathematics) as

the Axiom of Choice.

Ó Axiom 2 (Zermelo’s Axiom of Choice)

If {Xα}α∈I is a non-empty collection of non-empty sets, then

∏
α∈I

Xα 6= ∅.

An equivalent statement of the above axiom is:

Ó Axiom 3 (Zermelo’s Axiom of Choice v2)

X 6= ∅ =⇒

∃ f : P(X) \ {∅} → X ∀A ∈ P(X) \ {∅} f (A) ∈ A

where f is the choice function.
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Exercise 3.1.1

Prove that * Axiom 2 and * Axiom 3 are equivalent.

´ Proof

From * Axiom 2 to * Axiom 3:

Since X 6= ∅, we have that P(X) \ {∅} is a non-empty collection

of non-empty sets. Therefore,

∏
A∈P(X)\{∅}

A 6= ∅.

So we know that

∃(xA)A∈P(X)\{∅} ∈ ∏
A∈P(X)\{∅}

A.

We then simply need to choose the choice function f : P(X) \
{∅} → X such that

f (A) = xA ∈ A.

From * Axiom 3 to * Axiom 2:

Let Xα ∈ P(X) for α ∈ I, where I is some index set. We know

that not all Xα = ∅ since X 6= ∅. Choose J ⊆ I such that {Xα}α∈J

is a non-empty collection of non-empty sets. Let f : P(X) \ {∅} be

any choice function. By * Axiom 3,

∀Xα ∈ P(X) \ {∅} f (Xα) ∈ Xα.

Therefore,

( f (Xα))α∈J ∈∏
α∈J

Xα.
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3.2 Relations

Now, it is in our interest to start talking about comparisons or rela-

tions between the mathematical objects that we have defined.

# Definition 13 (Relations)

A relation R on a set X is 1 1 We can look at this definition as
R ⊆ X× X. Under such a definition, we
would have

• (Reflexive) ∀x ∈ X (x, x) ∈ R;

• (Symmetric) ∀x, y ∈ X (x, y) ∈
R ⇐⇒ (y, x) ∈ R;

• (Anti-symmetric) ∀x, y ∈
X (x, y), (y, x) ∈ R =⇒ x = y;

• (Transitive) ∀x, y, z ∈
X (x, y), (y, z) ∈ R =⇒ (x, z) ∈ R.

• (Reflexive) ∀x ∈ X xRx;

• (Symmetric) ∀x, y ∈ X xRy ⇐⇒ yRx;

• (Anti-symmetric) ∀x, y ∈ X xRy ∧ yRx =⇒ x = y;

• (Transitive) ∀x, y, z ∈ X xRy ∧ yRz =⇒ xRz.

Example 3.2.1

Let X = R, and let xRy ⇐⇒ x ≤ y, where ≤ is the notion of “less

than or equal to”, which we shall assume that it has the meaning that

we know. Observe that ≤ is:

• reflexive: ∀x ∈ R x ≤ x is true;

• anti-symmetric: ∀x, y ∈ R x ≤ y ∧ y ≤ x =⇒ x = y; and

• transitive: ∀x, y, z ∈ R x ≤ y ∧ y ≤ z =⇒ x ≤ z. ¥

Example 3.2.2

Let Y 6= ∅, X = P(Y), with ARB ⇐⇒ A ⊆ B. Observe that ⊆ is:

• reflexive: ∀A ∈ P(Y) ARA ⇐⇒ A ⊆ A is true;

• anti-symmetric: ∀A, B ∈ P(Y) ARB ∧ BRA ⇐⇒ A ⊆ B ∧ B ⊆
A =⇒ A = B;

• transitive: ∀A, B, C ∈ P(Y) ARB ∧ BRC ⇐⇒ A ⊆ B ∧ B ⊆ C =⇒
A ⊆ C. ¥

Example 3.2.3

Let Y 6= ∅, X = P(Y), with ARB ⇐⇒ A ⊇ B. Observe that ⊇ is:
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• reflexive: ∀A ∈ P(Y) ARA ⇐⇒ A ⊆ A;

• anti-symmetric: ∀A, B ∈ P(Y) ARB ∧ BRA ⇐⇒ A ⊇ B ∧ B ⊇
A =⇒ A = B;

• transitive: ∀A, B, C ∈ P(Y) ARB ∧ BRC ⇐⇒ A ⊇ B ∧ B ⊇ C =⇒
A ⊇ C. ¥

All the above examples are also known as partially ordered sets.

# Definition 14 (Partially Ordered Sets)

The set X with the relation R on X is called a partially ordered set (or a

poset) if R is The “partial” in ‘partially ordered”
indicates that not every pair of elements
need to be comparable, i.e. there may
be pairs for which neither precedes the
other (anti-symmetry).

• reflexive;

• anti-symmetric; and

• transitive.

We denote a poset by (X, R).

Ã Note 3.2.1

If (X, R) is a poset, then if A ⊆ X, and R1 = R �A×A, then (A, R1) is

also a poset.

Example 3.2.4

How many possible relations can we define on these sets to make

them into posets?

1. X = ∅

´ Solution

We have that R = ∅ × ∅, and so the only relation we have is an

empty relation. Then it is vacuously true that (X, R) a poset.

2. X = {x}
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´ Solution

We have that R = X × X = {(x, x)}. It it clear that (X, R) is a

poset.

3. X = {x, y}

´ Solution

There are 3 possible relations: 3 possibilities represented as graphs
(known as Hasse diagram), separated
by lines:

x y

x

y

y

x

• a relation where xRx and yRy;

• a relation where xRy; or

• a relation where yRx.

4. X = {x, y, z}

´ Solution

The following are all the possibilities represented by graphs, where

the underlined numbers represent the number of ways we can

rearrange the elements for unique relations:

x y z1

x y

z

3

x y

z
3

x y

z
6

x
y
z

6

Therefore, we see that there are a total of

1 + 3 + 3 + 6 + 6 = 19 relations.

Exercise 3.2.1

How many possible relations can we define on a set of 6 elements to the set

into a poset?

´ Solution

https://en.wikipedia.org/wiki/Hasse_diagram
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to be added

# Definition 15 (Totally Ordered Sets / Chains)

The set X with the relation R on X is called a totally ordered set (or

a chain) if (X, R) is a poset with the exception that, for any x, y ∈ X,

either xRy or yRx but not both.

# Definition 16 (Bounds)

Let (X,≤) be a poset. Let A ⊂ X. We say x0 ∈ X is an upper bound for

A if

∀a ∈ A a ≤ x0.

If A has an upper bound, we say that A is bounded above. If A is

bounded above, then x0 is the least upper bound (or supremum) of

A is for any x1 ∈ X that is an upper bound of A, we have

x0 ≤ x1.

We write x0 = lub(A) = sup(A). If sup(A) ∈ A, then sup(A) =

max(A) is the maximum of A.

We can analogously define for:

upper bound → lower bound

bounded above → bounded below

least upper bound, lub→ greatest lower bound, glb

supremum, sup→ infimum, inf

maximum, max→ minimum, min

Ã Note 3.2.2

By anti-symmetry of posets, we have that max, sup, min, inf are all

unique if they exists.
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Example 3.2.5 (Least Upper Bound Property of R)

Let X = R, and ≤ be the order that we have defined. Every bounded

non-empty subset of X has a supremum. ¥

Example 3.2.6

Let Y 6= ∅, and X = P(Y), and ⊆ the ordering by inclusion. We

know that Y is the maximum element of (X,⊆). Then the collection

{Aα}α∈I ⊂ P(Y) is bounded above by Y, and we have that Now if Y = ∅, we would end up having

sup
(
{Aα}α∈I

)
= ∅

inf
(
{Aα}α∈I

)
= X

This makes sense, since the empty set
would be the least of upper bounds,
and since X = P(Y) would have to be
the greatest of lower bounds.

sup
(
{Aα}α∈I

)
=
⋃
α∈I

Aα

inf
(
{Aα}α∈I

)
=
⋂
α∈I

Aα ¥
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4.1 Zorn’s Lemma

# Definition 17 (Maximal Element)

Let (X,≤) be a poset. An element x ∈ X is maximal if whenever y ∈ X

is such that x ≤ y, we must have y = x.

Example 4.1.1

Looking back at Example 3.2.4, on the set X = {x, y, z}, we have that

the maximal element in each possible poset is/are: This shows to us that the maximal
element does not have to be unique.

x y z x, y, z are all maximal

x y

z
z is maximal

x y

z
x, y are both maximal

x y

z
x, z are both maximal

x
y
z

z is maximal

¥
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Example 4.1.2

• Given X 6= ∅, the maximal element of the poset (P(X),⊆) is X.

• Given X 6= ∅, the maximal element of the poset (P(X),⊇) is ∅.

• The poset (R,≤) has no maximal element. ¥

Ó Axiom 4 (Zorn’s Lemma)

If (X,≤) is a non-empty poset such that every chain S ⊂ X has an upper

bound, then (X,≤) has a maximal element.

¯Theorem 5 (�Non-Zero Vector Spaces has a Basis)

Every non-zero vector space, V, has a basis.

The flow of this proof is a typical
approach when Zorn’s Lemma is
involved.´ Proof (� )

Let

L := {A ⊂ V | A is linearly independent }.

Note that L 6= ∅ since V 6= {0}. Now order elements of L with

⊆. It suffices to show that (L,⊆) has a maximal element, since this

maximal element must be a basis. Otherwise, we would contradict

the maximality of such an element.1 1 This is the key to this proof.

Now let S = {Aα}α∈I be a chain in L. Let

A0 =
⋃
α∈I

Aα.

Require clarification before proceeding. . . �

# Definition 18 (Well-Ordered)
Exercise 4.1.1
Prove that well-ordered sets are chains.We say that a poset (X,≤) is well-ordered if every non-empty subset

A ⊂ X has a least/minimal element in A.



PMATH351 — Real Analysis 37

Example 4.1.3

(N,≤) is well-ordered. ¥

Ó Axiom 6 (Well-Ordering Principle)

Every non-empty set can be well-ordered.

¯Theorem 7 (Axioms of Choice and Its Equivalents)

TFAE:

Exercise 4.1.2
Prove ¯Theorem 7

1. Axiom of Choice, * Axiom 2

2. Zorn’s Lemma, * Axiom 4

3. Well-Ordering Principle, * Axiom 6.

´ Proof

(3) =⇒ (1) is simple; let the choice function be such that we pick

the minimal element from each set among a non-empty collection

of non-empty sets. It is clear that the product of these sets will

always have an element, in particular the tuple where each compo-

nent is the minimal element of each set.

The rest will be added once I’ve worked it out �

Example 4.1.4

Let X = Q. Let ϕ : Q→N be defined such that

ϕ
(m

n

)
=


2m5n m > 0

1 m = 1

3−m7n m < 0
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By the unique prime factorization of natural numbers (or Funda-

mental Theorem of Arithmetic), we have that ϕ is injective. In fact,

r ≤ s ⇐⇒ ϕ(r) ≤ ϕ(s),

showing to us that we have a well-ordering on Q. ¥

4.2 Cardinality

4.2.1 Equivalence Relation

# Definition 19 (Equivalence Relation)

Let X be non-empty set. A relation ∼ on X is an equivalence relation if

it is

• reflexive;

• symmetric; and

• transitive.

# Definition 20 (Equivalence Class)

Let X be a non-empty set, and x ∈ X. An equivalence class of x under

the equivalence relation ∼ is defined as

[x] := {y ∈ X | x ∼ y}.

Ã Note 4.2.1

Note that we either have [x] = [y] or [x] ∩ [y] = ∅. This is sensible,

since if w ∈ [x], then w ∼ x. If w ∈ [y], then we are done. If w /∈ [y],

suppose ∃v ∈ [y] such that w ∼ v, which then implies w ∈ [y] which is a

contradiction.
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This results shows to us that

X =
⋃

x∈X
[x],

or in words, equivalence classes partition the set.

# Definition 21 (Partition)

Let X 6= ∅. A partition of X is a collection {Aα}α∈I ⊂ P(X) such that

1. Aα 6= ∅;

2. Aα ∩ Aβ = ∅ if α 6= β in I; and

3. X =
⋃

α∈I Aα.

With this, we have ourselves another method to show that ∼ is an

equivalence relation.

7 Proposition 8 (Characterization of An Equivalence Relation)

If {Aα}α∈I is a partition of X and x ∼ y ⇐⇒ x, y ∈ Aα, then ∼ is an

equivalence relation. The proof of this statement has been
stated above.

Similar to when we defined partial orders, we can ask ourselves

the following question:

Example 4.2.1

How many equivalence relations are there on the set X = {1, 2, 3}?2 2 By 7 Proposition 8, this question is
equivalent to asking for the number of
partitions we can create from the set X.
The study of counting partitions is what
is covered by Bell’s Number.

´ Solution

Note that we can partition X as

{{1}, {2}, {3}}, {{1, 2, 3}},

and

{{1, 2}, {3}},

https://en.wikipedia.org/wiki/Bell_number
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which we can rearrange in 3 different ways. Therefore, there are 5

different equivalence relations that we can define on X.

Example 4.2.2

Let X be any set. Consider P(X). Define ∼ on P(X) by

A ∼ B ⇐⇒ ∃ f : A→ B

such that f is surjective3. It is easy to verify that ∼ is an equivalence 3∼ partitions X into sets that have the
same number of elements.

relation. ¥
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5.1 Cardinality (Continued)

# Definition 22 (Finite Sets)

A set X is finite if X = ∅ or if X ∼ {1, 2, . . . , n} for some n ∈ N, where

∼ is the equivalence relation defined in Example 4.2.2.

# Definition 23 (Cardinality)

If X ∼ n, we say X has cardinality n and write |X| = n. We also let

|∅| = 0.

Now a good question here is: if n 6= m, is {1, 2, . . . , n} ∼
{1, 2, . . . , m}?

¯Theorem 9 (Pigeonhole Principle)

The set {1, 2, . . . , n} is not equivalent to any of its proper subset.

´ Proof

We shall prove this by induction on n. This is a proof by contradiction, using
the fact that we cannot find an injec-
tive function from a “larger” set to a
“smaller” set.

We can assume that the function f
is not surjective, since if the larger set
is indeed equivalent to the smaller
set, then it should not matter if f is
surjective or not. In particular, we
only require that there be an injective
function.

Base case: {1} � ∅.

Requires clarification and confirmation
of proof.
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Assume that the statement holds for {1, . . . , k}. Suppose we have

an injective function

f : {1, 2, . . . , k, k + 1} → {1, 2, . . . , k, k + 1}

that is not surjective.

Case 1: k + 1 /∈ range( f ), where range( f ) is the range of f . Then

we have Note: � is the restriction sign.

f �{1,...,k}: {1, . . . , k} → {1, . . . , k} \ { f (k + 1)}.

However, f is an injective function and clearly

{1, . . . , k} \ { f (k + 1)} ⊆ {1, . . . , k},

a contradition.

Case 2: k + 1 ∈ range( f ). Then ∃j0 ∈ {1, . . . , k, k + 1} such that

f (j0) = k + 1, and since f is not surjective, ∃m ∈ {1, . . . , k} such

that m /∈ range( f ). Then consider a new function g : {1, . . . , k, k +

1} → {1, . . . , k} such that

g(a) =


m a = k + 1

f (k + 1) a = j0

f (a) a 6= j0, k + 1

�

�Corollary 10 (Pigeonhole Principle (Finite Case))

If the set X is finite, then X is not equivalent to any proper subset.

Sketch of proof:
{1, . . . , n} {1, . . . , n}

X A ( X

ff−1

1− 1
onto

f

Exercise 5.1.1

Prove �Corollary 10.

# Definition 24 (Infinite Sets)

X is infinite if it is not finite.
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Example 5.1.1

Observe that we can construct a function f : N → {2, 3, . . .} by

f (n) = n + 1. It is clear that f is a bijective funciton, and so N ∼
{2, 3, . . .}. ¥

7 Proposition 11 (N is the Smallest Infinite Set)

Every infinite set contains a subset A ∼N.

´ Proof

Suppose X is infinite. Let

f : P(X) \ {∅} → X

such that for S ⊂ X where S 6= ∅, f (S) ∈ S 1. Let x1 = f (X). Let 1 * Axiom 3 ahoy!

x2 = f (X \ {x1}). Recursively, define

xn = f (X \ {x1, . . . , xn−1}).

This gives us a sequence

X ⊃ S = {x1, . . . , xn, . . .}

which is equivalent to N via the map n 7→ xn.

�Corollary 12 (Infinite Sets are Equivalent to Its Proper Sub-

sets)

Every infinite set X is equivalent to a proper subset of X.

´ Proof
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Given such an X, we construct a sequence {xn} as in the previous

proof. Define f : X → X \ {xn} by

f (x) =

xn+1 x ∈ {xn}

x x /∈ {xn}.

Clearly so, f is injective.

# Definition 25 (Countable)

We say that a set is countable (or denumerable) is either X is finite or if

X ∼ N. If X ∼ N, we can say that X is countably infinite and write

|X| = |N| = ℵ0.

# Definition 26 (Smaller Cardinality)

Given 2 sets X, Y, we write

|X| ≤ |Y|

if ∃ f : X → Y injective.

7 Proposition 13 (Injectivity is Surjectivity Reversed)

TFAE

1. ∃ f : X → Y injective

2. ∃g : Y → X surjective

´ Proof
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(1) =⇒ (2): Define

g(y) =

x ∃x ∈ X f (x) = y

x0 any x0 ∈ X

Clearly g is surjective.

(2) =⇒ (1): Since g is surjective, for each x ∈ X, we have that2 2 The idea here is to collect the preim-
ages into a set, and use the choice
function as an injective map.

g−1(|x|) = {y ∈ Y : g(y) = x} 6= ∅.

By the Axiom of Choice, there exists a choice function h : P(Y) \
{∅} → Y such that for each A ⊂ Y, h(A) ∈ A. Then, let f : X → Y

such that

f (x) = h(g−1({x})).

Clearly so, f is injective.

Ã Note 5.1.1

Note that we have |N| ≤ |Q|, since we can define an injective function

f : N→ Q such that f (n) = n
1 .

We have also shown that |Q| ≤ |N| using our injective function

g : Q→N, given by

g
(m

n

)
=


2m3n m > 0

1 m = 0

5−m7n m < 0

Question: Is |N = |Q||? In other words, given |X| ≤ |Y| ∧ |Y| ≤
|X|, is |X| = |Y|?
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6.1 Cardinality (Continued 2)

Before delving into resolving our last question in the previous lec-

ture, note the following:

Ã Note 6.1.1

Suppose f : X → Y is bijective. Let A ⊆ B, then Prove this observation as an exercise:

Exercise 6.1.1
Prove the note on the left.

f (B \ A) = f (B) \ f (A).

¯Theorem 14 (� � �Cantor-Schröder-Bernstein Theorem

(CSB))

Let A2 ⊂ A1 ⊂ A0 = A. Assume that A2 ∼ A0. Then A0 ∼ A1.

´ Proof

A0

A1

A2

A3

A4

A5

f

f

Figure 6.1: The core idea of the proof
for Cantor-Schröder-Bernstein Theorem

Let ϕ : A0 → A2 be bijective, by assumption. Since A1 ⊂ A1, let

A3 = ϕ(A1) ⊂ A2, and since A2 ⊂ A0, let A4 = ϕ(A2) ⊂ A3.

Recursively so, let

An+2 = ϕ(An)
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Notice that

A0 = (A0 \ A1) ∪ (A1 \ A2) ∪ (A2 \ A3) ∪ (A3 \ A4) ∪ . . .
∞⋂

n=0
An

A1 = (A1 \ A2) ∪ (A2 \ A3) ∪ (A3 \ A4) ∪ (A4 \ A5) ∪ . . .
∞⋂

n=1

An

Observe that
∞⋂

n=0
An =

∞⋂
n=1

An.

1Define f : A→ A1 by 1 Here, we employ the idea from Fig-
ure 6.1.

f (x) =


x x ∈ ⋂∞

n=0 An

x x ∈ A2k+1 \ A2k+2, k = 0, 1, 2, . . .

ϕ(x) x ∈ A2k \ A2k+1, k = 0, 1, 2, . . .

�

�Corollary 15 (Cantor-Schröder-Bernstein Theorem - Restated)

If A1 ⊂ A ∧ B1 ⊂ B ∧ A ∼ B1 ∧ B ∼ A1, then A ∼ B.2 2 This is equivalent to the statement

|A| ≤ |B| ∧ |B| ≤ |A| =⇒ |A| = |B| .

´ Proof

By assumption, let f : A → B1 be bijective, and let g : B → A1 be

bijective. Let A2 = g(B1) ⊆ A1 ⊂ A Let A2 = g(B1) ⊆ A1 ⊂ A.

Then the composite function g ◦ f : A → A2 is bijective, and so

A ∼ A2. By ¯Theorem 14, we have

A ∼ A2 ∼ A1 ∼ B.

Example 6.1.1

Our question from last lecture now has an answer: by ¯Theorem 14,

we have that |Q| = |N|.3 ¥ 3 Now that we know that they have the
same cardinality:

Exercise 6.1.2
Find a bijection between Q and N.

7 Proposition 16 (Denumerability Check)
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If X is infinite, then

|X| = |N| = ℵ0 ⇐⇒ ∃ f : X →N bijective.

´ Proof

( =⇒ ) is immediate. For ( ⇐= ), suppose f : X → N, which

implies that |X| ≤ |N|. By 7 Proposition 11, |N| ≤ |X|. Therefore,

|X| = |bbN| = ℵ0.

Example 6.1.2

N×N is countable. The function

f : N×N×N given by f (m, n) = 2n3m

is injective. ¥

# Definition 27 (Uncountable)

A set X is uncountable if it is not countable.

¯Theorem 17 (Cantor’s Diagonal Argument)

(0, 1) is uncountable.

´ Proof

Suppose, for contradiction, that (0, 1) is countable. Then we can

write

a1 = .a11a12a13 . . .

a2 = .a21a22a23 . . .
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...

an = .an1an2an3 . . .

...

in (0, 1). This representation is unique if we do not allow the rep-

resentation to end in a string of 9’s. Let b ∈ (0, 1), expressed as

b = .b1b2b3 . . . such that

bi =

5 ai 6= 5

2 ai = 5

However, b /∈ (0, 1), otherwise b would be one of the an’s, a contra-

diction.

�Corollary 18 (Uncountability of R)

R is uncountable.

´ Proof

Let f : (0, 1)→ R be given by

f (x) = tan
(

πx− π

2

)
.

Clearly so, (0, 1) is bijective.

Ã Note 6.1.2

We denote |R| = c.

Question: Given sets X, Y, is it always true that either4 4 As compare to ≤, < implies that there
is no surjection from the set on the LHS
to the RHS.

1. |X| = |Y|;
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2. |X| < |Y|; or

3. |Y| < |X|.
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7.1 Cardinality (Continued 3)

¯Theorem 19 (�Comparability of Cardinals)

If X and Y are non-empty, then either

|X| ≤ |Y| ∨ |Y| ≤ |X| .

´ Proof

Let

S = {(A, B, f ) | A ⊆ X, B ⊆ Y, f : A→ B bijective }.

Note that S 6= ∅, since X and Y are non-empty, and so we can have

f (a) = b for A = {a} ⊂ X and B = {b} ⊂ Y.1 We order S as 1 We want to use the maximal element
to obtain our result. To that end, we
need Zorn’s Lemma. So we need S to
build this up.

follows: we say

(A1, B1, f1) ≤ (A2, B2, f2)

if

A1 ⊆ A2, B1 ⊆ B2, f1 = f2 �A1 .

Let C = {(Aα, Bα, fα)}α∈I be a chain in (S,≤). Let A0 =
⋃

α∈I Aα,

B0 =
⋃

α∈I Bα, and define f0 : A0 → B0 by

f0(x) = fα0(x) if x ∈ Aα0 .
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Now if x ∈ Aα1 , x ∈ Aα2 and

(Aα1 , Bα1 , fα1) ≤ (Aα2 , Bα2 , fα2),

we have that

fα1(x) = fα2 �Aα1
(x) = fα2(x),

i.e. f0 is well-defined.

Claim 1: f0 : A0 → B0 is injective.

Let x1, x2 ∈ A0 such that x1 6= x2.

=⇒ ∃α1, α2 ∈ I x1 ∈ Aα1 ∧ x2 ∈ Aα2 ∧ Aα1 ⊆ Aα2 (wlog)

=⇒ x1.x2 ∈ Aα2

=⇒ (∵ fα2 injective =⇒ fα2(x1) 6= fα2(x))

=⇒ f0(x1) 6= f0(x2) =⇒ f0 injective.

Claim 2: f0 : A0 → B0 is surjective.

Let y0 ∈ B0

=⇒ ∃α0 ∈ I y0 ∈ Bα0

=⇒ ∃x0 ∈ Aα0 fα0(x0) = y0 (∵ fα0 surjective)

=⇒ f0(x0) = y0

∴ (A0, B0, f0) is an upper bound for C. Then by Zorn’s Lemma,

(S,≤) has a maximal element (A, B, f ).

Case 1: If A = X, then injectivity of f implies |X| ≤ |Y|.

Case 2: If B = Y, then surjectivity of f implies |Y| ≤ |A| ≤ |X|.

Case 3: If A 6= X ∧ B 6= Y, then X \ A 6= ∅ ∧ Y \ B 6= ∅. Let

x0 ∈ X \ A, y0 ∈ Y \ B. Let A∗ = A ∪ {x0}, B∗ = B ∪ {y0}, and

f ∗ : A∗ → B∗ such that

f ∗(x) =

 f (x) x ∈ A

y0 x = x0

Then (A, B, f ) ≤ (A∗, B∗, f ∗), contradicting maximality.
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7.1.1 Cardinal Arithmetic

Sum of Cardinals Observe that if X = {x1, . . . , xn}, Y = {y1, . . . , ym},
and X ∩ Y = ∅, then |X| = n, |Y| = m and |X ∪Y| = n + m. This

motivates us to provide the following definition:

# Definition 28 (Sum of Cardinals)

Assume that X and Y are such that X ∩Y = ∅. We define

|X|+ |Y| = |X ∪Y| .

Question: So what about ℵ0 + ℵ0?

A thought that motivates us to give the following answer lies in

the observation that: if X is the set of even natural numbers and Y

the odd natural numbers, then X ∪Y is the set of all natural numbers.

All three sets are countably infinite, i.e. they have cardinality ℵ0.

Question: What about c + c?

A similar motivation comes from the observation that: given X =

(0, 1) and Y = (1, 2), we have

c = |X| ≤ |X|+ |Y| ≤ |R| = c,

and so |X| = |Y| = c =⇒ |X ∪Y| = c.

¯Theorem 20 (Sums of Cardinals)

Given sets X and Y, if X is infinite, then

1. |X|+ |X| = |X|

2. |X|+ |Y| = max(|X| , |Y|)

Exercise 7.1.1
Prove ¯Theorem 20 as an exercise.
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Multiplication of Cardinals Given

X = {x1, x2, . . . , xn}

Y = {y1, y2, . . . , ym}

we have that

X×Y = {(xi, yj) | i = 1, 2, . . . , n, j = 1, 2, . . . , m}

and so

|X×Y| = nm.

# Definition 29 (Multiplication of Cardinals)

Given sets X and Y, define

|X| |Y| = |X×Y| .

Example 7.1.1

We have |N×N| = ℵ0 since the function f : N×N→N given by

f (n, m) = 2n3m

is injective. ¥

Question: What about c · c?

¯Theorem 21 (Multiplication of Cardinals)

If X is infinite and Y 6= ∅, then

• |X× X| = |X| =⇒ |X| |X| = |X|;

• |X×Y| = max(|X| , |Y|).

Exercise 7.1.2
Prove ¯Theorem 21 as an exercise.
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8.1 Cardinality (Continued 4)

8.1.1 Cardinal Arithmetic (Continued)

Exponentiation of Cardinals Recall if {Yx}x∈X is a collection of non-

empty sets, we have1 1 This should remind you of * Axiom 3

∏
x∈X

Yx = { f : X →
⋃

x∈X
Yx | f (x) ∈ Yx}.

Now if Y = Yx for all x ∈ X, we have

YX = ∏
x∈X

= { f : X → Y}.

Example 8.1.1

Given

Y = {1, . . . , m} X = {1, . . . , n}

we have

YX = { f : {1, . . . , n} → {1, . . . , m}}.

Observe that YX is similar to Yn. So
∣∣YX

∣∣ = mn.2 ¥ 2 Need better explanation.

# Definition 30 (Exponentiation of Cardinals)

Given sets X and Y, define

|Y||X| :=
∣∣∣YX

∣∣∣ .
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¯Theorem 22 (Exponentiation of Cardinals)

If X, Y, Z are non-empty sets, then

• |Y||X| · |Y||Z| = |Y||X|+|Z|;

•
(
|Y||X|

)|Z|
= |Y||X|·|Z|.

Exercise 8.1.1
Prove ¯Theorem 22.¯Theorem 23 (2ℵ0 = c)

We have that 2ℵ0 = c.

´ Proof This requires closer studying.

Note that 2ℵ0 =
∣∣{0, 1}N

∣∣, where3 3 Explain 2nd equality.∣∣∣{0, 1}N
∣∣∣ = |{ f : N→ {0, 1}| = |{{an}∞

n=1 | ai = 0, 1}|

Given a sequence {an} ∈ {0, 1}N, define ϕ : {0, 1}N → (0, 1)

such that4 4 This is a base 3 representation (of
what?)

ϕ ({an}) :=
∞

∑
i=1

an

3n .

which is injective since there are no trailing 2’s. Therefore 2ℵ0 ≤ c.

Given α ∈ (0, 1), let5 5 This is a base 2 representation.

α =
∞

∑
n=1

bn

2n ,

where bn = 0, 1. Let ψ : (0, 1)→ {0, 1}N such that

ψ(α) = ψ

(
∞

∑
i=1

bn

2n

)
= {bn}

Then ψ is injective, and so c ≤ 2ℵ0 . Thus 2ℵ0 = c as required.

Example 8.1.2
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Find
∣∣∣ℵℵ0

0

∣∣∣ and cℵ0 . ¥

´ Solution

We have that

c = 2ℵ0 ≤ ℵℵ0
0 ≤ cℵ0 =

(
2ℵ0
)ℵ0

= 2ℵ0·ℵ0 = 2ℵ0 = c

Example 8.1.3

Show |P(X)| = 2|X| =
∣∣2X
∣∣. ¥

´ Solution

Given f : X → {0, 1}, let6 6 A is a collection of all x’s that gets
mapped to f .

A = {x ∈ X | f (x) = 1} ⊂ X.

Define Γ : 2X → P(X) by

Γ( f ) = f−1(|1|)

Γ is injective7. 7 Why?

Conversely, given A ⊂ X, define the characteristic function

χA(x) =

1 x ∈ A

0 x /∈ A
∈ 2X .

Then define Φ : P(A)→ 2X such that

Φ(A) = χA.

Clearly so, Φ is injective.

¯Theorem 24 (Russell’s Paradox)

For any X, we have |X| < |P(X)| = 2|X|.

´ Proof
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Let f : X → P(X) be f (X) = {x}. Clearly, f is injective, and so

|X| < |P(X)|.

Claim: @g : X → P(X) surjective.

Suppose not. Let8 8 By the Bounded Separation Axiom
(see ZF Set Theory), this is a set, and
since it is a subset of X, it is a valid
element of P(X). Thus, we can consider
such a set.

A = {x ∈ X | x /∈ g(x)}

Pick x0 ∈ X with g(x0) = A. Now if x0 ∈ A, then x0 ∈ g(x0), but

this implies that x /∈ A, a contradiction.

So x0 /∈ A, i.e. x /∈ g(x0), which in turn implies that x ∈ A, yet

another contradiction. Therefore such a function g cannot exist, as

claimed.

Therefore, we have |X| < |P(X)| as required.

Question: Is there anything between ℵ0 and c?

Ó Axiom 25 (Continuum Hypothesis)

If ℵ0 ≤ γ ≤ c, then either γ = ℵ0 or γ = c.

Ó Axiom 26 (Generalized Continuum Hypothesis)

If |X| ≤ γ ≤ 2|X|, then either γ = |X| or γ = 2|X|.

In this course, we shall assume that the Continuum Hypothesis is

true.
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9.1 Introduction to Metric Spaces

# Definition 31 (Metric & Metric Space)

Given a set X, a metric on X is a function d : X× X → R such that

Remark 9.1.1
A metric is an abstract notion of dis-
tance. a

1. (positive definiteness) d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y;

2. (symmetry) d(x, y) = d(y, x); and

3. (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is called a metric space.

Example 9.1.1 (Standard Metric on R)

Let X = R, and let d(x, y) = |x− y|.

Clearly so, the first 2 criterias are satisfied:

• |·| ≥ 0 and |x− y| = 0 ⇐⇒ x = y; and

• |x− y| = |y− x|.

The triangle inequality property is the usual triangle inequality of the

absolute value function, i.e.

|x− y| ≤ |x|+ |y| . ¥

Question: For an arbitrary set X, can we define a metric on X? The
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following example shows that we can,

Example 9.1.2 (Discrete Metric)

Let X be any set. We can simply define

d(x, y) =

1 x 6= y

0 x = y

This metric clearly satisfies all 3 criterias of being a metric:

• d : X × X → {0, 1} and so d(x, y) ≥ 0, and by definition, we have

d(x, y) = 0 ⇐⇒ x = y;

• By definition, d(x, y) = d(y, x) as it does not matter how the pair is

ordered; and

• Since d(x, y) ≥ 0, we have that d(x, y) ≤ d(x, z) + d(y, z). ¥

Example 9.1.3 (Euclidean Metric / 2-metric on Rn)

Let X = Rn. Let ~x = {x1, x2, . . . , xn} and ~y = {y1, y2, . . . , yn}. Define

d2(~x,~y) =

√
n

∑
i=1

(xi − yi)2

Note that in R2, this is our regular (Euclidean) distance between two

points.

It is not difficult to see that d2 satisfies the first 2 criterion to being

a metric:

x

y

~x +~y

~x

~y

Figure 9.1: A visualization of the
triangle inequality in R2.

• d2 is the square root of the sum of squares, and so d2(~x,~y) ≥ 0 for

any ~x,~y ∈ Rn, and d2(~x,~y) = 0 ⇐⇒ ∀i ∈ {1, . . . , n} xi = yi ⇐⇒
~x = ~y;

• Since (xi − yi)
2 = (yi − xi)

2 for any xi, yi ∈ R, we have that

d2(~x,~y) = d2(~y,~x).

However, it is not immediately clear that d2 satisfies the triangle in-

equality criterion, especially if n ≥ 3. If n = 2, heuristically, the trian-

gle inequality simply tells that the length of any one side of a triangle

is less than or equal to the sum of the other two, e.g. Figure 9.1. ¥

Remark 9.1.2
Many of the important examples of metric
spaces are vector spaces with an abstract
length function, or norm. a
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# Definition 32 (Norm & Normed Linear Space)

Given a vector space V (usually over R), a norm on V is a function

‖·‖ : V → R

such that

1. (positive definiteness) ‖v‖ ≥ 0 and ‖v‖ = 0 ⇐⇒ v = 0;

2. (scalar multiplication) ‖α · v‖ = |α| ‖v‖; and

3. (triangle inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖.

The pair (V, ‖·‖) is called a normed linear space.

Remark 9.1.3

Given a normed linear space (V, ‖·‖), a natural metric, d‖·‖, on V induced

by ‖·‖ can be defined as

Exercise 9.1.1
Prove that d‖·‖ is indeed a metric.

d‖·‖(x, y) = ‖x− y‖ . a

´ Proof (Exercise 9.1.1)

1. (positive definiteness) It is clear from the definition of a norm

that d‖·‖(x, y) = ‖x− y‖ ≥ 0, and d‖·‖(x, y) = 0 ⇐⇒ x− y =

0 ⇐⇒ x = y.

2. (symmetry) Symmetry follows simply from definition, as ‖x− y‖ =
‖y− x‖.

3. (triangle inequality) For x, y, z ∈ V, we have

d‖·‖(x, y) = ‖x− y‖ = ‖x− z + z− y‖

≤ ‖x− z‖+ ‖z− y‖ ∵ triangle inequality of norms

= ‖x− z‖+ ‖y− z‖ ∵ symmetry

= d‖·‖(x, z) + d‖·‖(y, z)
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Example 9.1.4 (Euclidean Norm)

Let X = Rn, and ~x = (x1, . . . , xn) ∈ R2. Define ‖·‖2 such that

‖(x1, . . . , xn)‖2 =

√
n

∑
i=1

x2
i

From Example 9.1.3, we are given the triangle inequality property, in

which we have yet to prove. Positive definiteness is clear. For scalar

multiplication, let ~x = x1, . . . , xn, and notice that

‖α ·~x‖2 =

√
n

∑
i=1

(αxi)2 =

√
α2

n

∑
i=1

x2
i = |α|

√
n

∑
i=1

x2
i = |α| ‖~x‖2 .

Thus ‖·‖2 is indeed a norm. We call ‖·‖2 the 2-norm or the Euclidean

norm.

We observe that, in comparison with Example 9.1.3, we have that

d2(~x,~y) = ‖~x−~y‖2 . ¥

Example 9.1.5 (1-norm)

Let X = Rn, and ~x = (x1, . . . , xn). Define

‖~x‖1 :=
n

∑
i=1
|xi| .

Clearly so, ‖·‖1 is a norm:

• (positive definiteness) This is true by the absolute value function,

i.e. every |xi| ≥ 0, and so the sum over these xi’s is also non-

negative, and ∑n
i=1 |xi| = 0 ⇐⇒ ∀i ∈ {1, . . . , n} xi = 0 ⇐⇒ ~x =

0.

• (scalar multiplication) This uses a similar argument as in the

previous example.

• (triangle inequality) This is true by, again, the triangle inequality

on absolute values.

We call ‖·‖1 the 1-norm.
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Thus, we can define

d1(~x,~y) = ‖~x−~y‖1

and it can easily be verified that d1 is indeed a metric. ¥

Example 9.1.6

Let X = Rn and ~x = (x1, . . . , xn). Define

‖~x‖∞ = max{|xi|}

Again, it is easy to see that ‖·‖∞ is a norm;

• (positive definiteness) ∵ ∀i ∈ {1, . . . , n} |xi| ≥ 0 =⇒
max{|xi} ≥ 0| and max{|xi|} = 0 ⇐⇒ xi = 0 ⇐⇒ ~x = 0.

• (scalar multiplication) Notice that

‖α ·~x‖∞ = max{|αxi|} = |α|max{|xi|} = |α| ‖~x‖∞ .

• (triangle inequality) This is once again true by the triangle in-

equality on the absolute value function, i.e.

∵ ∀i ∈ {1, . . . , n} |xi + yi| ≤ |xi|+ |yi|

max{|xi + yi|} ≤ max{|xi|}+ max{|yi|}.

We can then define

d∞(~x,~y) = max{|xi − yi|},

which we can easily verify that it is indeed a metric1. ¥ 1 Symmetry holds by the property of the
absolute value function.

Here’s an interesting notion: let

Si = {~x ∈ R2 | ‖~x‖i = 1}, i = 1, 2, ∞

Notice that we would then have the following graph: In fact, it is true

that if we let i ∈ N \ {0}, as suggested by Figure 9.2, we would see

that the “diamond” would grow into a “circle” as in S2, and as i ≥ 3,

the unit ball will expand and approach the “square”, which is S∞.
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S∞

S2
S1

Figure 9.2: Unit ball depending on ‖~x‖i

Another observation that we can make is if we can show that a set

is open for a “smaller” Si, then the same set is open for any Sj for

j ≥ i. Note that if we allow for 0 < i < 1,
then we would have a graph that
looks like the following, which is a
convex graph, i.e. we cannot create
well-defined norms.

Figure 9.3: ‖·‖p for 0 < p < 1

If we apply these norms into metrics, we have

d∞ ≤ d2 ≤ d1

where we say that d∞ is the least sensitive, and d1 being the most

sensitive2.

2 For sufficently close points, we see
that d∞ would reflect the least change,
while we can see change in d1 for every
two points that we take.

Example 9.1.7

For 1 < p < ∞, define on Rn

‖~x‖p =

(
n

∑
i=1
|xi|p

) 1
p

Continuing with the same idea as in previous examples, we can let

dp(~x,~y) =

(
n

∑
i=1
|xi − yi|p

) 1
p

In the next lecture, we will go into proving that this is indeed a norm,

and so we can define a metric using this norm. ¥
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10.1 Introduction to Metric Spaces (Continued)

# Definition 33 (‖·‖p-norm)

Given ~x = (x1, . . . , xn) ∈ Rn, we define, for 1 < p < ∞, the ‖·‖p-norm

to be

‖~x‖p =

(
n

∑
i=1
|xi|p

) 1
p

We asked the question: why is ‖·‖p a norm?

� Lemma 27 (Young’s Inequality)

If 1 < p < ∞,
1
p
+

1
q
= 1,

and if α, beta > 0, then

α · β ≤ αp

p
+

βq

q
.

´ Proof

Motivated by Figure 10.1, using notions from calculus, we have

from calculus,

t

u u = tp−1

β

α

Figure 10.1: Motivation for Lemma 27.
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αβ ≤
∫ α

0
tp−1 dt +

∫ β

0
uq−1 du

=
tp

p

∣∣∣α
0
+

uq

q

∣∣∣β
0

=
αp

p
+

βq

q
,

where we note that

1
p
+

1
q
= 1

q
p
= q− 1

p
q
= p− 1

1 = (p− 1)(q− 1)

¯Theorem 28 (Hölder’s Inequality)

For 1 < p < ∞, let 1
p + 1

q = 1 1. Let 1 We also call q the conjugate of p.

~x = (x1, . . . , xn), ~y = (y1, . . . , yn).

Then
n

∑
i=1
|xiyi| ≤

(
n

∑
i=1
|xi|p

) 1
p

·
(

n

∑
i=1
|yi|q

) 1
q

.

Ã Note 10.1.1

Note that p = 2 is just the Cauchy-Schwarz Inequality:

n

∑
i=1
|xiyi| ≤

(
n

∑
i=1
|xi|2

) 1
2

·
(

n

∑
i=1
|yi|2

) 1
2

=⇒

(
n

∑
i=1
|xiyi|

)2

≤
(

n

∑
i=1
|xi|2

)
·
(

n

∑
i=1
|yi|2

)
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´ Proof

Since if either ~x or ~y is zero, then we have that the inequality is

trivially true, we can suppose that ~x 6= 0 6= ~y. Now, note that for

α, β 6= 0, we have that2 2 In the second inequality, notice that we
can easily get back to the first equation
by dividing both sides by αβ.

n

∑
i=1
|xiyi| ≤

(
n

∑
i=1
|xi|p

) 1
p

·
(

n

∑
i=1
|yi|q

) 1
q

m

n

∑
i=1
|αxi · βyi| ≤

(
n

∑
i=1
|αxi|p

) 1
p

·
(

n

∑
i=1
|βyi|q

) 1
q

.

So we can assume that(
n

∑
i=1
|xi|p

) 1
p

= 1 =

(
n

∑
i=1
|yi|q

) 1
q

, (10.1)

and if not, we can simply choose α, β 6= 0 to scale these values to

become one. By Lemma 27, we have

|xiyi| ≤
|xi|p

p
+
|yi|q

q
.

Hence

n

∑
i=1
|xiyi| ≤

n

∑
i=1

|xi|p

p
+

n

∑
i=1

|yi|q

q
=

1
p
+

1
q
∵ Equation (10.1)

= 1 =

(
n

∑
i=1
|xi|p

) 1
p

·
(

n

∑
i=1
|yi|q

) 1
q

as required.

We are now ready to prove our long-awaited result.

¯Theorem 29 (Minkowski’s Inequality)

Let 1 < p < ∞. If

~x = (x1, . . . , xn), ~y = (y1, . . . , yn)
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in Rn, then

(
n

∑
i=1
|xi + yi|p

) 1
p

≤
(

n

∑
i=1
|xi|p

) 1
p

+

(
n

∑
i=1
|yi|p

) 1
p

,

i.e.

‖~x +~y‖p ≤ ‖~x‖p + ‖~y‖p .

´ Proof

Let
1
p
+

1
q
= 1.

Once again, we may assume that ~x 6= 0 6= ~y, as otherwise the

inequality is true trivially so. Now, notice that

n

∑
i=1
|xi + yi|p =

n

∑
i=1
|xi + yi| |xi + yi|p−1

≤
n

∑
i=1
|xi| |xi + yi|p−1 +

n

∑
i=1
|yi| |xi + yi| ∵

triangle
inequality

≤
(

n

∑
i=1
|xi|p

) 1
p
(

n

∑
i=1
|xi + yi|(p−1)q

) 1
q

+

(
n

∑
i=1
|yi|p

) 1
p
(

n

∑
i=1
|xi + yi|(p−1)q

) 1
q

where the last step is by Hölder’s Inequality. Note that 1
p + 1

q =

1 =⇒ p = q(p− 1). Thus

n

∑
i=1
|xi + yi|p ≤

( n

∑
i=1
|xi|p

) 1
p

+

(
n

∑
i=1
|yi|p

) 1
p
 ·( n

∑
i=1
|xi + yi|p

) 1
q

=⇒
(

n

∑
i=1
|xi + yi|p

)1− 1
q

≤
(

n

∑
i=1
|xi|p

) 1
p

+

(
n

∑
i=1
|yi|p

) 1
p

Ã Note 10.1.2

With this we have that ‖·‖p satisfies the triangle inequaltiy condition, and

so ‖·‖p is a norm on Rn.
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Ã Note 10.1.3

Given 1 ≤ p ≤ q < ∞, we have3 3 For a visual representation of this
result, see Figure 9.2.

‖·‖∞ ≤ ‖·‖q ≤ ‖·‖p ≤ ‖·‖1 .

´ Proof

It is quite clear that ∀p ≥ 1,

‖·‖∞ = max{|·|} ≤
(
∑ |·|p

) 1
p = ‖·‖p .

For 1 ≤ p ≤ q < ∞, consider Holder’s Inequality, where we have

n

∑
i=1
|ai| |bi| ≤

(
n

∑
i=1
|ai|r

) 1
r

·
(

n

∑
i=1
|bi|

r
r−1

)1− 1
r

.

Let |ai| = |xi|p, |bi| = 1 and r = q
p ≥ 1 4. Then we have 4 Note that this is true by p ≤ q.

n

∑
i=1
|xi|p ≤

(
n

∑
i=1
|xi|q

) p
q

·
(

n

∑
i=1

1
q

q−p

)1− p
q

= n1− p
q ·
(

n

∑
i=1
|xi|q

) p
q

Therefore, for ~x = (x1, . . . , xn) ∈ R,

‖~x‖p =

(
n

∑
i=1
|xi|p

) 1
p

≤

n1− p
q ·
(

n

∑
i=1
|xi|q

) p
q


1
p

= n
1
p−

1
q ·
(

n

∑
i=1
|xi|q

) 1
q

= n
1
p−

1
q · ‖~x‖q .

Thus, we have

‖·‖q ≤ ‖·‖p .

The chain of inequality follows.
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Example 10.1.1 (Sequence Spaces)

1. Let `1 =

{
{xi} |

∞
∑

i=1
|xi| < ∞

}
. Define

‖{xi}‖1 =
∞

∑
i=1
|xi|

Let {xi}, {yi} ∈ `1. Observe that ∀n ∈N, we have

n

∑
i=1
|xi + yi| ≤

n

∑
i=1
|xi|+

n

∑
i=1
|yi| ≤ ‖{xi}‖1 + ‖{yi}‖1 .

Then by the Monotone Convergence Theorem, we have that

∞

∑
i=1
|xi + yi| ≤ ‖{xi}‖1 + ‖{yi}‖1 .

Thus {xi + yi} ∈ `1 and

‖{xi + yi}‖1 ≤ ‖{xi}‖1 + ‖{yi}‖1 .

Let {xn} ∈ `1 and α ∈ R. Then

∞

∑
i=1
|αxi| = |α|

∞

∑
i=1
|xi| .

Therefore {αxn} ∈ `1 and ‖{αxn}‖1 = |α| ‖{xn}‖1.

Thus, we have that `1 is a vector space, and (`1, ‖·‖1) is a normed

linear space.

2. Let `∞(N) = `∞ = {{xi} | {xi} is bounded }. Define

‖{xi}‖∞ = sup{|x1| | i ∈N}.

Observe that ∀{xi}, {yi} ∈ `∞, then ∀i ∈N, we have

|xi + yi| ≤ |xi|+ |yi| ≤ ‖{xi}‖∞ + ‖{yi}‖∞ .

So {xi + yi} ∈ `∞, and

‖{xi + yi}‖∞ ≤ ‖{xi}‖∞ + ‖{yi}‖∞ .
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Consequently so, {αxi} ∈ `∞ and

‖{αxi}‖∞ = |α| ‖{xi}‖∞ . ¥

Question: What about `p(R)?
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11.1 Introduction to Metric Spaces (Continued 2)

We wondered about `p(R) in the last lecture but let us consider a

case that is even more general.

Question: Can we define `p(Γ) for any set Γ?

Example 11.1.1

Let `∞(Γ) = { f : Γ→ R | f (Γ) is bounded }. If f ∈ `∞(Γ), define

‖ f ‖∞ = sup{| f (x)| | x ∈ Γ}.

Notice that for f , g ∈ `∞(Γ), and α ∈ R, then we have, by the Triangle

Inequality,

‖ f + g‖∞ = sup{|( f + g)(x)| | x ∈ Γ}

= sup{| f (x) + g(x)| | x ∈ Γ}

≤ sup{| f (x)| | x ∈ Γ}+ sup{|g(x)| | x ∈ Γ}

= ‖ f ‖∞ ‖g‖∞ .

So f + g ∈ `∞(Γ), and

‖ f + g‖∞ ≤ ‖ f ‖∞ + ‖ f ‖∞ .

Also, we have

‖α f ‖∞ = sup{|(α f )(x)| | x ∈ Γ}

= sup{|α| | f (x)| | x ∈ Γ}
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= |α| sup{| f (x)| | x ∈ Γ}

= |α| ‖ f ‖∞ .

So α f ∈ `∞(Γ), and ‖α f ‖∞ = |α| ‖ f ‖.

Therefore, (`∞(Γ), ‖·‖∞) is a normed linear space. ¥

Example 11.1.2

Let `1(Γ) = { f : Γ→ R | P( f )}, where P( f ) is the statement Require clarification Notice that
∀ f ∈ `1(Γ), for each n ∈N,

An = {x ∈ Γ | | f (x)| ≥ 1
n
} is finite.

So

A0 =
∞⋃

n=1

An is countable.

and

A0 = {x ∈ Γ | | f (x)| 6= ∅}

‖ f ‖1 = sup

{
n

∑
i=1
| f (xi)| | x1, . . . , xn ∈ Γ, n ∈N \ {0}

}
< ∞.

It is clear that `1(Γ) ⊆ `∞(Γ), where `∞(Γ) is from Example 11.1.1.

Consequently, (`1(Γ), ‖·‖1) is a normed linear space. ¥

We can extend the same idea onto `p spaces.

Example 11.1.3

Let X = C[a, b] = { f : [a, b] → R | f is continuous on [a, b]}, and

define1 1 Note in this case sup is also max, since
we are on a closed interval.

‖ f ‖∞ = sup{| f (x)| | x ∈ [a, b]}

= max{| f (x)| | x ∈ [a, b]}

By (regular) Triangle Inequality, for any f , g ∈ C[a, b], we have

‖ f + g‖∞ = max{| f (x) + g(x)| | x ∈ [a, b]}

≤ max{| f (x)| | x ∈ [a, b]}+ max{|g(x)| | x ∈ [a, b]}

= ‖ f ‖∞ + ‖g‖∞ ,

and, for α ∈ R,

‖α f ‖∞ = max{|α f (x)| | x ∈ [a, b]}

= |α|max{| f (x)| | x ∈ [a, b]

= |α| ‖ f ‖∞ .

Thus ‖·‖∞ is a norm on C[a, b], and (C[a, b], ‖·‖∞) is a normed linear

space2,3. 2 This space is complete.
3 This space is important for us for the
purpose of this course.
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Also, observe that

C[a, b] ⊂ `∞([a, b]). ¥

Example 11.1.4

Let X = C[a, b] 4 have the same definition as the previous example, 4 Some authors also write this as L′[a, b].

but this time define

‖ f ‖1 =
∫ b

a
| f (t)| dt.

By linearity of integration, both the triangle equality and scalar mul-

tiplication hold, and so (C[a, b], ‖·‖1) is a normed linear space5. ¥ 5 Compared to the last example, this is
not a complete space.

Example 11.1.5

Let X = C[a, b], and 1 < p < ∞. Define

‖ f ‖p =

(∫ b

a
| f (x)|p dx

) 1
p

Again, by linearity of integration, scalar multiplication holds. How-

ever, it is not as easy to show for the triangle inequality; we are now

asking the same question as we did before for `p, which we solved

using Hölder’s Inequality and Minkowski’s Inequality. But now,

instead of summations, we have integrations. ¥

¯Theorem 30 (Hölder’s Inequality v2)

Let 1 < p < ∞ and 1
p + 1

q = 1. For each f , g ∈ C[a, b], we have

∫ b

a
| f (t)g(t)| dt ≤

(∫ b

a
| f (t)|p dt

) 1
p
(∫ b

a
|g(t)|q dt

) 1
q

.

´ Proof

If either f (x) = 0 or g(x) = 0 for all x ∈ [a, b], then the inequality

holds trivially so. Thus, we may assume that ∀x ∈ [a, b], f (x) 6=
0 6= g(x). By the linearity of integration, we can apply the same
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reasoning as we did in ¯Theorem 28, and assume that

∫ b

a
| f (t)|p dt = 1 =

∫ b

a
|g(t)|q dt

By Lemma 27, we have

| f (t)g(t)| ≤ | f (t)|
p

p
+
|g(t)|q

q
.

Thus ∫ b

a
| f (t)g(t)| dt ≤

∫ b

a

(
| f (t)|p

p
+
|g(t)|q

q

)
dt

=
1
p
+

1
q
= 1

=

(∫ b

a
| f (t)|p dt

) 1
p
(∫ b

a
|g(t)|q dt

) 1
q

as required.

¯Theorem 31 (Minkowski’s Inequality v2)

Let 1 < p < ∞. If f , g ∈ C[a, b], then

(∫ b

a
|( f + g)(t)|p dt

) 1
p

≤
(
| f (t)|p dt

) 1
p ·
(∫ b

a
|g(t)|p dt

) 1
p

.

´ Proof

The proof is similar to the one we had in ¯Theorem 29; if ∀x ∈
[a, b], either f (x) = 0 or g(x) = 0, then the inequality holds trivially

so. Thus we may assyme that ∀x ∈ [a, b], f (x) 6= 0 6= g(x).

Now, notice that by (regular) Triangle Inequality and, later on,

¯Theorem 30,

∫ b

a
|( f + g)(t)|p dt

=
∫ b

a
|( f + g)(t)| |( f + g)(t)|p−1 dt

≤
∫ b

a
| f (t)| |( f + g)(t)|p−1 dt +

∫ b

a
|g(t)| |( f + g)(t)| dt
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≤
(∫ b

a
| f (t)|p dt

) 1
p
(∫ b

a
|( f + g)(t)|q(p−1) dt

) 1
q

+

(∫ b

a
|g(t)|p dt

) 1
p
(∫ b

a
|( f + g)(t)|q(p−1) dt

) 1
q

=

(∫ b

a
| f (t)|p dt

) 1
p

+

(∫ b

a
|g(t)|p dt

) 1
p


·
(∫ b

a
|( f + g)(t)|p

) 1
q

where we note that 1
p + 1

q = 1 =⇒ p = q(p− 1). Consequently,

since 1
p = 1− 1

q ,

(∫ b

a
|( f + g)(t)|p dt

) 1
p

≤
(
| f (t)|p dt

) 1
p ·
(∫ b

a
|g(t)|p dt

) 1
p

,

as required.

This shows that our definition of ‖·‖p on C[a, b] is indeed a norm,

and so (C[a, b], ‖·‖p) is a normed linear space.

Exercise 11.1.1
Show that there exists an injection from
(C[a, b], ‖·‖2) to `2(N). Note that this
does not work for p ≥ 3.

Example 11.1.6 (Bounded Operator)

Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed linear spaces. Let T : X → Y

be linear. Define

‖T‖ = sup{‖TX‖Y | ‖x‖X < 1}.

We say that T is bounded if ‖T‖ < ∞. Let

B(X, Y) = {T : X → Y | T is bounded }.

In the next lecture, we shall show that (B(X, Y), ‖·‖) is a normed

linear space. ¥

Question: Consider the transformation

1 2

1 1

 : R2 → R2. What is

a norm

∥∥∥∥∥∥
1 2

1 1

∥∥∥∥∥∥ that works?
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Example 12.1.1 (Bounded Operator)

Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed linear spaces. Let T : X → Y

be linear. Define In this example, we look at how we can
apply a translation of norms from X to
Y that preserves the norm.‖T‖ = sup{‖T(x)‖Y | ‖x‖X < 1}.

We say that T is bounded if ‖T‖ < ∞. Let

B(X, Y) = {T : X → Y | T is bounded }.

To show that B(X, Y) is a normed linear space, let S, T ∈ B(X, Y), and

let ‖x‖X ≤ 1. Then

‖(S + T)(x)‖Y = ‖S(x) + T(x)‖Y

≤ ‖S(x)‖Y + ‖T(x)‖Y ∵ ‖·‖Y is a norm

≤ ‖S‖+ ‖T‖

and so S + T ∈ B(X, Y) and ‖S + T‖ ≤ ‖S‖ + ‖T‖. For α ∈ R, we

have

‖αS‖ = sup{‖(αS)(x)‖Y | ‖x‖X ≤ 1}

= |α| sup{‖S(x)‖Y | ‖x‖X ≤ 1} ∵ ‖·‖Y is a norm

= |α| ‖S‖ .

So (αS) ∈ B(X, Y) and ‖αS‖ = |α| ‖S‖. It is clear that due to ‖·‖Y

being a norm, and so ‖·‖ is also positive definite. Thus B(X, Y) is a
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normed linear space as claimed. ¥

12.2 Topology on Metric Spaces

# Definition 34 (Open & Closed)

Let X(, d) be a metric space. If x0 ∈ X, then

B(xo, ε) = {y ∈ X | d(x, y) < ε}

is called the open ball centered at x0 with radius ε > 0.

B[x0, ε] = {y ∈ X | d(x, y) ≤ ε}

is called the closed ball centered at x0 with radius ε > 0.

We say that U ⊂ X is open if

∀x ∈ U ∃ε0 > 0 B(x0, ε0) ⊂ U.

We say that F ⊂ X is closed if FC is open.

7 Proposition 32 (Properties of Open Sets)

Let (X, d) be a metric space.

1. X, ∅ are open,

2. If {Uα}α∈I is a collection of open sets, then U =
⋃

α∈I is open.

3. If {U1, . . . , Un} is a collection of open sets, then U =
⋂n

i=1 Ui is open.

´ Proof

1. If x0 ∈ X, then B(x0, 1) ⊆ X, and so X is open. The empty set is

open vacuously so.

2. Let U =
⋃

α∈I Uα and x0 ∈ U. Then ∃α0 ∈ I such that x0 ∈ Uα0 .
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Then ∃ε0 > 0 such that

B(x0, ε0) ⊂ Uα0 ⊂ U.

3. Let x0 ∈ U =
⋂n

i=1. Then for each i ∈ {1, . . . , n}, ∃εi > 0 such

that B(x0, εi) ⊂ Ui. Let

ε0 = min{ε1, . . . , εn}.

Then we have that ∀i ∈ {1, . . . , n}, ε0 ≤ εi. Thus

B(x0, ε0) ⊂ B(x0, εi) ⊂ Ui

for each i. Therefore B(x0, ε0) ⊂ U.

�Corollary 33 (Properties of Closed Sets)

Let (X, d) be a metric space.

1. X, ∅ are closed.

2. If {Fα}α∈I is a collection of closed sets, then F =
⋂

α∈I Fα is closed.

3. If {F1, . . . , Fn} is a collection of closed sets, then F =
⋃n

i=1 Fi is closed.

´ Proof

The proof follows from De Morgan’s Laws, 7 Proposition 32, and

by taking set complements.

Exercise 12.2.1
Write out the full proof for �Corollary 33
as an exercise.Example 12.2.1

Let X be any set and d the discrete metric

d(x, y) =

1 x 6= y

0 x = y

We want to know what sets are open on X under d. Notice that any
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set of just a singleton is open, since

B
(

x0,
1
2

)
⊂ X.

Consequently, any A ∈ P(X) is an arbitrary union of open sets, i.e.

A =
⋃

x∈A
{x}.

Thus by 7 Proposition 32, A is open. ¥

Ã Note 12.2.1

On R, only ∅ and R itself are both open and closed. This can be proven

using the Intermediate Value Theorem.

# Definition 35 (Topology)

Given any X, a set τ ⊂ P(X) is called a topology on X is

1. X, ∅ ∈ τ

2. If {Uα}α∈I such that for each α ∈ I, Uα ∈ τ, then

U =
⋃
α∈I

Uα ∈ τ.

3. If {U1, . . . , Un} such that Ui ∈ τ for each i ∈ {1, . . . , n}, then

U =
n⋂

i=1

Ui ∈ τ.

If (X, d) is a metric space, then

τd = {U ⊂ X | U open in (X, d)}

is called a metric topology, or d-topology, associated with the metric d.

We call (X, τ) a topological space.
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Example 12.2.2

Given X,

1. P(X) is a topology on X, and it is called the discrete topology;

2. {∅, X} is a topology on X, and it is called the indiscrete topology.

¥
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¯Theorem 34 (Open Balls are Open)

1. B(x0, ε) is open.

2. B[x0, ε] is closed.

3. Every open set is the union of open balls.

4. ∀x ∈ X, {x} is closed.

´ Proof

1. Consider x ∈ B(x0, ε) and let r = d(x, x0).

x0 ε

x

r

Figure 13.1: Idea of proof for 1. in R2.

Let α = ε− r. Assume that y ∈ B(x, α). By the Triangle Inequal-

ity,

d(x0, y) ≤ d(x0, x) + d(x, y) < r + α = ε.

2. Let y ∈ B[x0, ε]C, and let r = d(x0, y).
x0ε

y

r

Figure 13.2: Idea of proof for 2. in R2.

Let α = r − ε. Assume z ∈ B(y, α), and suppose, for contradic-

tion, that z ∈ B[x0, ε]. Then

r = d(x0, y) ≤ d(x0, z) + d(z, y) < ε + α = r,

but r < r contradicts the fact that r = r.
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3. Let U ⊂ X be open. ∀x ∈ U, let εx > 0 be such that B(x, εx) ⊂ U.

Then

U =
⋃

x∈U
B(x, εx).

4. Let y ∈ X such that y 6= x. Let r = d(y, x). Then x /∈ B
(
y, r

2
)
,

and so

B
(

y,
r
2

)
⊂ {x}C. �

Example 13.1.1 (Open Intervals are Open)

Let X = R, and d(x, y) = |x− y|, the standard metric. Let I = (a, b),

for some a, b ∈ R∪ {±∞}. Let x ∈ I. Now let

ε = min{1, |x− a| , |x− b|}.

Then, clearly so, B(x, ε) ⊂ I. ¥

If U ⊂ R is open, and if we define ∼ on U by x ∼ y 1. if (x, y), (y, x) ⊂ 1 This is what we did in Q1.

U. We proved that ∼ is an equivalence relation. Let Ix = [x] be the

interval defined by ∼. We proved that Ix is an open interval.

Consequently, if we have U being open in R, then U can be ex-

pressed as the union of a countable collection {Iα, α ∈ I} of open

intervals, which are pairwise disjoint.

Question: Given U = {(x, y) | |x| , |y| < 1}, can we do the same

as above, i.e. can we use a countable collection of disjoint open sets to

express U, or, in other words, cover U?

Example 13.1.2 (Cantor Set)

Let’s consider the closed interval [0, 1], of which we shall label as P0.

0 11
9

2
9

1
3

2
3

7
9

8
9

Figure 13.3: Cantor set showing up to
n = 2, with the excluded interval in
n = 3 shown.

Define P1 by removing an open interval of length 1
3 sitting in the
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middle of P0, i.e.

P1 = [0, 1] \
(

1
3

,
2
3

)
=

[
0,

1
3

]
∪
[

2
3

, 1
]

Define P2 by removing an open interval of length 1
32 sitting in the

middle of each of the 2 closed intervals in P1, ie.

P2 =

[
0,

1
9

]
∪
[

2
9

,
1
3

]
∪
[

2
3

,
7
9

]
∪
[

8
9

, 1
]

Recursively so, define Pn+1 by removing an open interval of length
1

3n+1 sitting in the middle of each of the 2n closed intervals in Pn.

Let P, the Cantor Set (or Cantor Ternary Set), be defined as

P =
∞⋂

n=0
Pn.

The following are some properties of P:

1. P is closed, since it is closed under an arbitrary number of closed

sets (see �Corollary 33).

2. We have

x ∈ P ⇐⇒ x =
∞

∑
i=1

an

3n

where an = 0, 2. In other words, every element of P is a ternary

number.

3. |P| = 2ℵ0 = c.

4. Pn does not contain any interval of length greater than or equal to
1

3n .

5. Consequently, the length of P is 0. ¥
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14.1 Topology on Metric Spaces (Continued 2)

# Definition 36 (Closure)

Let A ⊆ (X, d). We define the closure A of A to be

A = ∩{F ⊂ X | F is closed , A ⊂ F}.

A is the smallest closed set that contains A.

# Definition 37 (Interior)

Let A ⊆ (X, d). We define the interior A◦ of A to be

A◦ = ∪{U ⊂ X | U is open , U ⊂ A}.

A◦ is the largest open set contained in A.

Remark 14.1.1

We have that

A◦ ⊂ A ⊂ A a

# Definition 38 (Neighbourhood)

We say that a set A is a neighbourhood of a point x ∈ X if x ∈ A◦.1 1 A neighbourhood is not necessarily
open; the definition applies to elements
in the interior after all.
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Ã Note 14.1.1

A is a neighourhood of x ∈ X if and only if ∃ε > 0 such that B(x, ε) ⊂
A.

# Definition 39 (Boundary Point)

Given A ⊂ (X, d), a point x is called a boundary point for A if

∀ε > 0 B(x, ε) ∩ A 6= ∅ ∧ B(x, ε) ∩ AC 6= ∅.

We denote the collection of all boundary points of A by bdy(A).

7 Proposition 35 (Closed Sets Include Its Boundary Points)

Let (X, d) be a metric space and A ⊂ X. Then A is closed ⇐⇒
bdy(A) ⊂ A.

´ Proof

(1) =⇒ (2): Suppose x ∈ AC, which is open. Then ∃ε > 0 such

that B(x, ε) ⊂ AC. Then x /∈ bdy(A), i.e. bdy(A) ⊂ A.2 2 The idea of this proof is to show that it
is impossible for the boundary to be in
AC .(2) =⇒ (3): 3Let x ∈ AC. Then, by assumption, x /∈ bdy(A).
3 To show that A is closed, we should
show that AC is open.Then ∃ε > 0 such that either B(x, ε) ⊂ A or B(x, ε) ⊂ AC. But since

x /∈ A, we must have B(x, ε) ⊂ AC, i.e. AC is open.

7 Proposition 36 (Closures include the Boundary Points of a

Set)

Given A ⊂ (X, d), we have A = A ∪ bdy(A).
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´ Proof

By definition, A ⊆ A, so it suffices to show that bdy(A) ⊂ A to

show that A ∪ bdy(A) ⊆ A.

4Assume that x /∈ A, i.e. x ∈ AC, which is open since A is 4 Here, we employ the same proof as
the previous proposition.

closed by definition. Then ∃ε > 0 such that B(x, ε) ⊂ AC. Since

x /∈ A ⊂ A, we have that B(x, ε) ∩ A = ∅, i.e. x /∈ bdy(A).

Therefore bdy(A) ⊂ A, and so A ∪ bdy(A) ⊆ A as claimed.

5Let x ∈ bdy(A ∪ bdy(A)). Then ∀ε > 0, we have 5 For this part, if we can show that
A∪bdy(A) is closed, then by definition,
A ⊆ A ∪ bdy(A) since A is the smallest
such set that contains A. To show that
A ∪ bdy(A) is closed, we can either
show that (A ∪ bdy(A))C is open, or
use 7 Proposition 35 to show that
bdy(A ∪ bdy(A)) ⊂ (A ∪ bdy(A)). We
shall show for the more complicated
expression.

B(x, ε) ∩ (A ∪ bdy(A)) 6= ∅ (14.1)

∧

B(x, ε) ∩ (A ∪ bdy(A))C 6= ∅. (14.2)

Note that by De Morgan’s Laws, we have that

(A ∪ bdy(A))C = AC ∩ bdy(A)C.

Then (14.2) would be

B(x, ε) ∩ AC ∩ bdy(A)C 6= ∅,

and so

B(x, ε) ∩ AC 6= ∅ (14.3)

∧

B(x, ε) ∩ bdy(A)C 6= ∅. (14.4)

From (14.1), we have

B(x, ε) ∩ A 6= ∅ ∨ B(x, ε) ∩ bdy(A) 6= ∅.

If B(x, ε) ∩ A 6= ∅, then ∵ (14.3), x ∈ bdy(A), and so

bdy(A ∪ bdy(A)) ⊆ (A ∪ bdy(A)). (†)

If B(x, ε) ∩ bdy(A) 6= ∅, let z ∈ B(x, ε) ∩ bdy(A). ∵ z ∈ B(x, ε),

let r = d(x, z), and α = ε − r > 0. Let z0 ∈ B(z, α). Then by the
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Triangle Inequality

d(x, z0) ≤ d(x, z) + d(z, z0) < r + α = ε.

Thus z0 ∈ B(x, ε) =⇒ (B(z, α) ⊆ B(x, ε)). Then ∵ z ∈ bdy(A),

we have B(z, α) ∩ A 6= ∅, and so B(x, ε) ∩ A 6= ∅. Then we

can just follow the argument we did in (†) and arrive as the same

conclusion. Consequently, by 7 Proposition 35, A ∪ bdy(A) is

closed as claimed.

Example 14.1.1

Let X = R and A = [0, 1). We have that

• bdy(A) = {0, 1};

• A◦ = (0, 1); and

• A = [0, 1]. ¥

Example 14.1.2

Let X = R and A = Q. We have that

• bdy(A) = R since every open ball around a ∈ A will always

contain elements in Q and QC;

• A◦ = ∅ since A◦ = A \ bdy(A); and

• A = R since A = A ∪ bdy(A). ¥

# Definition 40 (Separable)

A metric space (X, d) is separable if there exists a countable set A ⊂ X

such that A = X, and call the metric space non-separable otherwise.

Example 14.1.3

Every finite metric space (X, d) is separable.

This is true since every subset A of X is countable since X itself
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is countable. Consequently, if we pick A to be a subset that takes

every other element in X, then it is clear that A = X, and so (X, d) is

separable. ¥

Example 14.1.4

R is separable as shown in Example 14.1.2.6 ¥ 6

Exercise 14.1.1
Prove that Q = R using the Archimedean
Property of R.

Example 14.1.5

Rn is separable if dp for all 1 ≤ p ≤ ∞. We can apply the same

argument that we had for Example 14.1.2 and apply it component-

wise. Consequently, Qn = Rn. In other words, for any (x1, . . . , xn) ∈
(Rn, dp), we can pick a (r1, . . . , rn) ∈ Qn that is as close to (x1, . . . , xn)

as possible. ¥

Remark 14.1.2

Notice that

A = X ⇐⇒ ∀x ∈ X∀ ε > 0 B(x, ε) ∩ A 6= ∅. a

# Definition 41 (Dense)

A is dense in (X, d) if A = X. Equivalently, A is dense if for every open

set W ⊂ X, W ∩ A 6= ∅.

Question: Is (`1, ‖·‖1) separable? Is (`∞, ‖·‖∞) separable?

Recall Example 10.1.1.
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15.1 Topology on Metric Spaces (Continued 3)

# Definition 42 (Limit Points)

Let (X, d) be a metric space, and A ⊂ X. We say that x0 is a limit point

for A if for any neighbourhood of x0, we have that

N ∩ (A \ {x0}) 6= ∅.

Equivalently, ∀ε > 0, ∃x ∈ A, where x 6= x0, such that x ∈ B(x0, ε).1 1 This also means that B(x0, ε) must
have infinitely many points close to
x0, for otherwise, we would be able
to find some ε > ε0 > 0 such that
B(x0, ε0) ∩ A = ∅.

We sometimes call limit points as cluster points. We denote the set of

limit points of A as Lim(A) ⊂ X 2

2 Note that the set of limit points is not
necessarily a subset of A.

Example 15.1.1

Let X = R, and A = [0, 1) ⊂ R. We have that

Lim[0, 1) = [0, 1]. ¥

Example 15.1.2

Let X = R and A = N ⊂ R. Since ∀n ∈ N, ∃ε = 1
2 such that

∀m ∈N \ {n}, we have that m /∈ B
(

n, 1
2

)
, we have

Lim N = ∅. ¥
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7 Proposition 37 (Closed Sets Include Its Limit Points)

Let A ⊂ (X, d). Then

1. A is closed ⇐⇒ Lim(A) ⊂ A;

2. A = A ∪ Lim(A).

´ Proof

1. For the ( =⇒ ) direction, suppose A is closed. 3Let x0 ∈ AC. 3 This uses a reversed way of thinking:
if we want to show that Lim(A) ⊂ A,
then instead of trying to directly show
the containment, we show that all
elements in AC are in fact not limit
points due to A being closed.

Then ∃ε > 0 such that B(x0, ε) ∩ A = ∅. Thus, by definition, we

have that x0 /∈ Lim(A) 4. Therefore, Lim(A) ⊂ A.

4 Notice there that there are no elements
in A that are close to x0, and so it’s not
a limit point.

For the ( ⇐= ) direction, suppose Lim(A) ⊂ A. Let x0 ∈
AC. Then x0 /∈ Lim(A), which means that ∃ε > 0 such that

B(x0, ε) ∩ A = ∅, i.e. B(x0, ε) ⊂ AC. Thus A is closed.

2. 5It is clear that A ⊂ A. Let x0 ∈ AC. Then ∃ε > 0 such that 5 This proof is similar to that of
7 Proposition 36.

B(x0, ε) ⊂ AC. In particular, we have that B(x0, ε) ∩ A = ∅, i.e.

x0 /∈ Lim(A). Thus Lim(A) ⊂ A.

Again, it suffices to show that A ∪ Lim(A) is closed to CTP. Let

x0 ∈ (A ∪ Lim(A))C 6. Then ∃ε > 0 such that B(x0, ε) ∩ A = ∅. 6 It is clear by De Morgan’s Law that
x0 ∈ AC and x0 /∈ Lim(A), which
implies that Lim(A) ⊂ A. But this does
not give us a clear geometrical picture
of the notion.

If z ∈ Lim(A) and z ∈ B(x0, ε), then we have B(x0, ε) is a

neighbourhood of z, and so we must have that B(x0, ε) ∩ A 6= ∅,

which is a contradiction. Thus (A ∪ Lim(A))C is open, and so

A ∪ Lim(A) is closed, as required. �

7 Proposition 38 (Mixing the notions)

Let A ⊆ B ⊆ (X, d).

Exercise 15.1.1
Prove 7 Proposition 38.

1. A ⊆ B;

2. A◦ ⊂ B◦;

3. A◦ = A \ bdy(A);

4. bdy(A) = bdy(AC);
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5. A◦ =
(

AC
)C

.

´ Proof

1. It is clear that A ⊂ B ⊂ B. Suppose Lim(A) is not a subset of B.

Then ∃x ∈ Lim(A) \ B, i.e. x ∈ BC. Since B is closed, BC is open

and so ∃ε > 0 such that B(x, ε) ⊂ BC. Since x ∈ Lim(A), ∃a ∈ A

such that a ∈ B(x, ε) ⊂ BC, but A ⊂ B, a contracdiction. Thus

Lim(A) ⊂ B.

2. a ∈ A◦ =⇒ ∃ε > 0 B(a, ε) ⊂ A ⊂ B =⇒ a ∈ B◦ a

3. x ∈ A \ bdy(A) =⇒ ∃ε > 0 B(x, ε) ∩ AC = ∅ =⇒ x ∈ A◦ a
x ∈ A◦ =⇒ ∃ε0 > 0 B(x, ε0) ⊂ A

Sps x ∈ bdy(A). Then ∀ε > 0 B(x, ε) ∩ AC 6= ∅ =⇒ B(x, ε0) ∩
AC = ∅ B(x, ε0) ⊂ A a

4. x ∈ bdy(A) =⇒ ∀ε > 0 B(x, ε) ∩ A 6= ∅ ∧ B(x, ε) ∩ AC 6= ∅

x /∈ bdy(AC) =⇒ ∃ε0 > 0 B(x, ε0) ∩ A = ∅ ∨ B(x, ε0) ∩ AC = ∅

But B(x, ε0) ∩ A = ∅  ∀ε > 0 B(x, ε) ∩ AC 6= ∅

and B(x, ε0) ∩ AC = ∅  ∀ε > 0 B(x, ε) ∩ AC 6= ∅

=⇒ x ∈ bdy(AC) a. The converse is a similar argument.

5.
(

AC
)C

=
(

AC ∪ bdy(AC)
)C

= A ∩ bdy (A)C = A \ bdy(A) =

A◦ a

7 Proposition 39 (More on Closures and Interiors)

Let A, B ⊆ (X, d).

Exercise 15.1.2
Prove Item 2 for 7 Proposition 39.

1. A ∪ B = A ∪ B;

2. (A ∩ B)◦ = A◦ ∩ B◦.

´ Proof
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1. We have that A ⊂ A and B ⊂ B, so A∪ B ⊂ A∪ B. Since A∪ B is

closed, we must have that A ∪ B ⊆ A ∪ B. Similarly so, we have

A ⊆ A ∪ B =⇒ A ⊆ A ∪ B

B ⊆ A ∪ B =⇒ B ⊆ A ∪ B

and so A ∪ B ⊆ A ∪ B.

2. Since A◦ ⊆ A and B◦ ⊆ B, and A◦ ∩ B◦ is open, we must have

that A◦ ∩ B◦ ⊆ (A ∩ B)◦. On the other hand, since (A ∩ B)◦ ⊂
A◦ and (A ∩ B)◦ ⊂ B◦, we have that (A ∩ B)◦ ⊆ A◦ ∩ B◦.

Question: Is A ∩ B = A ∩ B? No.

Example 15.1.3

Let X = R, A = Q and B = QC. We know that A = R = B. But,

observe that

A ∩ B = ∅ while A ∩ B = R. ¥

However, we do have that A ∩ B ⊆ A ∩ B.

Question: Given (X, d) a metric space, is

B(x0, ε) = B[x0, ε]

true? Again, no.

Example 15.1.4

Let X be a set with |X| ≥ 2, and d the discrete metric. We have that

B(x0, 1) = {x0} but B[x0, 1] = X. ¥

15.2 Convergences of Sequences
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# Definition 43 (Convergence)

Given a sequence {xn} ⊂ (X, d) and x0 ∈ X, we say that the sequence

converges to x0 if

∀ε > 0 ∃N0 ∈N ∀n ≥ N0 d(xn, x0) < ε.

This is equivalent to saying that the sequence {d(xn, x0)} converges to 0

in X. We denote this by

x0 = lim
n→∞

xn or xn → x0.

If no such x0 exists, we say that the sequence diverges.

¯Theorem 40 (Uniqueness of Limits of Sequences)

If {xn} is a sequence in (X, d) with xn → x0 and xn → y0, then

x0 = y0.

´ Proof

x0 6= y0 =⇒ ∃ε = d(x0, y0) =⇒ B
(

x0, ε
2
)
∩ B

(
y0, ε

2
)
= ∅

x0

y0

ε

Figure 15.1: A geometric representation
of the proof for ¯Theorem 40.

However, ∃N0 ∈N ∀n ≥ N0

xn ∈ B
(

x0,
ε

2

)
∧ xn ∈ B

(
y0,

ε

2

)
which is impossible. Thus x0 = y0.
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16.1 Convergences of Sequences (Continued)

Example 16.1.1

Let X = Rn, d = dp, for 1 ≤ p ≤ ∞, and ~xk = {(xk,1, xk,2, . . . , xk,n)}.
Claim :

~Xk
`p→ ~x0 = (x0,1, x0,2, . . . , x0,n) ⇐⇒ ∀j ∈ {1, . . . , n} xk,j → x0,j.

Note : In general, we have∣∣∣xk,j − x0,j

∣∣∣ ≤ ‖~xk −~x0‖p

So it is clear that the ( =⇒ ) direction is true, i.e.

~Xk → ~x0 =⇒ ∀j ∈ {1, . . . , n} xk,j → x0,j.

For the other direction, we look at the different p’s to see how it

works differently: in all cases, assume that xk,j → x0,j for all j, and

that ε > 0

p = ∞ : we have that ∃k0 ∈N such that ∀k ≥ k0,

∣∣∣xk,j − x0,j

∣∣∣ < ε for j ∈ {1, . . . , n},

and so

‖~xk −~x0‖∞ = max
{∣∣∣xk,j − x0,j

∣∣∣ : 1 ≤ j ≤ n
}
< ε.
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p = 1 : if we assume that for each j,

∣∣∣xk,j − x0,j

∣∣∣ < ε

n
,

then

‖~xk −~x0‖1 =
n

∑
j=1

∣∣∣xk,j − x0,j

∣∣∣ < n

∑
j=1

ε

n
= ε.

1 < p < ∞ : this time, we assume that for each j,

∣∣∣xk,j − x0,j

∣∣∣ < ε
p
√

n
.

Then

‖~xk −~x0‖p =

(
n

∑
j=1

∣∣∣xk,j − x0,j

∣∣∣p) 1
p

<

(
n

∑
j=1

(
ε

p
√

n

)p
) 1

p

= ε.

This completes the proof of our claim. ¥

Example 16.1.2

Let X = (C[a, b], ‖·‖∞). Then

fn → f ⇐⇒ ‖ fn − f ‖∞ → 0.

Notice that for the ( =⇒ ) direction,1 1 Note that this is uniform convergence,
which implies pointwise convergence.

(∀ε > 0 ∃N0 ∈N ∀n ≥ N0 | fn − f | < ε)

=⇒ ‖ fn − f ‖∞ = max{| fn(x)− f (x)| : x ∈ [a, b]} < ε.

The (⇐= ) direction is easy, since

| fn(x)− f (x)| ≤ max{| fn(x)− f (x)| : x ∈ [a, b]} < ε. ¥

¯Theorem 41 (Sequential Characterizations of Limit Points,

Boundaries, and Closedness)

Given A ⊂ (X, d),

1. x0 ∈ Lim(A) ⇐⇒ ∃{xn} ⊂ A (xn 6= x0) ∧ (xn → x0);
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2. x0 ∈ bdy(A) ⇐⇒ ∃{xn} ⊂ A, {yn} ⊂ AC (xn → x0) ∧ (yn →
x0);

3. A is closed ⇐⇒ (∀{xn} ⊂ A xn → x0 ∈ X =⇒ x0 ∈ A)

´ Proof

1. x0 ∈ Lim(A) =⇒ ∀n ∈ N xn ∈ B
(

x0, 1
n

)
\ {x0} =⇒

d(xn, x0) <
1
n =⇒ xn → x0 a

{xn} ⊂ A (xn → x0) ∧ (xn 6= x0) =⇒
∀ε > 0 ∃N0 ∈N ∀n ≥ N0 xn ∈ B(x0, ε) a

2. x ∈ bdy(A) =⇒
(∵ ∀ε > 0 A ∩ B(x, ε) 6= ∅) ∃xn ∈ A ∩ B

(
x, 1

n

)
∧

(∵ ∀ε > 0 AC ∩ B(x, ε) 6= ∅) ∃yn ∈ AC ∩ B
(

x, 1
n

)
=⇒ ({xn} ⊂ A ∧ xn → x0) ∧

(
{yn} ⊂ AC ∧ yn → x0

)
a

({xn} ⊂ A ∧ xn → x0) ∧ ({yn} ⊂ AC ∧ yn → x0)

=⇒ ∀ε > 0 ∃N0 ∈N ∀n ≥ N0 xn, yn ∈ B(x, ε)

=⇒ x0 ∈ bdy(A) a

3. Sps A is closed and ({xn} ⊂ A) ∧ (xn → x0 ∈ X).

x0 ∈ AC =⇒ ∃ε > 0 B(x0, ε) ⊂ AC =⇒ xn /∈ B(x0, ε)  xn → x0

=⇒ x0 ∈ A

Sps A is ¬ closed =⇒ (∵ 7 Proposition 37) ∃x0 ∈ Lim(A) \ A

=⇒ (∵ Item 1 )∃{xn} ⊂ A (xn 6= x0) ∧ (xn → x0 /∈ A), showing

that RHS is false a

Example 16.1.3

Let X be a set and d a discrete metric. Then

xn → x0 ⇐⇒ ∃N ∈N ∀ln ≥ N xn = x0. ¥
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Example 16.1.4

Let c0 = {{xn} | limn→∞ xn = 0} ⊂ `∞.

Claim : c0 is closed in `∞.

Assume ~xk = {xk,j}∞
j=1 ⊂ c0, and let

~xk
‖·‖∞→ ~x0 = {x0,j}∞

j=1 ⊂ `∞,

i.e.

∀ε > 0 ∃N0 ∈N ∀k ≥ N0 ‖~xk −~x0‖∞ <
ε

2

Let k0 ≥ N0. ∵ ~xk0 ∈ c0, ∃J0 ∈ N such that ∀j ≥ J0, we have∣∣∣xk0,j

∣∣∣ < ε
2 , and so

∣∣x0,j
∣∣ ≤ ∣∣∣xk0,j − x0,j

∣∣∣+ ∣∣∣xk0,j

∣∣∣ < ε

2
+

ε

2
= ε.

Thus we have that

lim
j→∞

x0,j = 0

and so ~x0 ∈ c0. Therefore, by ¯Theorem 41 Item 3, c0 is closed in

`∞. ¥

Note, however, that c00 ⊂ `1 ⊂ c0 is not closed. Also `p is not

closed in c0.
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17.1 Induced Metric and Topologies

# Definition 44 (Induced Metric & Induced Topology)

Given (X, d) and A ⊂ X, we define the induced metric dA on A by

dA : A× A→ R

where dA(x, y) = d(x, y), for all x, y ∈ A, i.e. dA = d �A×A.

We define τA, the induced topology on A by

τA = {W ⊂ A |W = U ∩ A, U ⊂ X is open }

Ã Note 17.1.1

Note that τA is indeed a topology: it is clear that ∅ ∈ τA. Also, A ∈ τA,

since X is open and A = X ∩ A.

For an arbitrary collection {Uα}α∈I ⊂ τA, we know that each Uα ⊂
A, and so

⋃
α∈I Uα ⊂ A. Since each Uα ∈ τA, ∃Fα ⊂ X that is an open

set such that Uα = Fα ∩ A. Then

⋃
α∈I

Uα =
⋃
α∈I

Fα ∩ A.

Thus
⋃

α∈I Uα ∈ τA.

For a finite collection {U1, U2, ..., Un} ⊂ τA, we have that for each Ui,
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∃Fi ⊂ X that is open such that Ui = Fi ∩ A. By 7 Proposition 32, we

have that
n⋂

i=1

Fi ⊂ X

is open, and so
n⋂

i=1

Ui =
n⋂

i=1

Fi ∩ A ⊂ A.

Therefore,
⋂n

i=1 Ui ∈ τA.

¯Theorem 42 (The Metric Topology of a Subset is Its Induced

Topology)

We have

τA = τdA .

´ Proof

⊆ : W ∈ τA =⇒ ∃U ⊂ X open such that W = U ∩ A

=⇒ ∀x0 ∈W ∃ > 0 BX(x0, ε) ⊂ U

=⇒ BA(x0, ε) = BX(x0, ε) ∩ A ⊂W =⇒ W ∈ τdA a

⊇ : W ∈ τdA =⇒ ∀x0 ∈W ∃εx > 0 BA(x0, εx) ⊂W

=⇒ W =
⋃

x0∈W BA(x0, εx)

Let U =
⋃

x0∈W BX(x0, εx), which is open

=⇒ zW =
⋃

x0∈W BX(x0, ε0) ∩ A = U ∩ A

=⇒ W ∈ τA a

17.2 Continuity on Metric Spaces

# Definition 45 (Continuity)

Given metric spaces (X, dX), (Y, dY), and f : X → Y, we say that f is
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continuous at x0 if

∀ε > 0 ∃δ > 0 ∀x ∈ X dX(x, x0) < δ =⇒ dY( f (x), f (x0)) < ε.

¯Theorem 43 (Continuity and Neighbourhoods)

Given metric spaces (X, dX) and (Y, dY), and f : X → Y, then TFAE:

1. f is continuous at x0 ∈ X;
X Y

y0x0

Figure 17.1: Visual representation of
¯Theorem 43

2. if W is a neighbourhood of f (x0) ∈ Y, then f−1(W) is a neighbour-

hood of x0 ∈ X, where

f−1(W) = {x ∈ X : f (x) ∈W}.

´ Proof

(1) =⇒ (2) : Sps f is continuous at x0 ∈ X and W a neighbour-

hood of y0 = f (x0)

=⇒ f (x0) = y0 ∈W◦

=⇒ ∃ε > 0 B( f (x0), ε) ⊂W

∵ f is continuous,

∃δ > 0 ∀x ∈ X x ∈ BX(x0, δ) =⇒ dY( f (x), f (x0)) < ε

=⇒ f (x) ∈ BY(y0, ε) ⊂W

=⇒ x ∈ f−1(W) =⇒ x0 ∈ f−1(W)◦ a

(2) =⇒ (1) : Sps f−1(W) is a neighbourhood of x ∈ X for each

neighbourhood W of y0 = f (x0)

=⇒ ∀ε > 0 W = BY( f (x0), ε) is a neighbourhood of f (x0)

=⇒ U = f−1(W) is a neighbourhood of x0 ∈ X

=⇒ x0 ∈ U

=⇒ ∃δ > 0 B(x0, δ) ⊂ U = f−1(W)

=⇒ (dX(x, x0) < δ =⇒ dY( f (x), f (x0)) < ε) a
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¯Theorem 44 (� Sequential Characterization of Continuity)

For metric spaces (X, dX) and (Y, dY), and f : X → Y, TFAE

1. f is continuous at x0 ∈ X;

2. {xn} ⊂ X xn
X→ x0 =⇒ f (xn)

Y→ f (x0)

´ Proof

(1) =⇒ (2) : Sps f is continuous at x0 ∈ X.

xn → x0 ⇐⇒
∀ε > 0 ∃δ > 0 x ∈ BX(x0, δ) =⇒ f (x) ∈ BY( f (x0), ε)

xn → x0 =⇒ ∃N0 ∈ ∀n ≥ N0

dX(x0, x) < δ =⇒ xn ∈ BX(x0, δ) =⇒ f (x) ∈ BY( f (x0), ε) a

(2) =⇒ (1) (Prove by Contrapositive) : Sps f is ¬ continuous at

x0 ∈ X

=⇒ ∃ε0 > 0 ∀δ > 0 (xδ ∈ BX(x0, δ)) ∧ ( f (xδ) /∈ BY( f (x0), ε0))

=⇒ ∀n ∈N ∃xn ∈ BX

(
x0, 1

n

)
∧ f (xn) /∈ BY( f (x0), ε0)

=⇒ xn → x0 ∧ f (xn) 6→ f (x0) a
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18.1 Continuity on Metric Spaces (Continued)

# Definition 46 (Continuity on a Space)

We say that

f : (X, dX)→ (Y, dY)

is continuous on X if f is continous at each x0 ∈ X.

We let

C(X, Y) := { f : X → Y | f is continous on X},

be the set of all continuous functions on X.

Ã Note 18.1.1

In the case where Y = R, we will simply write C(X, X) as C(X).

Remark 18.1.1

We can also define the following set

Cb(X) = { f ∈ C(X) | f is bounded }.

We can define ‖·‖∞ on Cb(X) by

‖ f ‖∞ = sup{| f (x)| | x ∈ X}.
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Then we have that Cb(X) ⊆ `∞(X). a

¯Theorem 45 (Analogue of Sequential Characterization of

Continuity on a Space, and Continuity and Neighbourhoods)

Let f : (X, dX)→ (Y, dY). TFAE

1. f is continuous;

2. f−1(W) is open for every open set W ⊂ Y;

3. xn → x0 ∈ X =⇒ f (xn)→ f (x0) ∈ Y.

´ Proof

(1) =⇒ (2) : Let W ⊂ Y be open, and V = f−1(W).

x0 ∈ V =⇒ f (x0) = y0 ∈W =⇒ W is a neighbourhood of y0

=⇒ (∵ ¯Theorem 43 )V is a neighbourhood of x0

=⇒ x0 ∈ V◦ =⇒ V is open a

(2) =⇒ (3) : xn → x0 ∈ X

=⇒ ∀ε > 0 (∵ BY( f (x0), ε) open )

=⇒ x0 ∈ V = f−1(BY( f (x0), ε)), which is open

=⇒ ∃δ > 0 BX(x0, δ) ⊂ V

xn → x0 =⇒ ∃N0 ∈N ∀n ≥ N0 xn ∈ BX(x0, δ)

=⇒ f (xn) ∈ BY( f (x0), ε) =⇒ f (xn)→ f (x0) a

(3) =⇒ (1) : Sps f ¬ continuous, i.e.

∃ε0 > 0 ∀δ ≥ 0 ∃xδ ∈ X dX(xδ, x0) < δ ∧ dY( f (xδ), f (x0)) > ε0

=⇒ ∀n ∈N ∃xn ∈ dX(x0, xn) <
1
n ∧ dY( f (x0), f (xn)) > ε0 a

Remark 18.1.2

Note that if f : X → Y and B ⊂ Y, then

( f−1(B))
C
= f−1

(
BC
)

.

Thus we have that f : (X, dX) → (Y, dY) is continuous iff f−1(F) is closed

for each closed F ⊂ Y. a
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Question: For the forward direction1, if f : (X, dX) → (Y, dY) is 1 instead of talking about the pullback

continuous, and if U ⊂ X is open, is f (U) open? No.

Example 18.1.1

Consider f : R → R such that ∀x ∈ X, f (x) = 1. Then f (R) is not

open. ¥

This motivates us to consider such “nice” functions that allow us

to bring open sets to open sets, and closed to their closed counter-

part.

# Definition 47 (Homeomorphism)

A function ϕ : (X, dX) → (Y, dY) is a homeomorphism if ϕ is bijective

and if both ϕ and ϕ−1 are continuous.

Ã Note 18.1.2

If ϕ is a homeomorphism, then we have

• ϕ(W) ⊂ Y is open ⇐⇒ W ⊂ X is open;

• ϕ(F) ⊂ Y is closed ⇐⇒ F ⊂ X is closed.

# Definition 48 (Equivalent Metric Spaces)

We say that (X, dX) and (Y, dY) are equivalent metric spaces if there

exists a bijective ϕ : X → Y, and c1, c2 ≥ 0 such that

c + 1dX(x1, x2) ≤ dY(ϕ(x1), ϕ(x2)) ≤ c2dX(x1, x2).

Exercise 18.1.1

Show that the ϕ in # Definition 48 is a homeomorphism.

Example 18.1.2
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Let (X, d) be a metric space, where X is any set and d is the discrete

metric. Let f : (X, d) → (Y, dY), where (Y, dY) is another metric space

that is arbitrary. Since (X, d) is discrete, it is clear that if W ⊂ Y is

open, then f−1(W) is open. ¥

Question: Suppose that f : (R, |·|)→ (Y, d). When is f continuous?

Exercise 18.1.2
Use the Intermediate Value Theorem to
prove that the only open and closed sets in
R are ∅ and R.

Let y0 ∈ Y. We know that {y0} is both open and closed. Then if f

is continuous, we must have that f−1({y0}) is both open and closed.

Therefore, f must be a constant function.

# Definition 49 (Continuity on a set)

Let A ⊂ (X, d) and f : X → (Y, dY). We say that f is continuous on

A iff f �A is continuous on (A, dA), where dA is the induced metric, and

f �A is the restriction of f on A.

Remark 18.1.3

From the sequential characterization of continuity, we have that (A, dA) is

the induced metric iff whenever {xn} ⊂ A is a sequence with xn → x0, then

f (xn)→ f (x0). a
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19.1 Completeness of Metric Spaces

Question: Is there an intrinsic way for us to tell if a sequence

{xn} ⊂ (X, d) converges?

Observation Assume that xn → x0. Then

∀ε > 0 ∃N0 ∈N ∀n ≥ N0 d(x0, xn) <
ε

2
.

Thus if m, n ≥ N0, we have

d(xm, xn) < d(xm, x0) + d(x0, xn) < ε.

# Definition 50 (Cauchy)

We say that a sequence {xn} ⊂ (X, d) is Cauchy if

∀ε > 0 ∃N0 ∈N ∀m, n ≥ N0 d(xm, xn) < ε.

¯Theorem 46 (Convergent Sequences are Cauchy)

Every convergent sequence is Cauchy.

We proved this in our observation.
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Question: Is the converse true? No.

Example 19.1.1

Let X = (0, 1) with the usual metric. Let xn = 1
n . It is clear that {xn}

is Cauchy in (X, d), but the sequence does not converge.1 ¥ 1 The flaw here lies in the fact that X is
open. Should we have chosen X = [0, 1],
then the limit point 0 would have been
included, allowing the sequence to
actually converge.

# Definition 51 (Complete Metric Spaces)

A metric space (X, d) is complete if each Cauchy sequence {xn} ⊂ X

converges in (X, d).

19.1.1 Basic Properties of Cauchy Sequences

Observation Given a sequence {xn} ⊂ (X, d), it is possible that

{xn} diverges but {xn} has a subsequence {xn,k} that converges.

Example 19.1.2

The sequence {xn} defined by xn = (−1)n−1, i.e.

{xn} = {1,−1, 1,−1, . . .},

is divergent. However, x2k → −1 and x2k+1 → 1. ¥

¯Theorem 47 (� � � Convergent Cauchy Subsequences)

Let {xn} ⊂ (X, d) be Cauchy and assume xn,k → x0 for some subse-

quence {xn,k}∞
k=1. Then xn → x0.

´ Proof (� � � )

∀ε > 0 ∃N0 ∈N ∀m, n ∈ N0 d(xn, xm) <
ε
2

xn → x0 =⇒ ∃k0 ∈N nk0 ≥ N0 d(x0, xk0) <
ε
2
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∴ n ≥ N0 =⇒

d(xn, x0) ≤ d(xn, xk0) + d(xk0 , x0) <
ε

2
+

ε

2
= ε

∴ xn → x0

# Definition 52 (Boundedness)

Let A ⊂ (X, d). A is bounded if

∃M > 0 ∃x0 ∈ X A ⊂ B[x0, M].

7 Proposition 48 (Cauchy Sequences are Bounded)

If {xn} ⊂ (X, d) is Cauchy, then {xn} is bounded.

´ Proof

Let ε = 1. ∃N0 ∈ N ∀m, n ≥ N0 d(xn, xm) < ε. In particular, if

n ≥ N0, then d(xn, xN0) < 1. Then, let

M = max{d
(

x1, xN0

)
, d
(

x2, xN0

)
, . . . , d

(
xN0−1, dN0

)
, 1}

Then it is clear that {xn} ⊂ B[xN0 , M].

19.1.2 Examples of Complete Spaces

19.1.2.1 Completeness of R

¯Theorem 49 (Bolzano-Weierstrass)

Every bounded sequence {xn} ⊂ R has a convergent subsequence. Be sure to review a proof of this and
add it here.
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¯Theorem 50 (R is complete)

R is complete.

´ Proof

If {xn} ⊂ R is Cauchy, then it is bounded by 7 Proposition 48,

and so by Bolzano-Weierstrass, {xn} has a convergent subse-

quence {xn,k} such that xn,k → x0. Since {xn} is Cauchy, by

¯Theorem 47, xn → x0.

Example 19.1.3

Consider (Rn, ‖·‖p), with 1 ≤ p ≤ ∞. Let {~xk} = {(xk,1, xk,2, . . . , xk,n)}
be Cauchy in (Rn, ‖·‖p).

∵
∣∣∣xk,j − xm,j

∣∣∣ ≤ ‖~xk −~xm‖p

=⇒ {xk,j} is Cauchy for each j = 1, . . . , n

=⇒ xk,j → x0,j for each j = 1, . . . , n ∵ ¯Theorem 47

=⇒ ~xk → ~x0 = (x0,1, x0,2, . . . , x0,n)

=⇒ (R, ‖·‖p) is complete. ¥

Example 19.1.4

Let (X, d) be discrete2. If {xn} is Cauchy, then ∃N0 ∈ N such that 2 By discrete, we mean a discrete metric
space, i.e. d is a discrete metric.∀m, n ≥ N0, we have xn = xm, i.e. {xn} converges. Therefore, (X, d) is

complete. ¥

Example 19.1.5 (� )

Let X =
{

1, 1
2 , 1

3 , . . . , 1
n , . . .

}
⊂ R with the induced standard metric.

Recall that each of the singleton { 1
n} is open.

Note that given Y = {1, 2, . . . , n, . . .} = N with the discrete metric,

if we define ϕ : N →
{

1, 1
2 , . . . , 1

n , . . .
}

by ϕ(n) = 1
n , then ϕ is

a homeomorphism, and so (Y, d), where d is the discrete metric, is

complete.

However, as shown before, since { 1
n} is Cauchy but not conver-

gent, X =
{

1, 1
2 , . . . , 1

n , . . .
}

is not complete. ¥
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20.1 Completeness of Metric Spaces (Continued)

20.1.1 Examples of Complete Spaces (Continued)

20.1.1.1 Completeness of `p

¯Theorem 51 (� Completeness of `p)

`p is complete for every 1 ≤ p ≤ ∞.

´ Proof

p = ∞ : Let {~xk} ⊂ `∞ be Cauchy in ‖·‖∞. We have

~xk = {xk,1, xk,2, . . . , xk,j, . . .}

=⇒ ∀ε > 0 ∃N0 ∈N ∀m, n ≥ N0 ‖~xn −~xm‖∞ < ε
2

∵
∣∣xn,j − xm,j

∣∣ ≤ ‖~xn −~xm‖∞ < ε
2 ,

each of the ~xk, for k ≥ N0, is Cauchy in R.

=⇒ ∃x0,j ∈ R xk,j → x0,j ∵ R is complete

Let ~x0 = {x0,1, x0,2, . . . , x0,j, . . .} and x0,j = lim
k→∞

xk,j.

By our argument on Line 4, we have that

∣∣xn,j − x0,j
∣∣ = lim

m→∞

∣∣xn,j − xm,j
∣∣ ≤ ε

2
< ε (20.1)

=⇒ {xn,j − x0,j}∞
j=1 ∈ `∞

=⇒ {x0,j}∞
j=1 ∈ `∞
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Also, by Equation (20.1), we have

‖~xn −~x0‖∞ ≤
ε

2
< ε,

so ~xk → ~x0. a.

1 ≤ p < ∞ : Let {~xk} ⊂ `p be Cauchy. By the same argument as

above,
∣∣xn,j − xm,j

∣∣ ≤ ‖~xn −~xm‖p =⇒
{

xk,j

}∞

j=1
is Cauchy for each

j. Since R is complete, let x0,j = limk→∞ xk,j, and

~x0 = {x0,1, x0,2, . . . , x0,j, . . .}.

Now ∀ε > 0 ∃N0 ∈N ∀n, m ≥ N0 ‖~xn −~xm‖ < ε
2 . Thus for j ∈N,

(
j

∑
i=1
|xn,i − xm,i|p

) 1
p

≤ ‖~xn −~xm‖p <
ε

2
.

Then for n ≥ N0,

(
j

∑
i=1

∣∣xk,i − x0,i
∣∣p) 1

p

= lim
m→∞

(
j

∑
i=1
|xn,i − xm,i|p

) 1
p

≤ ε

2

for each j, and so

lim
j→∞

(
j

∑
i=1
|xn,i − x0,i|p

) 1
p

≤ ε

2

=⇒ ~x0 ∈ `p and ‖~xn −~x0‖p ≤ ε
2 < ε.

20.1.1.2 Completeness of (Cb(X), ‖·‖∞)

# Definition 53 (Convergence of Functions)

A sequence of functions fn : (X, dX) → (Y, dY) is said to converge

pointwise to some function f0 : (X, dX)→ (Y, dY) if for each x0 ∈ X,

∀ε > 0 ∃N0 ∈N ∀n ≥ N0 dY( fn(x0)− f0(x0)) < ε.
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The sequence fn is said to converge uniformly if

∀ε > 0 ∃N0 ∈N ∀n ≥ N0 ∀x ∈ X dY( fn(x)− f)(x)) < ε.

Remark 20.1.1

It is clear that uniform convergence implies pointwise convergence. a

Example 20.1.1 (Pointwise Convergent but not Uniformly Conver-

gent)

Let X = [0, 1], Y = R, fn(x) = xn for each n ∈N. It is quite clear that

fn(x)→ f0(x) =

0 x ∈ [0, 1)

1 x = 1
.

fn is pointwise convergent but not uniformly convergent; just take

ε = 1
2 . ¥

¯Theorem 52 (� � � Uniformly Convergent Pointwise

Continuous Functions have a Pointwise Continuous Limit)

Assume that fn : (X, dX) → (Y, dY) converges uniformly to f0 :

(X, dX) → (Y, dY). If each fn is continuous at x0 ∈ X, then f0 is

continuous at x0. This is a classic ε
3 argument.

´ Proof

∀ε > 0 ∃N0 ∈N ∀n ≥ N0 ∀x ∈ X dY( fn(x)− f0(x)) < ε
3

fn is continuous at x0 =⇒ ∃δ > 0 ∀x ∈ X x ∈ B(x0, δ)

=⇒ ∀n0 ≥ N0 dY( fn0(x)− fn0(x0)) <
ε
3

=⇒ dY ( f0(x), f0(x0))

≤ dY ( f0(x), fn0(x)) + dY ( fn0(x), fn0(x0)) + dY ( fn0(x0), f0(x0))

< ε
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=⇒ f0 is continuous at x0.
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21.1 Completeness of Metric Spaces (Continued 2)

21.1.1 Examples of Complete Spaces (Continued 2)

21.1.1.1 Completeness of (Cb(X), ‖·‖∞) (Continued)

Ã Note 21.1.1

A normed linear space V is called a Banach space if (V, ‖·‖) is complete

with respect to dV .

¯Theorem 53 (� � � Completeness for Cb(X))

The space (Cb(X), ‖·‖∞) is Banach (i.e. complete). This will come out in the final.

´ Proof

Let { fn} ⊂ Cb(X) be Cauchy.

=⇒ ∀ε > 0 ∃N0 ∈N ∀n, m ≥ N0 ‖ fn − fm‖∞ <
ε

2
, (∗)

and

∀x ∈ X | fn(x)− fm(x)| ≤ ‖ fn − fm‖∞ <
ε

2
.

∴ { fn(x)}, for every x ∈ X is Cauchy, and so { fn(x)} is complete.

Let f0(x) = lim
n→∞

fn(x), and in particular, ∀n ≥ N0, ∀x ∈ X, we
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have

| fn(x)− f0(x)| = lim
m→∞

| fn(x)− fm(x)| ≤ ε

2
< ε.

So fn → f0 uniformly. By ¯Theorem 52, f0 is continuous.

It remains to show that f0 is bounded: we have that { fn} is

bounded.

Let M > 0 such that ‖ fn‖∞ ≤ M for all n ∈N. Let x ∈ X.

From (∗), we can find n0 ∈N such that | fn0(x)− f0(x)| ≤ 1.

=⇒ | f0(x)| ≤ | f0(x)− fn0(x)|+ | fn0 | ≤ 1 + M

∴ f0(x) ∈ Cb(X).

Ã Note 21.1.2

Given any set X, if (X, d) is a metric space with the discrete metric, then

(Cb(X), ‖·‖∞) = (`∞, ‖·‖∞) .

21.1.2 Characteriztions of Completeness

We shall state the following without proving it, although the proof

is straightforward: view {an} and {bn} as increasing and decreasing

sequences respectively and use the monotone convergence theorem.

¯Theorem 54 (Nested Interval Theorem)

If {[an, bn]} with [an+1, bn+1] ⊂ [an, bn], then

∞⋂
n=1

[an, bn] 6= ∅.

We know that this works for R, but does this work for (X, d)? In

particular, we conjecture that:

If {Fn} is a sequence of non-empty closed sets in (X, d), with
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Fn+1 ⊆ Fn, then
∞⋂

n=1

Fn 6= ∅.

However, this is not true, as shown in the following example.

Example 21.1.1

Let X = R, and Fn[n, ∞), and Fn+1 ( Fn. Note that Fn is indeed

closed since its complement, (−∞, n), is open. We notice that

∞⋂
n=1

Fn = ∅. ¥

Example 21.1.2

Let X = (0, 1), and Fn

(
0, 1

n

]
, which is closed in X, and that Fn+1 (

Fn. However, once again, we notice that

∞⋂
n=1

Fn = ∅. ¥

Of course, one would ask the question as to why does such a

property not hold. The following notion will explain why.

# Definition 54 (Diameter of a Set)

Given a subset A ⊂ (X, d), we define the diameter of A as

Figure 21.1: Intuitive illustration of
# Definition 54. Red lines are the

diameters, as captured by the sup
function. Blue lines are other possible
candidates, but none of them can be a
supremum.

diam(A) = sup{d(x, y) | x, y ∈ A}.

7 Proposition 55 (Diameters of Subsets)

Let A ⊆ B ⊂ (X, d). Then

1. diam(A) ≤ diam(B);

2. diam(A) = diam(A).
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´ Proof

1. If A = B, then there is nothing to proof. Suppose A ( B.

Suppose to the contrary that diam(A) > diam(B). Let xA, yA ∈
A such that d(xA, yA) = diam(A) and xB, yB ∈ B such that

d(xB, yB). By our assumption, we have

d(xA, yA) > d(xB, yB).

However, xA, yA ∈ A ⊆ B, and by definition of a diameter, we

have

d(xB, yB) ≥ d(xA, yA),

which is a contradiction. This proves the statement.

2. If diam(A) = ∞, then we must have diam(A) = ∞ since A ⊆ A.

Thus WMA diam(A) = d < ∞. Let x0, y0 ∈ A. Then given any

ε > 0, by definition of limits, we can find x1, y1 ∈ A such that

d(x0, x1) <
ε

2
and d(y0, y1) <

ε

2
.

Hence

d(x0, y0) ≤ d(x0, x1) + d(x1, y1) + d(y1, y0)

<
ε

2
+ d +

ε

2
= d + ε.

Thus diam(A) ≤ d + ε, for any ε > 0. Therefore by the earlier

part,

diam(A) ≤ d = diam(A) ≤ diam(A).

With this notion, we have a partial equivalence to the nested inter-

val theorem, of which we shall prove in the next lecture.
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22.1 Completeness of Metric Spaces (Continued 3)

22.1.1 Characterizations of Completeness (Continued)

We are now ready to prove the following statement.

¯Theorem 56 (Cantor’s Intersection Principle)

Let (X, d) be a metric space. TFAE:

1. (X, d) is complete.

2. If {Fn} is a sequence of non-empty closed subsets such that Fn+1 ⊂ Fn

for all n ∈N, and if lim
n→∞

diam(Fn) = 0, then

∞⋂
n=1

Fn 6= ∅.

´ Proof

(1) =⇒ (2) : 1For each n ∈ N, pick xn ∈ Fn. Let {xn}∞
n=1 be a 1 Since we have a sequence of non-

empty closed subsets, we can, by
using * Axiom 2, form a sequence of
elements in X from each of the Fn’s. By
proving that this sequence of elements
is Cauchy, we obtain a limit point from
the assumption that X is complete.
From there, it remains to show that the
limit point lives in all of the Fn’s.

sequence formed from these xn’s.

By the assumption that limn→∞ diam(Fn) = 0, we have that

∀ε > 0 ∃N0 ∈N diam
(

FN0

)
< ε.

In particular, for n, m ≥ N0, we have that xn, xm ∈ FN0 , as Fn, Fm ⊂
FN0 , and so

d(xn, xm) ≤ diam
(

FN0

)
< ε.
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Thus {xn} is Cauchy. By assumption that (X, d) is complete, xn →
x0 ∈ X. Thus ∃N1 ∈ N such that ∀n ≥ N1, d(xn, x0) < ε. Thus,

for any such n, since Fn+1 ⊂ Fn, {xn, xn+1, xn+2, . . .} ⊂ Fn, and the

sequence converges to x0. Since Fn is closed, we must have x0 ∈ Fn.

This forces x0 ∈ Fn for every n ∈N. This completes ( =⇒ ).

(2) =⇒ (1) : Let {xn} ⊂ X be Cauchy. Let Fn = {xn, xn+1, xn+2, . . .}.
We have that Fn is closed: given any y /∈ Fn, we can pick δ =
1
2 min{d(xi, xj) : n ≤ i < j} and we would have that B(y, δ) ∩ Fn =

∅.

Note that Fn+1 ⊂ Fn.

∵ {xn} is Cauchy, ∀ε > 0 ∃N0 ∈ N ∀n, m ≥ N0 d(xn, xm) <
ε
2 .

Consequently,

diam
(
{xN0 , xN0+1, . . .

)
= diam

(
FN0

)
≤ ε

2
< ε.

∴ diam(Fn)→ 0, which, along with assumption, implies that2 2 Note that the intersection can only
contain one element, since diam(Fn) →
0.∞⋂

n=1

Fn = {x0}.

Also, since diam(Fn) → 0, we have that for any k > 0, Fik ⊆
B
(

x0, 1
k

)
3. This implies that for each k, B

(
x0, 1

k

)
contains the tail 3 Otherwise, x0 cannot be a limit point.

of the sequence {xn}. Then, inductively so, we have

k = 1 =⇒ ∃n1 > 0 xn1 ∈ B (x0, 1)

k = 2 =⇒ ∃n2 > 0 xn2 ∈ B
(

x0,
1
2

)
...

k = m =⇒ ∃nm > 0 xnm ∈ B
(

x0,
1
m

)
...

∴ xnm → x0.

Then since {xn} is Cauchy, and {xnm} is a subsequence of {xn},
we have xn → x0.

# Definition 55 (Formal Sum)



PMATH351 — Real Analysis 129

Let (X, ‖·‖) be a normed linear space. A series in X is called a formal

sum, expressed as

∞

∑
n=1

xn = x1 + x2 + . . . + xn + . . . , (22.1)

where {xn} ⊆ X. For each k ∈ N, the kth partial sum of Equa-

tion (22.1) is

Sk =
k

∑
n=1

xn = x1 + x2 + . . . + xk.

We say that ∑∞
n=1 xn converges in (X, ‖·‖) if {Sk}∞

k=1 converges. In this

case, we write
∞

∑
n=1

= lim
k→∞

Sk.

Otherwise, ∑∞
n=1 xn is said to diverge.

¯Theorem 57 (� � Weierstrass M-test)

Let (X, ‖·‖) be a normed linear space. TFAE:

1. (X, ‖·‖) is complete, i.e. (X, ‖·‖) is a Banach space.

2. If ∑∞
n=1 xn is such that ∑∞

n=1 ‖xn‖ converges, then ∑∞
n=1 xn converges.

´ Proof

(1) =⇒ (2) : Given ∑∞
n=1 xn, let

Sk =
k

∑
n=1

xn and Tk =
k

∑
n=1
‖xn‖ .

Suppose Tk converges. Then in particular, {Tk} is Cauchy. Thus

∀ε > 0 ∃N0 ∈N ∀n > m ≥ N0

Tn − Tm =
n

∑
k=1
‖xk‖ −

m

∑
k=1
‖xk‖ =

n

∑
k=m+1

‖xk‖ < ε.
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∴ N0 ≤ m < n =⇒

‖Sn − Sm‖ =
∥∥∥∥∥ n

∑
k=1

xk −
m

∑
k=1

xk

∥∥∥∥∥ =

∥∥∥∥∥ n

∑
k=m+1

xk

∥∥∥∥∥
≤

n

∑
k=m+1

‖xk‖ ∵ Triangle Ineq.

< ε.

∴ {Sk} is Cauchy, and since (X, ‖·‖) is complete, {Sk} is conver-

gent.

(2) =⇒ (1) : Suppose {xn} is Cauchy in (X, ‖·‖). We can find an

increasing sequence

N0 < n1 < n2 < . . . < nj < . . . ∈N,

for some N0 ∈N such that∥∥∥xnj − x− nj+1

∥∥∥ <
1
2j .

Then by the infinite geometric series,

∞

∑
j=1

∥∥∥xnj − xnj+1

∥∥∥ ≤ ∞

∑
j=1

1
2j < ∞.

∴
∞
∑

j=1
(xnj − xnj+1) converges to some x0 ∈ X. In particular, notice

that the partial sums are telescoping series:

Sk =
k

∑
j=1

(
xnj − xnj+1

)
= xn1 − xnk+1 → x0.

It follows that as k→ ∞,

xnk+1 → xn1 − x0.

We have that the subsequence {xnk} of our Cauchy sequence {xn}
has a limit point.
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23.1 Completeness of Metric Spaces (Continued 4)

23.1.1 Characterizations of Completeness (Continued 2)

Example 23.1.1

Let

ϕ(x) =

x x ∈ [0, 1]

2− x x ∈ [1, 2]
.

Extend ϕ to R by

ϕ(x + 2) = ϕ(x) for all x ∈ R.

x

ϕ(x)

Figure 23.1: Sawtooth-like graph from ϕ

Define

f (x) =
∞

∑
n=1

(
3
4

)n
ϕ (4nx) .

Figure 23.2 is a simplified graph of f , drawn using the online tool

Desmos.

It is clear that ϕ ∈ Cb(R), and ‖ϕ‖∞ = 1. Thus

∞

∑
n=1

∥∥∥∥(3
4

)n
ϕ (4nx)

∥∥∥∥
∞
=

∞

∑
n=1

(
3
4

)n
< ∞,

and so

f (x) = lim
L→∞

L

∑
n=1

(
3
4

)n
ϕ (4nx) = lim

L→∞
SL(x),

uniformly so. Since the partial sums are continuous, f ∈ Cb(R).

https://www.desmos.com
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Figure 23.2: Function of f as generated
on Desmos. See it live.

However, f is not differentiable. Let x ∈ R. For each m ∈ N, we

can find k ∈ Z such that

k ≤ 4mx ≤ k + 1.

Let

pm =
k

4m and qm =
k + 1

4m ,

and for any n ∈N,

α = 4n pm = 4n−mk and β = 4nqm = 4n−m(k + 1).

Now

• if n > m, then since α and β differ by an even integer, |ϕ(α)− ϕ(β)| =
0;

• if n = m, then α and β differs by 1, and so |ϕ(α)− ϕ(β)| = 1;

• if n < m, then there are no integers between α and β, and so

|ϕ(α)− ϕ(β)| = |4n pm − 4nqm| 1 =
∣∣4n−mk− 4n−m(k + 1)

∣∣ = 4n−m.

1 Note that if we have 1 ≤ α, β ≤ 2, we
still get the same formula.

For large enough m, consider

| f (pm)− f (qm)| =
∣∣∣∣∣ ∞

∑
n=1

(
3
4

)n
(ϕ (4n pm)− ϕ (4nqm))

∣∣∣∣∣

https://www.desmos.com/calculator/rj9r0x5jyu
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=

∣∣∣∣∣ m

∑
n=1

(
3
4

)n
(ϕ (4n pm)− ϕ (4nqm))

∣∣∣∣∣ (23.1)

≥
∣∣∣∣∣
(

3
4

)n
−

m−1

∑
n=1

(
3
4

)n
|ϕ (4n pm)− ϕ (4nqm)|

∣∣∣∣∣
(23.2)

=

∣∣∣∣∣
(

3
4

)n
−

m−1

∑
n=1

(
3
4

)n
4n−m

∣∣∣∣∣ (23.3)

=

∣∣∣∣∣
(

3
4

)n
− 1

4m

m−1

∑
n=1

3n

∣∣∣∣∣
=

∣∣∣∣(3
4

)n
− 1

4m

[
3m − 1

2

]∣∣∣∣ (23.4)

=
1

4m

[
3m + 1

2

]
>

1
2
·
(

3
4

)m

where we note that

(23.1) terms after m are eliminated as they are 0 as argued previously;

(23.2) by the reverse Triangle ineq. and the case where n = m;

(23.3) using the argument for when n < m;

(23.4) using the formula for a finite geometric sum.

Hence we observe that

| f (pm)− f (qm)|
|pm − qm|

> 4m · 3m

2 · 4m =
3m

2
.

Now if pm = x, then

| f (x)− f (qm)|
|x− qm|

>
3m

2
.

If pm 6= x, then

3m

2
<
| f (pm)− f (qm)|
|pm − qm|

≤ | f (pm)− f (x)|+ | f (x)− f (qm)|
|pm − qm|

≤ | f (pm)− f (x)|
|pm − x| +

| f (x)− f (qm)|
|x− qm|

,

which implies that either

| f (x)− f (qm)|
|x− qm|

>
3m

2
,
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or
| f (pm)− f (x)|
|pm − x| >

3m

2
.

Then for any sequence {tm} such that tm → x, and tm 6= x, we have

that
| f (x)− f (tm)|
|x− tm|

≥ 3m

4
→ ∞

as m→ ∞. Thus the function f is not differentiable at any x. ¥
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24.1 Completions of Metric Spaces

# Definition 56 (Isometry)

A map ϕ : (X, dX)→ (Y, dY) is called an isometry if

dY(ϕ(x1), ϕ(x2)) = dX(x1, x2).

# Definition 57 (Completion)

A completion of a metric space (X, d) is a pair ((Y, dY) , ϕ) where

(Y, dY) is a complete metric space, ϕ : X → Y is an isometry, and

ϕ(X) = Y.

7 Proposition 58 (Subsets of Complete Spaces are Complete if

they are Closed)

Let (X, d) be a complete metric space. Let A ⊂ X. Then (A, dA) is

complete iff A is closed.

´ Proof

( =⇒ ) : (A, dA) is complete
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=⇒ {xn} ⊂ A Cauchy =⇒ xn → x0 =⇒ x0 ∈ A =⇒
Lim(A) ⊆ A

=⇒ A is closed.

(⇐= ) Let {xn} ⊂ A be Cauchy in (A, dA)

=⇒ {xn} is Cauchy in (X, d)

=⇒ xn → x0 ∈ X

=⇒ (∵ A is closed )x0 ∈ A

=⇒ (A, dA) is complete.

A natural question arises: does every space have a completion?

To answer this, we need the following concept:

# Definition 58 (Uniformly Continuous Functions)

We say that a function f : (X, dX) → (Y, dY) is uniformly continuous

if

∀ε > 0 ∃δ > 0 ∀x1, x2 ∈ X

dX(x1, x2) < δ =⇒ dY ( f (x1), f (x2)) < ε.

Example 24.1.1

Given (X, d), and x0 ∈ X, define

gx0(x) = d(x, x0).

Note that |d(x0, x)− d(x0, y)| ≤ d(x, y).1 Thus 1 Proved in A3

|gx0(x1)− gx0(x2)| ≤ d(x1, x2).

Then ∀ε > 0 ∃δ = ε > 0, we have

d(x1, x2) < δ =⇒ |gx0(x1)− gx0(x2)| < ε.

Thus gx0 is uniformly continuous. ¥



PMATH351 — Real Analysis 137

¯Theorem 59 (Completion Theorem)

Every metric space (X, d) has a completion.

´ Proof

Let a ∈ X. Define ϕ : X → Cb(X) by

(ϕ(u)) (x) = fu(x) = d(u, x)− d(x, a).

By our earlier example, ϕ(u) is continuous. Notice that we have

| fu(x)| = |d(u, x)− d(x, a)| ≤ d(u, a).

Thus ϕ(u)inCb(X), proving that ϕ is well-defined.

WTS ϕ is an isometry. Let u, v ∈ X. Then

| fu(x)− fv(x)| = |d(u, x)− d(x, a)− d(v, x)−+d(x, a)|

= |d(u, x)− d(v, x)|

≤ d(u, v).

Thus ‖ fu − fv‖∞ ≤ d(u, v) by definition of ‖·‖∞. Notice that

| fu(v)− fv(v)| = d(u, v),

which gives us the greatest possible value. Thus

‖ϕ(u)− ϕ(v)‖∞ = ‖ fu − fv‖∞ = d(u, v).

Thus ϕ is an isometry.

Since (Cb(X), ‖·‖∞) is a complete metric space, let Y = ϕ(X).

The proof is complete by 7 Proposition 58.

Question: If (X, d) has 2 completions, how are they related?

Suppose (X, d) is a metric space that has 2 completions through
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the functions ϕ and ψ.

X

ϕ(X)

ψ(X)

ϕ

ψ

Figure 24.1: Relation of the 2 comple-
tions of a metric space.

Since we have that ϕ is bijective from X to ϕ(X), we can take its

inverse. Consequently, we have that the function Γ = ψ ◦ ϕ−1 is an

isometry.

Now for some {xn} ⊂ X that is Cauchy, we know that in ϕ(X),

ϕ(xn) → y0 ∈ ϕ(X). Note that y0 is a limit point of ϕ(X). Through Γ,

we have that

Γ(ϕ(xn)) = ψ(xn).

If ψ(xn)→ z0 ∈ ψ(X), then we must have

Γ(y0) = z0,

and in particular z0 is a limit point of ψ(X). This forces limits point

of ϕ(X) to also be limit points of ψ(X), and interior to interior. Thus

the two completions are isomorphic.

24.2 Banach Contractive Mapping Theorem

Question: Does there exist a function f ∈ C[0, 1] such that

f (x) = ex +
∫ x

0

sin t
2

f (t) dt ? (24.1)

Let Γ : C[0, 1]→ C[0, 1] such that

Γ( f )(x) = ex +
∫ x

0

sin t
2

f (t) dt.

Then f0 is a solution to Equation (24.1) iff Γ( f0) = f0.
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This is known as an integral transform.

# Definition 59 (Fixed Point)

Given (X, d), Γ : X → X, we say that x0 is a fixed point of Γ if Γ(x0) =

x0.
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25.1 Banach Contractive Mapping Theorem (Continued)

# Definition 60 (Lipschitz)

A function f : (X, dX) → (Y, dY) is said to be Lipschitz if there exists

α ≥ 0 such that ∀x1, x2 ∈ X,

dY( f (x1), f (x2)) ≤ αdX(x1, x2)

# Definition 61 (Contraction)

A function f : X → Y is called a contraction if there exists 0 ≤ k < 1

with

dY( f (x1), f (x2)) ≤ kdX(x1, x2)

for all x1, x2 ∈ X.

Ã Note 25.1.1

Notice that a Lipschitz function is uniformly continuous: choose δ = ε
α .

Exercise 25.1.1

Prove that if f : [a, b] → R and f ′ is continuous, then by the Extreme

Value Theorem and the Mean Value Theorem, f is Lipschitz.
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¯Theorem 60 (Banach Contractive Mapping Theorem)

Assume that (X, d) is complete. If Γ : X → X is contractive, then there

exists a unique x0 ∈ X such that Γ(x0) = x0.

´ Proof

Pick x1 ∈ X. Then, let

x2 = Γ(x1), x3 = Γ(x2), . . . , xn+1 = Γ(xn), . . . .

Claim : {xn} is Cauchy1 1 This will CTP since (X, d) is complete,
i.e. it will give us a limit point at which
Γ must converge to, and thus forcing its
iteration to be terminated at the limit
point due to Γ being contractive.

Let k ∈ R such that 0 < k < 1, so that we have

d (Γ(x), Γ(y)) ≤ kd(x, y)

for any x, y ∈ X. Then

d(x3, x2) = d(Γ(x2), Γ(x1)) ≤ kd(x2, x1)

d(x4, x3) = d(Γ(x3), Γ(x1)) ≤ kd(x3, x2) ≤ k2d(x2, x1)

...

d(xn+1, xn) = d(Γ(xn+1), Γ(xn)) ≤ kn−1d(x2, x1)

...

Also, notice that if m > n, then

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + . . . + d(xn+1, xn)

≤ km−2d(x2, x1) + km−3d(x2, x1) + . . . + kn−1d(x2, x1)

=
m−2

∑
j=n−1

kjd(x2, x1) =
kn−1

1− k
d(x2, x1).

Since kn−1 → 0, we have that {xn} is Cauchy. Since (X, d) is com-

plete, ∃x0 ∈ X such that xn → x0.

In particular, we have that xn+1 → x0, i.e. Γ(xn) → x0. Since Γ is

continuous, we mst have that Γ(xn) → Γ(x0). Therefore Γ(x0) = x0
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as required.

(Uniqueness) Suppose there exists another point y0 ∈ X such

that Γ(y0) = y0. Then

d(x0, y0) = d(Γ(x0), Γ(y0)) ≤ kd(x0, y0),

which implies that d(x0, y0) = 0.

Example 25.1.1

Show that the equation

f0(x) = ex +
∫ x

0

sin t
2

f0(t) dt

has a unique solution in C[0, 1]. ¥

´ Solution

Define Γ : C[0, 1]→ C[0, 1] by

Γ( f )(x) = ex +
∫ x

0

sin t
2

f (t) dt.

Let f , g ∈ C[0, 1]. We have that

|Γ( f )(x)− Γ(g)(x)| =
∣∣∣∣∫ x

0

sin t
2

f (t) dt−
∫ x

0

sin t
2

g(t) dt
∣∣∣∣

=

∣∣∣∣∫ x

0

sin t
2

( f (t)− g(t)) dt
∣∣∣∣

≤
∫ x

0

∣∣∣∣ sin t
2

∣∣∣∣ | f (t)− g(t)| dt

≤ ‖ f − g‖∞

∫ 1

0

1
2

dt

=
1
2
‖ f − g‖∞

Thus ‖Γ( f )− Γ(g)‖∞ ≤ 1
2 | f − g|∞. Thus Γ is contractive. By

¯Theorem 60, the unique fixed point is the solution.

Example 25.1.2

Show that the equation

f (x) = x +
∫ x

0
t2 f (t) dt (25.1)
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has a unique solution. ¥

´ Solution

Let Γ( f )(x) = x +
∫ x

0 t2 f (t) dt. Then

|Γ( f )(x)− Γ(g)(x)| =≤
∫ 1

0
t2 ‖ f − g‖∞ dt

=
1
3
‖ f − g‖∞ .

By the Banach Contractive Mapping Theorem, Equation (25.1) has a

unique solution. In particular,

f1(x) = x

f2(x) = Γ( f1)(x) = x +
∫ x

0
t2t1(t) dt

= x +
∫ x

0
t3 dt = x +

1
4

x4

f3(x) = Γ( f2)(x) = x +
∫ x

0
t2
(

t +
1
4

t4
)

dt

= x +
∫ x

0
t3 +

1
4

t6 dt = x +
1
4

x4 +
1

4 · 7 x7

...

fn(x) =
x
1
+

x4

4
+

x7

4 · 7 + . . . +
x3n−2

4 · 7 · . . . · (3n− 2)

and so the limit is

f0(x) =
∞

∑
k=1

x3k−2

4 · 7 · . . . · (3k− 2)
.

Example 25.1.3 (Other Applications)

1. Newton’s Method.

2. (Picard’s Theorem) Let f : [a, b] ×R → R be Lipschitz in R, i.e.

∃α ≥ 0 such that

| f (t, y1)− f (t, y2)| ≤ α |1 − y2|

for any y1, y2 ∈ R. If y0 ∈ R, then there exists a unique ϕ ∈ C[a, b]

such that

ϕ′(t) = f (t, ϕ(t))

for all t ∈ (a, b) with ϕ(a) = y0. ¥

https://en.wikipedia.org/wiki/Newton%27s_method
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25.2 Baire Category Theorem

Example 25.2.1 (Dirchlet Function)

Consider the function

f (x) =


0 x ∈ R \Q

1 x = 0

1
m x ∈ Q

The function g is continuous at each x ∈ R \Q, and discontinuous

otherwise. ¥

Question: Does there exist a function function f such that f is

continuous on Q but not on R \Q? No!

However, to prove that there is need no such function, we need

more machinery. In particular, the set of discontinuities of a function

f : (X, d)→ R has a particular topological nature.

# Definition 62 (Points of Discontinuity)

Let f : X → R. For each n ∈ N, the points of discontinuity is a set

defined as

DN( f ) =
{

x0 ∈ X : ∀δ > 0 ∃x1, y1 ∈ B(x0, δ) | f (x1)− f (y1)| ≥
1
n

}
.

Ã Note 25.2.1

1. For each n ∈N, Dn is closed.

2. f is continuous at x0 ⇐⇒ x0 /∈ ⋂∞
n=1 Dn.

Remark 25.2.1

Recall the definition of an Fσ-set from the midterm (definition also provided

in next lecture).
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The set

D( f ) = {x0 ∈ X | f is discontinuous at x0} =
∞⋂

n=1

Dn( f )

is an Fσ-set. a

A natural question to ask is:

Question: Is R \Q an Fσ-set?
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26.1 Baire Category Theorem (Continued)

# Definition 63 (Fσ Sets)

Let (X, d) be a metric space. We say that A ⊆ X is Fσ if there exists a

sequence {Fn}∞
n=1 of closed sets with

A =
∞⋃

n=1

Fn.

# Definition 64 (Gδ Sets)

Let (X, d) be a metric space. We say that A ⊆ X is Gδ if there exists a

sequence {Un}∞
n=1 of open sets such that

A =
∞⋂

n=1

Un.

Example 26.1.1

The interval [0, 1) ⊂ R is Gδ, since

[0, 1) =
∞⋂

n=1

(
1
n

, 1
)

¥

Remark 26.1.1

A is Fσ iff AC is Gδ. a
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Recall the definition of a dense set. We have the following comple-

mentary definition.

# Definition 65 (Nowhere Dense)

Given a metric space (X, d), we say that A ⊆ X is nowhere dense if

A◦ = ∅.

Remark 26.1.2

The above definition is equivalent to saying that AC is dense. a

# Definition 66 (First Category)

We say that a set A is of first category if

A =
∞⋃

n=1

An

where each An is nowhere dense.

# Definition 67 (Second Category)

We say that A is of second category is A is not of first category.

Remark 26.1.3

We colloquially refer to a set of first category as being topologically thin,

and a set of second category as being topologically thick. a

# Definition 68 (Residual)

We say that A ⊆ (X, d) is a residual in X if AC is of first category.
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¯Theorem 61 (Set of Points of Discontinuity is Fσ)

Let f : (X, dX) → (Y, dY). Then for each n ∈ N, DN( f ) is closed in X.

Moreover,

D( f ) =
∞⋃

n=1

DN( f ).

In particular, D( f ) is Fσ.

Exercise 26.1.1

Prove ¯Theorem 61.

Example 26.1.2

If F ⊂ (X, d) is closed, then f is Gδ. In particular, notice that

F =
∞⋂

n=1

(⋃
x∈F

B
(

x,
1
n

))
,

where we note that each of the B
(

x, 1
n

)
is Fδ. ¥

¯Theorem 62 (Baire Category Theorem I)

Let (X, d) be complete. Let {Un}∞
n=1 be a countable collection of dense

open sets. Then1 1 Note that we have ourselves a dense
Gδ set.∞⋂

n=1

Un is dense in X.

In particular, it is not empty.

´ Proof

Assume that {Un}∞
n=1 is a sequence of open and dense sets. Let

W ⊂ X be open and non-empty. Since U1 is dense, we have that

W ∩U1 6= ∅. Then ∃x1 ∈W ∩U1 such that ∃0 < r1 ≤ 1 so that

B(x1, r1) ⊂ B[x1, r1] ⊂W ∩U1.

Similarly,

W

U1
B(x1, r1)

Figure 26.1: Visualization of proof for
Baire Category Theorem I
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we can find x2 ∈ X such that for some 0 < r2 ≤ 1
2 ,

B(x2, r2) ⊂ B[x2, r] ⊂ B(x1, r1) ∩U2.

We can proceed recursively and find, for n ∈ N, an xn ∈ X with

0 < rn ≤ 1
n such that

B(xn, rn) ⊂ B[xn, rn] ⊂ B(xn−1, rn−1) ∩Un.

Now since (X, d) is complete, {diam(B[xn, rn])} = {rn} is a de-

creasing sequence such that rn → 0, by Cantor’s Intersection

Principle,

∃x0 ∈
∞⋂

n=1

B[xn, rn].

Then by this construction, we must have x0 ∈ B[x1, r1] ⊂ W ∩U1,

and x0 ∈ B[xn, rn] ⊂ Un for each n ∈N. Thus

x0 ∈W ∩
(

∞⋂
n=1

Un

)
.

Note that the statement does not hold if we have an uncountable

collection of dense open sets.

Example 26.1.3

Consider Ux = R \ {x}, where x ∈ R. This is clearly a dense and

open set. Notice, however, that

⋂
x∈R

Ux = ∅. ¥

Remark 26.1.4

¯Theorem 62 shows that given a countable sequence {Un}∞
n=1 of open

dense sets of X, the countable intersection of these sets,
⋂∞

n=1 Un, is a dense

Gδ. a

¯Theorem 63 (� Baire Category Theorem II)
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If (X, d) is complete, then X is of second category.

´ Proof

Suppose to the contrary that X =
⋃∞

n=1 An where each An is

nowhere dense. Since each An is nowhere dense, we have that

X =
∞⋃

n=1

An =
∞⋃

n=1

An.

Let Un = An
C, which would then be open and dense, as X is

complete. However, by De Morgan’s Laws, we have that(
∞⋂

n=1

Un

)C

=
∞⋃

n=1

UC
n =

∞⋃
n=1

An = X

and so
∞⋂

n=1

Un = ∅,

which is impossible by ¯Theorem 62.

Example 26.1.4

There are set that are neither Fσ or Gδ. For instance, consider the

union of positive rationals and negative irrationals, i.e. a set

S = Q>0 ∪QC
<0.

If S is a Gδ, then by the Baire Category Theorem, S ∩ (0, ∞) is also Gδ,

but that’s the set of positive rationals, which cannot be Gδ. Similarly,

if S were Fσ, then its intersection with (−∞, 0) is also Fσ, but the set

of negative irrationals cannot be Fσ. Thus S is neither Fσ nor Gδ. ¥

Example 26.1.5

R and R \Q are of second category. In fact, R \Q is a residual, since

Q is of first category. ¥
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Question: Is

Q =
∞⋂

k=1

∞⋃
n=1

(
rn −

1
2k+n , rn +

1
2k+n

)
,

where Q = {r1, r2, . . .}, Q? No. Notice that this is fairly close, but it is

not.2 2 It should be R?

�Corollary 64 (Q is not Gδ)

Q is not a Gδ set.

´ Proof

Suppose to the contrary that Q is Gδ, i.e. there exists a countable

sequence of open sets {Un} such that

Q =
∞⋂

n=1

Un.

Let Fn = UC
n . Since Q is dense, it follows that each of the Un’s is

also dense. Thus Fn is nowhere dense and closed.

Let Q = {r1, r2, . . .}, an enumeration on Q, and Sn = Fn ∪ {rn}.
Then Sn is closed and nowhere dense. However, we would then

have

R =
∞⋃

n=1

Sn,

which contradicts the fact that R is of second category.

Consequently:

�Corollary 65 (There are no Functions Discontinuous on all

Irrational Numbers)

There is no function f : R→ R for which D( f ) = R \Q.
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We are now able to show that for a sequence { fn} ⊂ C[a, b] that

converges pointwise, the limit function must be continuous at each

point on a residual set. We require the following notion:

# Definition 69 (Uniformly Convergent Sequence of Functions

on a Point)

We say that a sequence of functions { fn} where,

fn : (X, dX)→ (Y, dY),

converges uniformly at x0 ∈ X if

∀ε > 0 ∃δ > 0 ∃N ∈N ∀n, m ≥ N

x ∈ B(x0, δ) =⇒ dY( fn(x), fm(x)) < ε.

The proof of the following theorem is left as an exercise.

¯Theorem 66 (Limit of Sequence of Continuous Functions that

Converges Pointwise is Continuous)

Let (X, dX) and )Y, dY) be metric spaces. Let { fn : X → Y} be a

sequence of functions that converges pointwise on X to f0. Assume that

{ fn} converges uniformly at x0 ∈ X. If each fn is continuous at x0, then

so is f0.
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27.1 Baire Category Theorem (Continued 2)

¯Theorem 67 (Uniform Convergence of A Sequence of Contin-

uous Functions that Converges Pointwise)

Let fn : (a, b) → R be a sequence of continuous functions that converges

pointwise to f (x). Then there exists an x0 ∈ (a, b) such that fn → f

uniformly at x0.

´ Proof

Assume that fn → f0 on (a, b), pointwise.

Claim There exists [α1, β1] ⊂ (a, b) and N1 ∈ N such that if

x ∈ [α1, β1] and n, m ≥ N1, then | fn(x)− fm(x)| ≤ 1.

Suppose not. Then ∃t1 ∈ (a, b) and n1, m1 ∈N such that

| fn1(t1)− fm1(t1)| > 1. Since fn1 − fm1 is continuous, there exists an

open interval I1 ( I1 ( (a, b) such that | fn1(x)− fm1(x)| > 1 for all

x ∈ I1.

Similarly, ∃t2 ∈ I1 and n2, m2 ≥ max{n1, m1} such that

| fn2(t2)− fm2(t2)| > 1. Again, since fn2 − fm2 is continuous, there

exists an open interval I2 ( I2 ( I1 such that | fn2(x)− fm2(x)| > 1

for all x ∈ I2.

Recursively so, we get a sequence {In} of open interval with

In+1 ⊂ In+1 ⊂ Ik, and two sequence of integers {nk} and
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{mk}, with nk+1, mk+1 ≥ max{nk, mk} and if x ∈ Ik, we have∣∣ fnk (x)− fmk (x)
∣∣ > 1.

Then, by the Nested Interval Theorem, we have

∞⋂
k=1

Ik 6= ∅.

Let x∗ ∈ ⋂∞
k=1 Ik. Then by construction, we have that for any k,∣∣ fnk (x∗)− fmk (x∗)

∣∣ > 1. However, since { fn} converges point-

wise, { fn (x∗)} is Cauchy and hence we have a contradiction. This

proves the claim a.

In a similar manner, we can find a sequence {[αk, βk]} of closed

sets, where αk < βk, such that

(αk+1, βk+1) ⊆ [αk+1, βk+1] ⊆ (αk, βk) ⊆ . . . ⊆ (a, b),

and a sequence

N1 < N2 < . . . < Nk < . . . ,

such that if x ∈ [αk, βk] and n, m ≥ Nk, then | fn(x)− fm(x)| ≤
1
k . Then, once again, by the Nested Interval Theorem, let x0 ∈⋂∞

k=1[αk, βk]. Let ε > 0. Now if 1
k < ε, then if n, m ≥ Nk, then we

have

| fn(x)− fm(x)| ≤ 1
k
< ε.

Since x0 ∈
⋂∞

k=1[αk, βk] and αk < βk, we can choose δ = min{βk −
αk : k ∈ N \ {0}} > 0, so that (x0 − δ, x0 + δ) ⊂ (αk, βk), then for

any x ∈ (x0 − δ, x0 + δ), we have

| fn(x)− fm(x)| < ε.

�Corollary 68 (Continuity of the Limit of a Sequence of Point-

wise Convergent Functions on a Residual Set)

Let { fn} ⊂ C[a, b] be such that fn → f0 pointwise on [a, b]. Then there

exists a residual set A ⊂ [a, b] such that f0(x) is continuous at each
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x ∈ A.

´ Proof

¯Theorem 67 shows that the set A of which f0 is continuous on is

dense in [a, b]. However, from XXX that D( f0) is Fσ, and so A is a

dense Gδ. �

Remark 27.1.1

Thus we have that D( f0) is a nowhere dense Fσ, i.e. it is of first cate-

gory. a

�Corollary 69 (Derivative of a Function is Continuous on a

dense Gδ set in R)

Assume that f : R → R is differentiable. Then f ′(x) is continuous for

every point on a dense Gδ-subset of R.

´ Proof

Using notions from the first principles of calculus, notice that f ′(x)

is a pointwise limit of the sequence of continuous functions f
(

x + 1
n

)
− f (x)

1
n

 .

27.2 Compactness

In this section, we study 3 important properties of a topological

space, namely:

• compactness;
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• sequential compactness; and

• the Bolzano-Weierstrass Property.

We shall see that, in fact, the three properties are equivalent.

# Definition 70 (Cover)

Given (X, d) a metric space, an (open) cover of X is a collection {Uα}α∈I

of open sets with

X =
⋃
α∈I

Uα.

A subcover is a subset (or subcollection) {Uα}α∈J⊂I such that

X =
⋃
α∈J

Uα.

If A ⊂ X, then we say that {Uα}α∈I covers A if A ⊂ ⋃
α∈I Uα, or,

equivalently, if {Uα ∩ A}α∈I is a cover of (A, dA).

# Definition 71 (Compact)

We say that (X, d) is compact iff each cover of X, {Uα}α∈I , has a finite

subcover.

We say that A ⊂ (X, d) is compact if every cover {Uα}α∈I of A has a

finite subcover (or, equivalently, if (A, dA) is compact).

From earlier courses in Calculus, recall:

¯Theorem 70 (Heine-Borel Theorem)

A ⊂ Rn is compact iff A is closed and bounded.

Example 27.2.1

[0, 1] ⊂ R is compact, but (0, 1) ⊂ R is not compact. ¥
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However, the Heine-Borel Theorem is not true for arbitrary metric

spaces.

Example 27.2.2 (� )

Let

A = {{xn} ∈ `∞ | ‖xn‖∞ ≤ 1}.

It is clear that A is closed and bounded. However, consider U{xn} =

B
(
{xn}, 1

2

)
. It is then clear that

A ⊂
⋃

{xn}∈A

U{xn}.

Let S = {{xn} | xn = 1 ∨ xn = 0}, which is infinite. Then we notice

that
∣∣∣S ∩ B

(
{xn}, 1

2

)∣∣∣ ≤ 1, showing to us that we cannot find a finite

subcover for S itself is infinite. ¥

However, we do have the following implication.

7 Proposition 71 (Compact Spaces are Closed and Bounded)

If A ⊂ (X, d) is compact, then A is closed and bounded.

´ Proof

Suppose A is not closed. Then ∃x0 ∈ bdy(A) \ A. Let

Un =

(
B
[

x0,
1
n

])C
.

Since x0 /∈ A, we have that A ⊂ ⋃∞
n=1 Un. However, {Un}∞

n=1 has no

finite subcover. Otherwise, if it does have some finite subcover, say

{Un}N
n=1, then for any n0 > N, we would have that

(
B
[

x0,
1
n0

])
)

N⋃
n=1

Un,

and so ∃x1 ∈ B
[

x0, 1
n0

]
such that x1 ∈ A but x0 /∈ ⋃N

n=1 Un. This

contradicts the assumption that a subcover exists. But A must have

some subcover for we assumed that A is compact. Therefore A



160 Lecture 27 Nov 14th Compactness

must be closed.

For boundedness, let x0 ∈ X. Then {B(x0, n)}∞
n=1 is an open

cover of A. Since A is compact, {B(x0, n)}∞
n=1 must have some

finite subcover {B(x0, n1), B(x0, n2), . . . , B(x0, nk)}. WMA n1 <

n2 < . . . < nk, for we may rearrange the radii. It follows that

A ⊂ B(x0, nk), and so A is bounded as required.
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28.1 Compactness (Continued)

We also have the following relation between compact sets and their

closed subsets.

7 Proposition 72 (Closed Subsets of Compact Sets are Compact)

If (X, d) is compact and A is closed, then A is compact.

´ Proof

Let {Uα}α∈I be a cover of A. Then

{Uα}α∈I ∪ AC (∗)

is a cover of X. Since X is compact, Equation (∗) has a finite sub-

cover {Uα1 , Uα2 , . . . , Uαk , AC} such that(
k⋃

i=1

Uαi

)
∪ AC = X.

Since A ⊂ X and A ∩ AC = ∅, we must have

A ⊂
k⋃

i=1

Uαi .
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We have the following 2 variants of compactness:

# Definition 72 (Sequential Compactness)

A set A ⊂ (X, d) is said to be sequentially compact if every sequence1 1 Beware that this is not the same as
completeness.{xn} ⊂ A has a subsequence {xnk} such that xnk → x0 ∈ A.

# Definition 73 (Bolzano-Weierstrass Property (BWP))

Let (X, d) be a metric space. We say that X has the Bolzano-Weierstrass

Property (BWP) if every infinite subset of X has a limit point in the sub-

set.

Exercise 28.1.1

Show that for A ⊂ Rn, A is compact iff A is sequentially compact.

´ Proof

( =⇒ ) Suppose A is not sequentially compact. Then

∃{xn} ⊂ A ∀{xnk} ⊂ {xn} ∀x0 ∈ A xnk 6→ x0.

Let this {xn} = {x1, x2, . . . , xn, . . .}. Let

Un = A \ {xj | j ≥ n}.

Then it is clear that
∞⋃

n=1

Un = A,

i.e. {Un} is a cover of A. Since A is compact, {Un} has a finite

subcover, say {Un1 , Un2 , . . . , Unk}. WMA n1 < n2 < . . . < nk. Then

A =
k⋃

m=1

Unm = A \ {xj | j ≥ nk}.

But that is impossible since xnk+1 /∈ ⋃k
m=1 Unk . Thus A must be
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sequentially compact.

(⇐= ) Suppose A is sequentially compact. Then

∀{xn} ⊂ A ∃{xnk} ⊂ {xn} ∃x0 ∈ A xnk → x0.

Let {Uα}α∈I be a cover of A. Yet to figure out where to go from

here. Tried looking into trying to construct a finite subcover using

the convergent subsequence, but that actually leads to nowhere. �

¯Theorem 73 (Sequential Compactness is Equivalent to BWP)

Let (X, d) be a metric space. TFAE:

1. (X, d) is sequentially compact.

2. (X, d) has the BWP.

´ Proof

( =⇒ ) Let (X, d) be sequentially compact. Let A ⊂ (X, d) be

infinite. By sequential compactness, every sequence {xn} ⊂ A has

a convergent subsequence {xnk}, such that xnk → x0 ∈ A. a

(⇐= ) Suppose (X, d) has the BWP. Let {xn} be a sequence in

X. If {xn} is not infinite (as a set), then it has a subsequence {xnk}
such that xnk1

= xnk2
for all k1, k2, which is convergent. WMA {xn}

is infinite (as a set). By the BWP, {xn} (as a set) has a limit point

x0 ∈ {xn}. Then for k ∈N \ {0}, let

xnk ∈ B
(

x0,
1
k

)
.

Clearly then xnk → x0, and {xnk} is a subsequence of {xn}.

# Definition 74 (Finite Intersection Property (FIP))
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A collection {Aα}α∈I of subsets of X is said to have the finite intersec-

tion property (FIP) if
n⋂

i=1

An 6= ∅

for all finite subcollections {A1, . . . , An}.

Example 28.1.1

Let Fn = [n, ∞). Then {Fn}∞
n=1 has the FIP, but

⋂∞
n=1 Fn = ∅. ¥

The following theorem can be seen as an upgrade to Cantor’s

Intersection Principle for compact metric spaces: instead of allowing

only a countably infinite intersection, we can now take an arbitrary

number of intersections.

¯Theorem 74 (FIP and Compactness)

Let (X, d) be a metric space. TFAE:

1. (X, d) is compact.

2. If {Fα}α∈I is a non-empty collection of closed sets with the FIP, then

⋂
α∈I

Fα 6= ∅.

Remark 28.1.1

As compared to Cantor’s Intersection Principle, we do not need the notion of

a diameter of a set to achieve this result in a compact set. a

´ Proof

(1) =⇒ (2) Suppose to the contrary that for a non-empty collec-

tion {Fα}α∈I of closed sets with the FIP, we have

⋂
α∈I

Fα = ∅.
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Let Uα = FC
α . Then by De Morgan’s Laws, we have X =

⋃
α∈I Uα.

Since (X, d) is compact, ∃{Uα1 , . . . , Uαn} such that

n⋃
i=1

Uαi = X.

But that implies that

∅ = XC =

(
n⋃

i=1

Uαi

)C

=
n⋂

i=1

Fαi ,

contradicting FIP.

(2) =⇒ (1) Suppose to the contrary that {Uα}α∈I , a cover of X,

has no finite subcover. Then ∀{Uα1 , . . . , Uαn}, we must have

X \
n⋃

i=1

Uαi 6= ∅,

i.e., by De Morgan’s Laws,
⋂n

i=1 UC
αi
6= ∅. Then {Fα}α∈I , where

Fα = UC
α , is a non-empty collection of closed sets with the FIP (by

our argument), but via De Morgan’s Laws, we have

⋂
α∈I

Fα = ∅,

contradicting our assumption.

�Corollary 75 (Generalized Nested Interval Theorem for Com-

pact Metric Spaces)

Let (X, d) be compact and {FN}∞
n=1 be a sequence of non-empty closed

sets such that Fn+1 ⊂ Fn. Then

∞⋂
n=1

Fn 6= ∅.

�Corollary 76 (Compact Metric Spaces are Complete)

If (X, d) is compact, then (X, d) is complete.
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Ã Note 28.1.1

Recall the definition for compactness, in which we may then have the

following notion: for a compact set (X, d), for ε > 0, since {B(x, ε)}x∈X

is an open cover of X, we know that there exists x1, . . . , xn ∈ X such that

they form a finite subcover on X.

X =
n⋃

i=1

B(xi, ε).

We use the same idea and make the following definition:

# Definition 75 (ε-net)

Given A ⊂ (X, d) and ε > 0. An ε-net for A is a set {xα}α∈I ⊂ X such

that

A ⊂
⋃
α∈I

B(xi, ε).

# Definition 76 (Totally Bounded)

We say that a subset A ⊂ (X, d) is totally bounded if A has a finite

ε-net for every ε > 0.

¯Theorem 77 (Compact Sets are Totally Bounded)

If (X, d) is compact, then (X, d) is totally compact.

´ Proof

The proof immediately follows from the definition of compactness,

as discussed in Note 28.1.1. �
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Note that bounded and totally bounded are not equivalent.

Example 28.1.2

Let

S = {{xn} ∈ `∞ | ‖{xn}‖∞ ≤ 1}.

We have that S is bounded, but it does not have a 1
2 -net. ¥

7 Proposition 78 (A Set is Totally Bounded iff Its Closure is

Totally Bounded)

A ⊂ (X, d) is totally bounded iff A is totally bounded.

Exercise 28.1.2
Prove 7 Proposition 78.

´ Proof

The ( ⇐= ) direction is immediate, since A ⊂ A. It suffices to

show for ( =⇒ ). Suppose A is totally bounded. If A is closed,

then we are done, so WMA A is open. Then Lim(A) * A. Let

x0 ∈ Lim(A) \ A. Since x0 is a limit point, for any ε > 0, B(x0, ε) ∩
A 6= ∅. Need to verify definition of an ε-net. �
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29.1 Compactness (Continued 2)

¯Theorem 79 (Compact Sets have BWP)

If (X, d) is compact, then (X, d) has the BWP.

´ Proof

Suppose S ⊂ X is infinite. Then we can obtain a sequence {xn} ⊂ S

such that for n 6= m, xn 6= xm. Then, consider

Fn = {xn, xn+1, . . .}.

We have that Fn+1 ⊆ Fn and we observe that {Fn} has the FIP, i.e.

∃x0 ∈
∞⋂

n=1

Fn.

Then for any ε > 0, for any n ∈N, we have that

B(x0, ε) ⊂ Fn.

In fact, B(x0, ε) ∩ {xn} 6= ∅ is also infinite. Thus x0 ∈ Lim(S).

7 Proposition 80 (Sequential Compactness =⇒ Completeness

and Total Boundedness)
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If (X, d) is sequentially compact, then (X, d) is both complete and totally

bounded.

´ Proof

Completeness Let {xn} ⊂ X be Cauchy. Then by the assumption

that X is sequentially compact, {xn} has a subsequence {xnk} such

that xnk → x0 ∈ X. Then by ¯Theorem 47, xn → x0. a

Totally Bounded Suppose to the contrary that X is not totally

bounded, i.e. ∃ε0 > 0 such that X has no finite ε0-net. Then we

can find x1 ∈ X such that B(x1, ε0) 6= X, an x2 ∈ X \ B(x1, ε0),

x3 ∈ X \ (B(x1, ε0) ∪ B(x2, ε2)), and so on. In other words, we can

construct a sequence {xn} ⊂ X such that d(xn, xm) > ε for all n 6=
m. Then by construction, {xn} has no convergent subsequences, i.e.

X is not sequentially compact.

¯Theorem 81 (Continuity Preserves Sequential Compactness)

If (X, d) is sequentially compact and if f : (X, dX) → (Y, dY) is continu-

ous, then f (X) is sequentially compact.

´ Proof

Let {yn} ⊂ f (X). Consider {xn} such that f (xn) = yn. Since X

is sequentially compact, {xn} has a convergent subsequence {xnk}
with xnk → x0. Then by continuity,

ynk = f (xnk )→ f (x0) = y0.

�Corollary 82 (Extreme Value Theorem)
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If (X, d) is sequentially compact and f : X → R is continuous, then

∃c, d ∈ X such that

f (c) ≤ f (x) ≤ f (d)

for all x ∈ X.

´ Proof

By ¯Theorem 81, f (X) is sequentially compact in R, and by

7 Proposition 80, f (X) is complete, and so by Heine-Borel, f (X)

is closed and bounded. Thus

sup( f (X)), inf( f (X)) ∈ f (X).

¯Theorem 83 (Lesbesgue)

Let (X, d) be sequentially compact. Let {Uα}α∈I be an open cover of X.

Then ∃ε > 0 such that for every 0 < δ < ε, and every x ∈ X such that

for some α0 ∈ I

B(x0, δ) ⊂ Uα0 .

´ Proof

If Uα0 = X, then any ε > 0 will work. WMA Uα 6= X for any α ∈ I.

Let ϕ : X → R be defined by

ϕ(x) = sup {δ > 0 : B(x, δ) ⊆ Uα0 , α0 ∈ I} .

Since {Uα}α∈I is an open cover of X, every x must be in one of the

Uα’s, and so the set

{δ > 0 : B(x, δ) ⊆ Uα0 , α0 ∈ I}

is non-empty and ϕ(x) > 0. Also, ϕ(x) < ∞, since X is bounded
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(as X is sequentially compact) and Uα 6= X for any α ∈ I.

Now for any x, y ∈ X, 1 we have that 1 I should check in with the professor
on how to show this

ϕ(x) ≤ ϕ(y) + d(x, y)

by the Triangle Inequality. Thus

ϕ(x)− ϕ(y) ≤ d(x, y)

and by symmetry we have

|ϕ(x)− ϕ(y)| ≤ d(x, y).

Thus ϕ is Lipschitz, and so ϕ is uniformly continuous2. Then by 2 see note on definition of Lipschitz.

the Extreme Value Theorem, ∃ε > 0 such that ∃ε > 0 such that

ϕ(x) ≥ ε for all x ∈ X.

Ã Note 29.1.1

The ε in Lesbesgue’s Theorem is also called a Lesbesgue Number.

¯Theorem 84 (Lesbesgue-Borel)

Let (X, d) be a metric space. TFAE:

1. (X, d) is compact.

2. (X, d) has BWP.

3. (X, d) is seqentially compact.

´ Proof

We already have (1) =⇒ (2) and (2) ⇐⇒ (3) . It suffices to

prove (3) =⇒ (1) . Let {Uα}α∈I be a cover of X. By Lesbesgue’s

Theorem, let ε0 > 0, and fix 0 < δ < ε0. Since (X, d) is totally
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bounded (as it sequentially compact), there exists {x1, . . . , xn} with

X =
n⋃

i=1

B(xi, δ).

Then for each i, we have that B(xi, δ) ⊂ Uαi for some αi ∈ I. Then

X =
n⋃

i=1

Uαi

is a finite subcover of the cover {Uα}α∈I .

¯Theorem 85 (Compactness ⇐⇒ Completeness + Totally

Bounded)

Let (X, d) be a metric space. TFAE:

1. (X, d) is compact.

2. (X, d) is complete and totally bounded.

´ Proof

By ¯Theorem 84 and 7 Proposition 80, we have (1) =⇒ (2) .

Thus it suffices to show for (2) =⇒ (1) . Notice that we only

need to show that (X, d) is sequentially compact. Let {xn} ⊂
(X, d).

Since (X, d) is totally bounded, X can be covered by finitely

many open balls of radius 1. Thus one such ball S1 = B(y1, 1), for

some y1 ∈ X, contains infinitely many terms in {xn} 3. 3 Note that sequences are infinitary by
nature in our context.

Similarly, X can be covered by finitely many open balls of radius
1
2 , and we can pick one of these open balls S2 = B

(
y2, 1

2

)
which

contains infinitely many terms in {xn} ∩ S1.

Recursively, we may construct a sequence of open balls{
Sk = B

(
yk,

1
k

)}
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with the property that each Sk+1 contains infinitely many terms in

{xn} ∩
(

k⋂
i=1

Si

)
.

Note that

diam(Sk) =
2
k
→ 0

as k→ ∞, and since can pick

n1 < n2 < . . . < nk < . . .

such that

xnk ∈
k⋂

i=1

Si.

WMA for some N ∈ N, for any k, m ≥ N, we have that xnk , xnm ∈
SN , i.e.

d(xnk , xnm) ≤ diam(SN).

Thus {xnk} ⊂ {xn} is Cauchy. Since (X, d) is complete, xnk → x0,

and therefore X is sequentially compact by definition.
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30.1 Compactness (Continued 3)

The proof of the following theorem was left as an exercise:

¯Theorem 86 (Continuity Preserves Compactness)

If (X, dX) is compact and f : (X, dX) → (Y, dY) is continuous, then

f (X) is compact in Y.

´ Proof

The proof easily follows from ¯Theorem 84 and ¯Theorem 81.

30.2 Finite Dimensional Normed Linear Spaces

# Definition 77 (Bounded Linear Map)

A linear map T : (V, ‖·‖V)→ (W, ‖·‖W) is said to be bounded if

‖T‖T = sup{‖T(v)‖W | ‖v‖V ≤ 1} < ∞.

In assignment 3, we proved the following important result about
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linear maps in finite dimensional normed linear spaces.

¯Theorem 87 (Boundedness is Equivalent to Continuity in

Finite Dimensional Normed Linear Spaces)

Let T : (V, ‖·‖V)→ (W, ‖·‖W) be a linear map. TFAE:

1. T is bounded.

2. T is continuous.

3. T is continuous at 0.

� Lemma 88 (Continuity of the Norm)

The function f : (V, ‖·‖)→ R given by f (x) = ‖x‖ is continuous.

7 Proposition 89 (Linear Map Between Spaces of Different

Dimensions is Bounded)

Let T : (Rn, ‖·‖2)→ (Rm, ‖·‖2) be linear. Then T is bounded.

´ Proof

Since T is a linear map, we may represent T using a matrix A such

that

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 =


~a1

~a2
...

~am

 .

If ‖x‖ ≤ 1, then

‖T(x)‖2 =

∥∥∥∥∥∥∥∥∥∥∥


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 ·


x1
...

xn


∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥


~a1 ·~x
~a2 ·~x

...

~am ·~x



∥∥∥∥∥∥∥∥∥∥∥
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=

(
m

∑
i=1

(~ai ·~x)2

) 1
2

≤
(

m

∑
i=1
‖~ai‖2 ‖~x‖2

) 1
2

≤
(

m

∑
i=1
‖~ai‖2

) 1
2

.

This completes the proof.

¯Theorem 90 (Boundedness of Functions between n-dimensional

Vector Spaces and n-dimensional Normed Linear Spaces)

Let (V, ‖·‖V) be an n-dimensional normed linear space with basis

{v1, . . . , vn}. Let Γn : Rn → V be given by

Γn(α1, . . . , αn) = α1v1 + . . . + αnvn.

Then Γn and Γ−1
n are both bounded. Furthermore, they are both continu-

ous by ¯Theorem 87.

´ Proof

Γn is bounded Suppose ‖(α1, . . . , αn)‖2 ≤ 1. Then

‖Γn(α1, . . . , αn)‖V = ‖α1v1 + . . . αnvn‖V

≤ |α1| ‖v1‖V + . . . |αn| ‖vn‖V

≤
n

∑
i=1
‖vi‖V .

Γ−1
n is bounded Note that since Γn is bounded, it is continuous.

Consider

S = {(α1, . . . , αn) ∈ Rn | ‖(α1, . . . , αn) = 1‖2 = 1}.

Since S is closed and bounded, and is a subset of Rn, S is com-

pact by the Heine-Borel Theorem, and so Γ(S) is compact in V by

¯Theorem 86. Since the mapping v → ‖v‖V is continuous, by the
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Extreme Value Theorem,

min{‖Γn(α1, . . . , αn)‖V | (α1, . . . , αn) ∈ S} = α > 0.

It follows y continuity that if ‖v‖V ≤ α, then
∥∥Γ−1

n (v)
∥∥

2 ≤ 1.

Therefore, we have that
∥∥Γ−1

n
∥∥ ≤ 1

α .

Ã Note 30.2.1

1. Γn is a homeomorphism.

2. As a consequence of Γ being continuous, we have that {xn} is Cauchy

in Rn iff {Γ(xn)} is Cauchy in (V, ‖·‖V).

3. As a result, (V, ‖·‖V) is complete by the Heine-Borel Theorem. Since

V is arbitrary, we have that all finite dimensional normed linear

spaces are complete.

¯Theorem 91 (The Basis of a Infinite Dimensional Banach

Spaces is Uncountable)

Suppose (W, ‖·‖) is a infinite dimensional Banach Space. If {wα}α∈I is a

basis of W, then I is uncountable.

Exercise 30.2.1

Prove ¯Theorem 91 (see also in A3).

¯Theorem 92 (All Linear Maps Between Finite Dimensional

Normed Linear Spaces are Bounded)

If (V, ‖·‖V) and (W, ‖·‖W) are finite dimensional normed linear spaces,

and T : V →W is linear, then T is bounded.

´ Proof
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Consider the following diagram that illustrates the relationship

between each of the spaces: Then, we define S : (Rn, ‖·‖2) →

(V, ‖·‖V) (W, ‖·‖W)

(Rn, ‖·‖2) (Rm, ‖·‖2)

Γn Γ−1
n

T

Γm Γ−1
m

Figure 30.1: Relationship between
the finite dimensional normed linear
spaces.

(Rm, ‖·‖2) such that S = Γm ◦ T ◦ Γ−1
n . By 7 Proposition 89, S is

continuous. Consequently, we have that T = Γm−1 ◦ S ◦ Γn, which

is a composition of continuous functions. Thus T is continuous,

and hence bounded.

�Corollary 93 (All Linear Maps from A Finite Dimensional

Normed Linear Space to Any Normed Linear Space is Bounded)

If (V, ‖·‖V) is a finite dimensional normed linear space, and T : (V, ‖·‖V)→
(W, ‖·‖W) is linear, then T is bounded.
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31.1 Finite Dimensional Normed Linear Space (Continued)

In the last lecture, we discovered that if (V, ‖·‖V) is an n-dimensional

normed linear space, then

(V, ‖·‖V) ' (Rn, ‖·‖2).

Notice that if v ∈ V, then v = Γn(Γ−1
n (v)), and so

‖v‖ =
∥∥∥Γn(Γ−1

n (v))
∥∥∥ ≤ ‖Γn‖

∥∥∥Γ−1
n (v)

∥∥∥
2

.

By applying Γ−1
n once more, we have∥∥∥Γ−1

n (v)
∥∥∥

2
≤
∥∥∥Γ−1

n

∥∥∥ ‖v‖V .

It follows that if we let α = 1
‖Γ−1

n ‖ and β = ‖Γn‖, then

α
∥∥∥Γ−1

n (v)
∥∥∥

2
≤ ‖v‖V ≤ β

∥∥∥Γ−1
n (v)

∥∥∥
2

for every v ∈ V.

We can deduce the following from the above:

1. A set A ⊂ V is open/closed/compact if V iff Γ−1
n (A) is open/closed/compact

in Rn.

2. A ⊂ (V, ‖·‖) is compact iff A is closed and bounded1. 1 This is also known as the Heine-Borel
Property.

3. A sequence {vn} is Cauchy/converges to v0 in (V, ‖·‖V) iff {Γn(vn)}
is Cauchy/converges to Γn(v0) in (Rn, ‖·‖2).
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The following result follows from our observations above:

¯Theorem 94 (Completeness of Finite Dimensional Normed

Linear Spaces)

Let (V, ‖·‖V) be a finite dimensional normed linear space. Then (V, ‖·‖V)

is complete. In particular, if (W, ‖·‖W) is any normed linear space, and V

is a finite dimensional subspace of W, then V is closed in W.

Example 31.1.1 (Unbounded Linear Function)

Let (W, ‖·‖W) be infinite dimensional, with basis {vα}α∈I . WMA that

{vα}W = 1. Choose a countable collection {v1, v2, . . .} ⊂ {vα}α∈I , and

define

ϕ(vα) =

n vα = vn

0 otherwise

Then if w = α1v1 + . . . + αnvn, we have

ϕ(w) =
n

∑
i=1

αi ϕ(vαi ).

Then ϕ : W → R is linear. ¥

Question: Is ϕ bounded? No.

31.2 Uniform Continuity

We will finish on compactness with a few more results about uniform

continuity.

¯Theorem 95 (Sequential Characterization of Uniform Conti-

nuity)

Let f : (X, dX)→ (Z, dZ). TFAE:

1. f is uniformly continuous.

2. if {xn}, {yn} ⊂ X with d(xn, yn)→ 0, then d( f (xn), f (yn))→ 0.
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´ Proof

(1) =⇒ (2) f is uniformly continuous

=⇒ ∀ε > 0 ∃δ > 0 ∀x, y ∈ X dX(x, y) < δ =⇒
dZ( f (x), f (y)) < ε

=⇒ ∃N0 ∈ N ∀n ≥ N0 dX(xn, yn) < δ =⇒ dZ( f (xn), f (yn)) <

ε a

(2) =⇒ (1) f is not uniformly continuous

=⇒ ∃ε0 > 0 ∀δ > 0 ∃x0, y0 ∈ X

dX(x0, y0) < δ ∧ dZ( f (x0), f (y0)) > ε0

=⇒ ∀N ∈N ∃n0 ≥ N

dX(xn, yn) <
1
n ∧ dZ( f (xn), f (yn)) > ε0 a

¯Theorem 96 (Continuous Functions from a Compact Set Is

Uniformly Continuous)

If (X, dX) is compact and if f : (X, dX) → (Z, dZ) is continuous, then f

is uniformly continuous.

´ Proof

Suppose to the contrary that f is not uniformly continuous

=⇒ (∵ ¯Theorem 95) ∀{xn}, {yn} ⊂ X

dX(xn, yn)→ 0∧ dZ( f (xn), f (yn)) ≥ ε0 > 0

But compactness =⇒ ∃{xnk} ⊂ {xn}, {ynk} ⊂ {yn} such that

xnk → x0 ∈ X ∧ ynk → y0 ∈ X

=⇒ (∵ continuity) f (xnk )→ f (x0) ∧ f (ynk )→ f (y0)

=⇒ dZ( f (xnk ), f (ynk ))→ 0 E

¯Theorem 97 (Continuous Bijections from a Compact Space is

a Homeomorphism)
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Assume (X, dX) is compact and that f : (X, dX) → (Y, dY) is continu-

ous and bijective. Then f−1 : Y → X is continuous. In particular, f is a

homeomorphism.

´ Proof

Notice that ( f−1)−1 = f . Thus it suffices to show that if U ⊂ X is

open, then f (U) is open in Y. Also, note that Y = f (X) is compact

as X is compact.

U ⊂ X is open =⇒ F = UC is closed

=⇒ F is compact (∵ f is continuous)

=⇒ f (F) is compact in Y

=⇒ f (F) is closed

=⇒ f (U) = ( f (F))C is open (∵ f is bijective)

31.3 The Space (C(X), ‖·‖∞)

31.3.1 Weierstrass Approximation Theorem

Example 31.3.1

Note that by Taylor’s Expansion, we have that

ex =
∞

∑
n=0

xn

n!
= 1 + x +

x2

2!
+ . . .

Consider the partial sum

Sk(x) =
k

∑
n=0

xn

n!
.

Then we have that Sk(x) → ex pointwise on R. In fact, Sk(x) → ex

uniformly on [−M, M]. ¥

Question: Given a function f ∈ C[a, b], can f be uniformly approxi-

mated by polynomials?
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Before going further, notice that if, e.g. we let

ϕ(x) =
x− a
b− a

,

then ϕ : [a, b]→ [0, 1] bijectively so. Also, ϕ is continuous. Its inverse,

ϕ−1(x) = x(b− a) + a

is also continuous. We can then define Γ : C[0, 1]→ C[a, b] by

Γ( f )(x) = f ◦ ϕ−1(x),

whose inverse is

Γ−1 : C[a, b]→ C[0, 1] given by Γ−1( f )(x) = f ◦ ϕ(x).

Notice that Γ is an isometry: we have

‖Γ( f )− Γ(g)‖∞ = ‖ f − g‖∞

for any f , g ∈ C[0, 1]. Moreover, Γ(p) is a polynomial iff p is a

polynomial.2 2 Basically, this part shows us that we
can use ϕ, which is also a continuous
function, to scale the domain of f so
as to shrink it down to only at [0, 1]
instead of [a, b].

Thus every continuous function in C[a, b] can be uniformly ap-

proximated by polynomials iff the same is true in C[0, 1], i.e. we only

need to consider continuous functions on [0, 1] for approximations.

Next, observe that if f ∈ C[0, 1], and if we can approximate

g(x) = f (x)− ([ f (1)− f (0)]x + f (0)]),

uniformly to within ε > 0 3, i.e. 3 Notice that if we rearrange the equa-
tion, we have

f (x) = g(x) + f (0) + x( f (1)− f (0))

which tells us that if we can approxi-
mate g by a polynomial, then we can
do so for f cause the later term is also a
polynomial.

‖g− p‖∞ < ε,

we may do the same for f (x) with polynomials

‖g− p‖∞ < ε ⇐⇒ ‖ f − [p− q]‖ < ε,

where q(x) = f (1)− f (0). Notice that here, we have

g(0) = 0 = g(1).
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32.1 The Space (C(X), ‖·‖∞) (Continued)

32.1.1 Weierstrass Approximation Theorem (Continued)

Before proving Weierstrass’ Approximation Theorem, we require the

following lemma:

� Lemma 98 (Lemma for Weierstrass Approximation)

Let x ∈ [0, 1], then if n ∈N, we have

(1− x2)n ≥ 1− nx2.

x

y

Figure 32.1: Graph of (1− x2)n for large
n, where x ∈ [0, 1].

´ Proof

Let f (x) = (1− x2)n − [1− nx2]. Notice that f (0) = 0. Then

f ′(x) = 2nx
(

1−
(

1− x2
)n−1

)
≥ 0.

Thus f is increasing from x = 0. It follows that

(1− x2)n ≥ 1− nx2,

as required.

¯Theorem 99 (� � � Weierstrass Approximation Theorem)
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If f ∈ C[a, b], then for each ε > 0, there exists a polynomial p(x) such

that

‖ f − p‖∞ < ε.

´ Proof

By our discussion by the end of Section 31.3.1, we may assume

that [a, b] = [0, 1], and that f (0) = 0 = f (1). Consequently, we

may extend f to a uniformly continuous function on R by defining

f (x) = 0 if x ∈ (−∞, 0] ∪ [1, ∞).

Now, let Qn(x) = cn
(
1− x2)n, where xn is closed such that

∫ 1

−1
Qn(t) dt = 1.

Notice that

∫ 1

−1

(
1− x2

)n
dx = 2

∫ 1

0

(
1− x2

)n
dx ≥ 2

∫ 1√
n

0

(
1− nx2

)
dx 1

=
4

3
√

n
>

1√
n

,

and so we have 1 How did we arrive at this new limit of
1√
n ? There is no deep meaning behind

the choice of 1√
n . It’s simply because it

works.

cn <
√

n.

For each n, define

pn(x) =
∫ 1

−1
f (x + t)Qn(t) dt =

∫ 1−x

−x
f (x + t)Qn(t) dt 2

=
∫ 1

0
f (u)Qn(u− x) du.

Notice that by Leibniz’s Integral Rule, we have 2 Here, we can strink the limits of
integration, for anything below −x or
above 1− x are 0 as per our assumption
that f is zero at (−∞, 0] ∪ [1, ∞).

Also, in the first integral, we used
Qn(t) to average over the transforma-
tion f (x + t), and in the last integral,
we see that we can “massage” the first
integral into one where we have, in-
stead, f as an averaging function over
Qn(u− x).

d2n+1

dx2n+1 pn(x) =
∫ 1

0
f (u)

∂2n+1

∂x2n+1 Qn(u− x) du = 0

by the construction of Qn(t). Thus pn is a polynomial of degree at

most 2n.

Now, note that since
∫ 1
−1 Qn(t) dt = 1, we have that

f (x) =
∫ 1

−1
f (x)Qn(t) dt.

https://en.wikipedia.org/wiki/Leibniz_integral_rule
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Let ε > 0. By continuity of f , we may find 0 < δ < 1 such that

|x− y| < δ =⇒ | f (x)− f (y)| < ε

2
.

Then for x ∈ [0, 1], we have

|pn(x)− f (x)| =
∣∣∣∣∫ 1

−1
( f (x + t)− f (x))Qn(t) dt

∣∣∣∣
≤
∫ 1

−1
| f (x + t)− f (x)|Qn(t) dt

=
∫ −δ

−1
| f (x + t)− f (x)|Qn(t) dt

+
∫ δ

−δ
| f (x + t)− f (x)|Qn(t) dt

+
∫ 1

δ
| f (x + t)− f (x)|Qn(t) dt

≤ 2 ‖ f ‖∞
√

n
(

1− δ2
)n

+
ε

2
+ 2 ‖ f ‖∞

√
n
(

1− δ2
)n

(32.1)

= 4 ‖ f ‖∞
√

n
(

1− δ2
)n

+
ε

2
,

x

y

Figure 32.2: Dirac Sequence

x

y

−δ δ

cn
(
1− δ2)n cn

(
1− δ2)n

−1 1

Figure 32.3: One of the Dirac Functions
with δ as an inflection point

where Equation (32.1) follows by
∫ 1
−1 Qn(t) dt = 1 and Qn(t) ≥ 0

for x ∈ [0, 1]. Then since 0 < δ < 1, it follows that for sufficiently

large N, we have

4 ‖ f ‖∞

√
N
(

1− δ2
)N
≤ ε

2
,

as the
(
1− δ2)N term will “decay” much faster than

√
N.

7 Proposition 100 (Moments)

Assume that f ∈ C[0, 1], that

∫ 1

0
f (t) dt = 0,

and ∫ 1

0
f (t)tn dt = 0

for every n ∈N. Then f (x) = 0 for x ∈ [0, 1].
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Exercise 32.1.1
Prove 7 Proposition 100.

´ Proof

Since f ∈ C[0, 1], by the Weierstrass Approximation Theorem, for

ε > 0, let pn(x) be a polynomial such that ‖ f − pn‖∞ < ε. Then by

the linearity of integration, and our assumption, we have

∫ 1

0
f (t)pn(t) dt = 0.

Consequently, we have

∫ 1

0
f 2(t) dt = 0,

and thus f (x) = 0 at [0, 1].

¯Theorem 101 (Banach-Mazurkiewickz Theorem)

Let

ND([0, 1]) = { f ∈ C[0, 1] : f is nowhere differentiable }.

Then ND([0, 1]) is residual3 in (C[0, 1], ‖·‖∞). 3 For quick reference, a set is residual if
its complement is of first category.

´ Proof

For each n, define

Fn =

{
f ∈ C[0, 1] |

∃x0 ∈
[

0, 1− 1
n

]
∀0 < h < 1− x0 | f (x0 + h)− f (x0)| ≤ nh

}
.

We notice that each of the Fn’s is closed. incomplete proof, re-

quire further work �

Remark 32.1.1

There is nothing special about [0, 1] in the above theorem. In particular, it
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works for any closed interval [a, b]. a





33 Y Lecture 33 Nov 28th

33.1 The Space (C(X), ‖·‖∞) (Continued 2)

33.1.1 Weierstrass Approximation Theorem (Continued 2)

�Corollary 102 (Separability of (C[a, b],‖·‖∞))

(C[a, b], ‖·‖∞) is separable.

´ Proof

Let

Pn = {a0 + a1x + . . . + anxn : ai ∈ R}

Qn = {r0 + r1x + . . . + rnxn : ri ∈ Q}.

Then Qn = Pn. Then by the Weierstrass Approximation Theorem,⋃∞
n=1 Pn is dense, and so is the countable set

⋃∞
n=1 Qn.

33.1.2 Stone-Weierstrass Theorem

Question: Given a compact metric space (X, d), and a subspace

Φ ⊂ C(X), how can we tell that Φ is dense?

From here, we shall always assume that (X, d) is a compact metric
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space.

# Definition 78 (Point-Separating)

We say that Φ ⊂ C(X) is point-separating if1 1 Note that this definition does mean
that every f ∈ Φ is injective, as the
function may depend on either one
or both x and y. Of course, if every
f ∈ Φ is injective, then Φ is, trivially,
point-separating.

∀x, y ∈ X(x 6= y =⇒ ∃ f ∈ Φ( f (x) 6= f (y))).

7 Proposition 103 (C(X) is Point-Separating)

C(X) is point-separating.

´ Proof

Let a, b ∈ X such that a 6= b. Then, define fa(x) = d(a, x). It is then

clear that fa ∈ C(X). Since a 6= b, we have that fa(b) = d(a, b) > 0.

Ã Note 33.1.1

Suppose that Φ ⊂ C(X), and x1, x2 ∈ X with x1 6= x2, such that for any

f ∈ Φ, f (x1) = f (x2). Then if g ∈ Φ, we must have g(x1) = g(x2)
2. 2 For otherwise g would not be continu-

ous
This shows that if Φ is dense in C(X), then it must separate points.

33.1.2.1 Lattice Version

# Definition 79 (Lattice)

A subspace Φ ⊂ C(X) is a lattice if f ∨ g, f ∧ g ∈ Φ for each f , g ∈ Φ,

where3 3 In words, a lattice is a set of functions
closed under maxima and minima.

( f ∨ g)(x) = max{ f (x), g(x)}

( f ∧ g)(x) = min{ f (x), g(x)}.
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Ã Note 33.1.2

1. Notice that

( f ∨ g)(x) =
( f (x) + g(x)) + | f (x)− g(x)|

2
∈ C(X)

for any f , g ∈ C(X).

2. For minima, we have

( f ∧ g)(x) = −(− f ∨−g) =
( f (x) + g(x))− | f (x)− g(x)|

2
∈ C(X).

It follows that since both f ∨ g and f ∧ g are in C(X) that C(X) is a

lattice. Moreover, if Φ ⊂ C(X) is a linear subspace, then Φ is a lattice if

f ∨ g ∈ Φ for every f , g ∈ Φ.

Example 33.1.1

A function f ∈ C[a, b] is said to be a piecewise linear if there exists

P = {a = t0 < t1 < . . . < tn = b},

i.e. a partition of [a, b], such that

f �[ti−1,ti ]
(x) = mix + bi.

The function is piecewise polynomial if

f �[ti−1,ti ]
= c0,i + c1,ix + . . . + cn,ixn,

where cj,i ∈ R. Let

Φ1 = { f ∈ C[a, b] | f is piecewise linear }

and

Φ2 = { f ∈ C[a, b] | f is piecewise polynomial }.

It is clear that both Φ1 and Φ2 are lattices. ¥
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¯Theorem 104 (Stone-Weierstrass Theorem — Lattice Version)

Let (X, d) be a compact metric space. Let Φ be a linear subspace of C(X)

such that

1. the constant function 1 ∈ Φ 4; 4 It is okay that we simultaneously have
1 ∈ Φ and Φ separating points, for all
we need to know that Φ separate points
is that for any x, y ∈ X with x 6= y,
there exists some f ∈ Φ such that
f (x) 6= f (y).

2. Φ is point-separating; and

3. f ∨ g ∈ Φ for any f , g ∈ Φ 5

5 This implies that Φ is a lattice by note
on page 195.Then Φ is dense in C(X).

´ Proof I need to get a better pic-

ture of the motivation of the

proof.

This is likely not a proof that one can
come up in one sitting, especially
when it is a theory that covers over 2

centuries of mathematical work. As it
is, it is very difficult to understand how
this proof came by, and many of the
steps are purely constructive.

Note that given α, β ∈ R with a 6= b ∈ X, since Φ is point-

separating (2), we can find ϕ ∈ Φ such that ϕ(a) 6= ϕ(b). Then,

let

g(t) = α · 1(t) + (β− α)
ϕ(t)− ϕ(a)
ϕ(b)− ϕ(a)

,

where 1(t) is the constant function 1 ∈ Φ. We have that g ∈ Φ since

it uses operations of which Φ is closed under. Notice that

g(a) = α and g(b) = β.

Let f ∈ C(X) and ε > 0. Now for any pair x, y ∈ X, we can find

ϕx,y ∈ Φ such that ϕx,y(x) = f (x) and ϕx,y(y) = f (y) 6. Let x ∈ X.
What else can we understand

from ϕx,y?
6 I feel somewhat on edge not having
the faintest idea how ϕx,y works, except
that it separates x and y.

Since ϕx,y(y)− f (y) = 0, and both ϕx,y and f are continuous, we

can find, for each y ∈ X, a δy > 0 such that if t ∈ B
(
y, δy

)
, then

−ε < ϕx,y(t)− f (t) < ε.

Now since (X, d) is compact, we can find a finite collection {y1, . . . , yn} ⊂
X such that

X =
n⋃

i=1

B
(
yi, δyi

)
,

and within each of the B(yi, δyi ), we have

−ε < ϕx,yi (t)− f (t) < ε
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for t ∈ B(yi, δyi ). Then, let

ϕx = ϕx,y1 ∨ . . . ∨ ϕx,yn .

If z ∈ X, then z ∈ B(yi0 , δi0) for some i0 ∈ {1, . . . , n}, and so

f (z)− ε ≤ ϕx,yi0
(z) ≤ ϕx(z).

On the other hand, since ϕx(x)− f (x) = 0, and both ϕx and f

are continuous, for each x ∈ X, we can find a δx > 0 such that if

t ∈ B(x, δx), then

−ε < ϕx(t)− f (t) < ε. (33.1)

As before, by the compactness of (X, d), we can find {x1, . . . , xm} ⊂
X such that

X =
m⋃

i=1

B (xi, δxi ) .

Then, using a similar argument as in the previous case, by Equa-

tion (33.1), we have that

ϕx(t) < f (t) + ε.

Thus, if z ∈ B(xi1 , δxi1) for some i1 ∈ {1, . . . , m}, we have

ϕ(z) := ϕx1(z) ∧ . . . ϕxm(z) ≤ ϕxi1
(z) < f (z) + ε.

Consequently, for any z ∈ X, we have that

f (z)− ε < ϕ(z) < f (z) + ε.

This gives us that for any W ⊂ C(X), since we can construct such a

ϕ that is within ε-distance of f , W ∩Φ 6= ∅, thus implying that Φ is

dense in C(X).

33.1.2.2 Subalgebra Version

# Definition 80 (Subalgebra)
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A subspace Φ ⊂ C(X) is a subalgebra if f · g(x) = f (x)g(x) ∈ Φ for

any f , g ∈ Φ.

Example 33.1.2

Let

Pn = {a0 + a1x + . . . + anxn}.

Then

P =
∞⋃

n=1

Pn

is a subalgebra of C[a, b].7 ¥ 7 See a quick work in notes on PMATH
347.

� Lemma 105 (Closure of a Subalgebra is a Subalgebra)

If Φ ⊂ C(X) is a subalgebra, then so is Φ.

´ Proof

Suppose fn → f and gn → g, where { fn}, {gn} ⊂ Φ. Then, we have

α fn → α f

for α ∈ R, and

fn + gn → f + g.

Note that {gn} is bounded if gn → g. Then,

‖ fngn − f g‖∞ ≤ ‖gn‖∞ ‖ fn − f ‖∞ + ‖ f ‖∞ ‖gn − g‖∞

would imply that fngn → f g, and so f g ∈ Φ.

We are ready for the subalgebra version of Stone-Weierstrass,

which we shall prove in the next lecture.

¯Theorem (Stone-Weierstrass Theorem — Subalgebra Version)

https://tex.japorized.ink/PMATH347S18/classnotes.pdf#page160
https://tex.japorized.ink/PMATH347S18/classnotes.pdf#page160
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If Φ ⊂ C(X) is a linear subspace such that

1. 1 ∈ Φ;

2. Φ is point-separating; and

3. f · g ∈ Φ for all f , g ∈ Φ (which implies that Φ is a subalgebra).

Then Φ is dense in C(X).





34 Y Lecture 34 Nov 30th

34.1 The Space (C(X), ‖·‖∞) (Continued 3)

34.1.1 Stone-Weierstrass Theorem (Continued)

34.1.1.1 Subalgebra Version (Continued)

¯Theorem 106 (Stone-Weierstrass Theorem — Subalgebra Ver-

sion)

If Φ ⊂ C(X) is a linear subspace such that

1. 1 ∈ Φ;

2. Φ is point-separating; and

3. f · g ∈ Φ for all f , g ∈ Φ (which implies Φ is a subalgebra).

Then Φ is dense in C(X).

´ Proof (� � � )

By Lemma 105, we may assume that Φ is closed.

Let f ∈ Φ and ε > 0. Also, let M = ‖ f ‖∞. From the Weierstrass

Approximation Theorem, we may find some polynomial

p(x) = a0 + a1x + . . . + anxn
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such that for an yt ∈ [−M, M], we get

||t| − p(t)| < ε.

x

y

Figure 34.1: Visualization of the proof
for ¯Theorem 106.

Now consider the composition

p ◦ f = a0 · 1 + a1 · f + . . . + an · f n,

which is in Φ. Thus for x ∈ X, we have

|| f (t)| − p ◦ f (x)| < ε.

This implies that

‖| f | − p ◦ f ‖∞ < ε.

Thus by the closure of Φ, we have that | f | ∈ Φ = Φ.

Now notice that for f , g ∈ Φ, since

f ∨ g =
f + g + | f − g|

2
,

we have f ∨ g ∈ Φ. Thus by ¯Theorem 104, Φ is dense in C(X).

Example 34.1.1

Let

P = {a0 + a1x + . . . + anxn : n ∈N, ai ∈ R}.

Then by ¯Theorem 106, P ⊂ C[a, b] is dense. ¥

Let

Φ = span{1, x2, x4, . . .} ⊆ C[−1, 1].

It is clear that Φ is an algebra. However, it does not separate points,

since

(−1)2 = 1 = (1)2.

So in this case Φ is not dense.

But what about C[0, 1]? Notice that x2 separates points on [0, 1],

and all other conditions are still met. Thus Φ is dense in C[0, 1].
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Question: Then what about

Φ′ = span{x2, x4, . . .}?

Is Φ′ dense in C[0, 1]? No. 1If f ∈ Φ′, then f (0) = 0. I should find out about this.
1 This was given as a reason but I don’t
know what exactly does it entail. That
said, it is clear that Φ′ separates points,
and still a subalgebra, but 1 can we
still create the constant function 1 in Φ
using only the other generators?

But what about the closure

span{x2, x4, . . .} ⊂ C[0, 1]?

Consider the set

S := { f ∈ C[0, 1] | f (0) = 0},

which is a closed ideal in C[0, 1]. Then, in particular, we have that

for any g ∈ C[0, 1], we have that g f , f g ∈ S for any f ∈ S. It can be

shown2 that
how?

2 I should probably work this out on my
own.

S = span{x2, x4, . . .}.

Consequently, we see that if f ∈ S, we have that

f ∈ span{1, x2, x4, . . .} = C[0, 1].

Example 34.1.2

Let X = [0, 2π) and

A = {λ ∈ C | |λ| = 1}.

Consider the function ϕ : X → A given by

ϕ(θ) = eiθ .

It is clear that ϕ is bijective. We may then define d : X → R by

d(θ1, θ2) = shortest arclength between eiθ1 and eiθ2 .

Then we have

([0, 2π), d) ' A,

and the space ([0, 2π)) is compact. Then in particular, we have

{ f ∈ C[0, 2π] | f (0) = f (2π)} = C[0, 2π) ' C(A). ¥
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Example 34.1.3

The set

Trig([0, 2π)) := span{1, cos(nx), sin(mx) | n, m ∈ Z}

is a subalgebra of C[0, 2π) that is point separating, and has 1 in it

(and closed). By ¯Theorem 106, Trig([0, 2π)) is dense in C[0, 2π).¥

Ã Note 34.1.1

Consider the set

C(X, C) = { f : X → C | f continuous and bounded },

with norm

‖ f ‖∞ = sup{| f (x)| | x ∈ X}.

We say that Φ ⊂ C(X, C) is self-adjoint if

f ∈ Φ =⇒ f ∈ Φ.

With this, we have the complex version of the Stone-Weierstrass

Theorem.

¯Theorem 107 (Stone-Weierstrass Theorem — Complex Ver-

sion)

If (X, d) is compact and Φ is a linear subspace of C(X, C) that is self-

adjoint, with

1. 1 ∈ Φ;

2. Φ separates points; and

3. f · g ∈ Φ for any f , g ∈ Φ.

Then Φ is dense in C(X, C).
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Example 34.1.4

Reusing our last example, now

Trig([0, 2π)) = span{einθ | n ∈ Z}

is dense in C([0, 2π), C). ¥





35 Y Lecture 35 Dec 03rd

35.1 The Space (C(X), ‖·‖∞) (Continued 4)

35.1.1 Compactness in C(X) and the Ascoli-Arzela Theorem

Question: If (X, d) is compact nad F ⊂ C(X), when is F compact?

We require the following notion:

# Definition 81 (Equicontinuity)

Let (X, d) be a metric space with F ⊂ Cb(X). We say that F is (point-

wise) equicontinuous at x0 ∈ X if

∀ε > 0 ∃δx0 > 0 ∀ f ∈ F ∀x ∈ X

d(x, x0) < δx0 =⇒ | f (x)− f (x0)| < ε.

We say that F is equicontinuous if it is (pointwise) equicontinous at

each x0 ∈ X.

We say that F is uniformly equicontinuous if

∀ε > 0 ∃δ > 0 ∀ f ∈ F ∀x, y ∈ X

d(x, y) < δ =⇒ | f (x)− f (y)| < ε.

Ã Note 35.1.1
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Notice that in the definition above, as compared to regular continuity we

have

1. for continuity, δ may depend on ε, f and x0;

2. for uniform continuity, δ may depend on ε and f ;

3. for equicontinuity, δ may depend on ε and x0; while

4. for uniform equicontinuity, δ may solely depend on ε.

This was outlined on Wikipedia1. 1 So take it with a grain of salt?

Example 35.1.1

A finite collection { f1, . . . , fn} ⊂ Cb(X) is equicontinuous. This is a

clear result since we may check for each of the functions. ¥

7 Proposition 108 (Equicontinuity in a Compact Set is Uniform)

If (X, d) is compact and if F ⊂ C(X) is equicontinuous, then F is

uniformly equicontinuous.

´ Proof

Let ε > 0. Since F is equicontinuous, for each x0 ∈ X, we can find

δx0 > 0 if x ∈ B(x0, δx0), then | f (x)− f (x0)| < ε
2 for any f ∈ F .

Since (X, d) is compact, the cover {B(x0, δx0)}x0∈X has a Lesbesgue

Number δ0 > 0. Then, let 0 < δ < δ0. If for w, z ∈ X we have

d(w, z) < δ, then z ∈ B(w, δ) ⊂ B(x′0, δx′0
) for some x′0 ∈ X. Then

| f (z)− f (w)| ≤ | f (z)− f (x0)|+ | f (x0)− f (w)| < ε.

# Definition 82 (Pointwise Bounded Functions)

https://en.wikipedia.org/wiki/Equicontinuity
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A family of functions F ⊂ Cb(X) is pointwise bounded if for each

x0 ∈ X, ∃Mx0 > 0 such that | f (x0)| < Mx0 for every f ∈ F . We say

that F is uniformly bounded if ∃M > 0 such that ‖ f ‖∞ ≤ M for every

f ∈ F .

7 Proposition 109 (Pointwise Bounded Equicontinuous Func-

tions in a Compact Set are Uniformly Bounded)

Assume that (X, d) is compact and that F ⊆ C(X) is equicontinuous

and pointwise bounded. Then F is uniformly bounded.

´ Proof

By 7 Proposition 108, F is uniformly equicontinuous. So let ε = 1.

Then ∃δ > 0 such that for any x, y ∈ X, if y ∈ B(x, δ), then

| f (x)− f (y)| < 1 for any f ∈ F . By compactness of (X, d) there

exists a finite subset {x1, . . . , xn} ⊂ X such that

X =
n⋃

i=1

B(xi, δ).

By assumption, we also know that for each of these xi’s, there

exists M1, . . . , Mn > 0 such that for any f ∈ F , | f (xi)| ≤ Mi. Then

let

M0 = max{M1, . . . , Mn}.

Then for any z ∈ X, we have that z ∈ B(xi0 , δ) for some i0. There-

fore, we have that

| f (z)| ≤
∣∣ f (z)− f (xi0)

∣∣+ ∣∣ f (xi0)
∣∣ < 1 + M0.

# Definition 83 (Relatively Compact Sets)

Let A ⊂ (X, d). We say that A is relatively compact if A is compact.



210 Lecture 35 Dec 03rd The Space (C(X), ‖·‖∞) (Continued 4)

Ã Note 35.1.2

If (X, d) is complete, then we have that A is relatively compact iff A is

totally bounded.

¯Theorem 110 (Arzelà-Ascoli)

Let (X, d) be a compact metric space, and F ⊂ C(X). TFAE:

1. F is relatively compact.

2. F is equicontinous and pointwise-bounded.

´ Proof

(1) =⇒ (2) Since (X, d) is compact, it is complete, and so F
being relatively compact implies that F is totally bounded. Thus

F has a finite ε
3 -net { f1, f2, . . . , fn} ⊂ F . By an earlier example, we

have that { f1, f2, . . . , fn} is equicontinuous, and hence uniformly

equicontinuous by 7 Proposition 108. By that, we can find a δ > 0

such that ∀x, y ∈ X, if d(x, y) < δ, we have

| fi(x)− fi(y)| <
ε

3

for all i = 1, 2, . . . , n.

Now let f ∈ F be arbitrary, and let w, z ∈ X such that d(w, z) <

δ. Since F has a finite ε
3 -net, there exists i0 = 1, 2, . . . , n such that∥∥ f − fi0

∥∥
∞ < ε

3 . Thus

| f (w)− f (z)| ≤
∣∣ f (w)− fi0(w)

∣∣+ ∣∣ fi0(w)− fi0(z)
∣∣+ ∣∣ fi0(z)− f (z)

∣∣
≤ ε

3
+

ε

3
+

ε

3
< ε.

Therefore, F is uniformly continuous and uniformly bounded2. 2 We proved for the stronger version.

(2) =⇒ (1) By 7 Proposition 108 and 7 Proposition 109, we

have that F is uniformly continuous and uniformly bounded. Let
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ε > 0. By uniform boundedness, let M > 0 be such that | f (x)| < M

for every x ∈ X and every f ∈ F . Consider the partition

P = {−M = y0 < y1 < y2 < . . . < ym = M},

where yj − yj−1 < ε
3 for each j = 0, 1, . . . , m.

M

−M

yj
yj−1

ε
3

x1
x2

xn

δ

Figure 35.1: Basic Visual Sketch of the
Proof of the Arzelà-Ascoli Theorem

We may also find, by uniform equicontinuity, a δ > 0 such that

d(w, z) < δ implies that | f (z)− f (w)| < ε
3 . Since (X, d) is totally

bounded (as it is compact), we may find, in particular, a finite δ-net

{x1, . . . , xn} ⊂ X such that

X =
n⋃

i=1

B(xi, δ).

Now consider the set functions

Φ = {ϕ | ϕ : {1, . . . , n} → {1, . . . , m}}.

It is clear that Φ is finite, and so we may write

Φ = {ϕ− 1, . . . , ϕl},

where l = mn.

Next, for each k = 1, . . . , l, let

Fk =
{

f ∈ F | f (xi) ∈
[
yϕk(i)−1, yϕk(i)

]}
.

Clearly so, by construction, while some of the Fk’s may be empty,

we have that {Fk} partitions F , i.e.

F =
l⋃

k=1

Fk.

Then for each of the non-empty sets Fk, pick a fk ∈ Fk. From here,

since we want to show that F is relatively compact and (X, d) is

compact and hence complete itself, it suffices for us to show that F
is totally bounded. In other words, it suffices for us to show that F
has some finite ε-net.

Let f ∈ F . Then f ∈ Fk for some k = 1, 2, . . . , l. Then for
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z ∈ B(xi0 , δ), we have

| f (z)− fk(z)| ≤
∣∣ f (z)− f (xi0)

∣∣+ ∣∣ f (xi0)− fk(xi0)
∣∣+ ∣∣ fk(xi0)− fk(z)

∣∣
<

ε

3
+

ε

3
+

ε

3
= ε.

This completes the proof.



A YUseful Theorems from Earlier Cal-

culus

¯Theorem A.1 (Monotone Convergence Theorem)

Let {xk} be a sequence in R.

1. Suppose {xk} is increasing.

• If {xk} is bounded above, then xk → sup{xk} as k→ ∞.

• If {xk} is not bounded above, then xk → ∞ as k→ ∞.

2. Suppose {xk} is decreasing.

• If {xk} is bounded below, then xk → inf{xk} as k→ ∞.

• If {xk} is not bounded below, then xk → −∞.
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1. *

(a) How many relations are there on the set {1, 2, 3, ..., n}?
(i) n (ii) n2 (iii) 2n (iv) 2n2

(b) Determine the number of equivalence relations on the set X =

{1, 2, 3}.
(i) 4 (ii) 5 (iii) 6 (iv) None of the above

(c) Recall that we would say that A ∼ B and that A and B have the

same cardinality, if there is a 1− 1 and onto function from A to

B.

If X = {1, 2, 3, 4} and ∼ is the equivalence relation on P(X) as

above:

i. How many different equivalence classes are there in this

equivalence relation:

A. 4 B. 24 C. 5 D. 25

ii. List all of the elements of [A] if A = {1, 2, 3}.

iii. If X = {1, 2, 3, ..., n} and ∼ is as in Part 1c, how many ele-

ments are there in [A] where A = {1, 2, 3, ..., k}?
A. 2k B. k! C. n!

k! D. n!
k!(n−k)!

2.(a) Let V be a vector space. Let W be a subspace of V. Show that:

v ∼ y ⇐⇒ v− y ∈W,

defines an equivalence relation on V.

(b) Show that [z] + [v] = [z + v] and α[z] = [αz] is well defined. That
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is, show that if z1 ∼ z2 and v1 ∼ v2, then z1 + v1 ∼ z2 + v2 and

αz1 ∼ αz2.

Remark The set V/W = [v] | v ∈ V is a vector space under the

operations above. It is called the quotient of V by W.

3. *

(a) Use cardinal arithmetic to determine (ℵ0)
ℵ0 and cℵ

ℵ0
0 and cℵ0 .

(b) Show that there exists a 1− 1 map from the power set of R onto

the set of all real-valued functions on R by showing that 2c = cc.

(c) Explain why there is a one to one and onto map Γ : Q∞ → R∞

where

Q∞ = {{rn} | rn ∈ Q}

and

R∞ = {{sn} | sn ∈ R}.

(d) Let C(R) denote the set of all continuous real-valued functions

on R.

i. Explain why if f , g ∈ C(R) and f (x) = g(x) for every x ∈ Q,

then f = g.

ii. Determine |C(R)|.

4. A real number α ∈ R is called algebraic if there exists a polyno-

mial p(x) with integer coefficients such that p(α) = 0. Show that

the collection Ψ of all algebraic numbers is countable.

5. A collection = ⊆ P(X) is called a topology on X if

(a) ∅, X ∈ =

(b)
{ ⋃

α∈I
Uα

}
∈ = whenever {Uα}α∈I ⊆ =

(c)
n⋂

i=1
Ui ∈ = whenever {U1, U2, ..., Un} ⊆ =

The elements of = are called =-open sets or simply open sets for

short.

(a) Show that if {=α}α∈I is a collection of topologies on X, then
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= =
⋂

α∈I
=α is also a topology on X. In particular, show that

if Γ ⊆ P(X), then there is a smallest topology =(Γ) on X that

contains Γ. =(Γ) is called the topology generated by Γ.

(b) * We call a subset U of R open if for every x ∈ U, there exists an

ε > 0 such that (x− ε, x + ε) ⊆ U. Let =R denote the collection

of all open subsets of R.

i. Show that =R is a topology on R.

ii. Let

Γ = {∅} ∪ {(a, b) | a ∈ R∪ {−∞}, b ∈ R∪ {∞}, a < b}

be the collection of open intervals in R. Show that =R =

=(Γ).

iii. Let U ⊂ R be open and nonempty. Define a relation ∼ on U

by x ∼ y if and only if whenever x < z < y or y < z < x, we

must have z ∈ U.

Show that ∼ is an equivalence relation on U and that if Ix =

{y ∈ U | x ∼ y}, then Ix is an open interval. (Recall that a set

I is an interval if whenever x, y ∈ I and x < z < y, then we

must have z ∈ I.)

Remark: In this case, in fact, Ix = (αx, βx), where

αx = inf{y : (x, y) ⊂ U}

βx = sup{y : (y, x) ⊂ U}

iv. Show that if U ∈ =R, then U is the union of at most count-

ably many pairwise disjoint open intervals.

v. What is |=R|? (Hint: Show that every open set is the count-

able union of open intervals with rational endpoints.)

(c) * Let X be any set. Let =c f (X) = {∅} ∪ {A ⊆ X | Ac is finite }.
Show that =c f (X) is a topology on X. =c f (X) is called the cofi-

nite topology on X.

(d) Let X be any set. Let =cc(X) = {∅}∪{A ⊆ X | Ac is countable }.
Show that =cc(X) is a topology on X. =cc(X) is called the co-
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countable topology on X.

6. Let X be a given set. A σ-algebra on X is a collection Ψ of subsets

of X such that

(i) X ∈ Ψ;

(ii) If S ∈ Ψ, then so is Sc.

(iii) If {Sn} ⊂ Ψ, then
∞⋃

n=1
Sn ∈ Ψ.

(a) Show that if {Ψα}α∈I is any collection of σ-algebras on X, then⋂
α∈I

Ψα is also a σ-algebra. In particular, show that if A ⊆ P(X),

then there is a unique smallest σ-algebra containing A which

we call the σ-algebra generated by A, and denote by σ(A).

(b) Let O denote the collection of all open subsets of R. The σ-

algebra, σ(O) is called the Borel σ-algebra of R, and is denoted

by B(R).

Give an example of a set A ⊂ R that is Borel but neither closed

or open.

(c) What is |B(R)|? (Note: This one is not so easy. Do not spend

much time on it and only do so after you have completed the

remaining questions)

(d) True or false: Every uncountable subset S of R contains a subset

A which is not Borel. (Explain your answer.)

7. *

(a) Show that if X is infinite and countable, you can find two dis-

joint infinite subsets S and T such that S ∪ T = X and

|S| = |T| = |X| .

(b) Show that if X is infinite, then you can find two disjoint subsets

S and T such that S ∪ T = X and |S| = |T| = |X|. (Hint: Show

that X can be written as the union of a collection of pairwise

disjoint countable sets.)

Remark: This is actually a formal proof of the statement for an

infinite set |X|+ |X| = |X|.
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1. *We have seen that the positive rationals can be well ordered via

the order � given by n
m �

j
k if and only if 2n3m ≤ 2j3k. With ↓ for markings and comments

respect to this order find the least element in the set S = {r ∈ Q |
√

2 < r}. (Note: In defining S the order we use is the usual order

on R.)

2. *Let d1, d2 and d∞ be the metrics on Rn given by

d1(x, y) =
n

∑
i=1
|xi − yi|

d2(x, y) =

√
n

∑
i=1

(xi − yi)2

d∞(x, y) = max
i=1,...,n

|xi − yi|

Let τ1, τ2 and τ∞ be the topologies induced by the above metrics.

Show that τ1 = τ2 = τ∞.

3. *

(a) For each of the following sets determine if it is open, closed or

neither. Indicate the set of limit points, boundary points and

interior points of each set.

i. (0, 1] ⊂ R.

ii. Q ⊂ R.

(b) Let P1 = {a0 + a1x | ai ∈ R} ⊂ (C[0, 1], d∞). Show that P1 is

closed.

(c) Let c00 = {{an} ∈ l∞ | an = 0 for all but finitely many n} ⊂ l∞.

Let c0 = {{an} ∈ l∞ | limn→∞ an = 0}. Show that c00 is dense in
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c0. That is c00 = c0.

4. Least Upper Bound Property:

We say that α is an upper bound of S ⊂ R if x ≤ α for all x ∈ S.

We say that S is bounded above if it has an upper bound. We

call α the least upper bound of S if α is an upper bound of S and if

whenever β is an upper bound of S we have α ≤ β. We denote

α by lub(S) (We may define lower bounds and the greatest lower

bound (glb(S)) in the obvious way). The Least Upper Bound Prperty

states that every nonempty subset S of R that is bounded above

has a least upper bound (or equivalently that every nonempty

subset S of R that is bounded below has a greatest lower bound).

(a) Prove the Monotone Convergence Theorem: Let {an} be a se-

quence in R with an ≤ an+1 for all n ∈ N. If {an} is bounded

above,then {an} converges.

(b) Prove the Nest Interval Theorem: Let {[an, bn]} be sequence of

closed intervals with [an+1, bn+1] ⊆ [an, bn] for each n ∈N. Then
∞⋂

n=1
[an, bn] 6= ∅.

(c) Show that the statement in Part 4b may fail if we use open

interavls.

(d) Use the Nest Interval Theorem to show that if S ⊂ R is infi-

nite and bounded, then it has a limit point. (This is called the

Bolzano-Weierstrass Theorem.)

(e) Given a nonempty set A ⊂ (X, d) we define the diameter of A

to be diam(A) = sup{d(x, y) | x, y ∈ A}. Show that if An is

a sequence of nonempty closed sets in R with An+1 ⊆ An and

diam(Ai) < ∞, then
∞⋂

n=1
An 6= ∅.

5. *Let {Uα}α∈I be a collection of open sets in R such that [0, 1] ⊂⋃
α∈I Uα.

(a) Show that there exists finitely many sets Uα1 , Uα2 , . . . , Uαn such

that [0, 1] ⊂
n⋃

i=1
Uαi .

(Hint: Let

A = {x ∈ [0, 1] | [0, x] can be covered by finitely many Uα’s}.
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Show that 1 = lub(A) and then that 1 ∈ A. )

(b) Show that the statement in Part 5a can fail if we replace [0, 1]

with (0, 1).

6. *A map ϕ : (X, dX)→ (Y, dY) is called an isometry if dY(ϕ(xi), ϕ(x2)) =

dX(x1, x2).

(a) Determine all possible isometries ϕ : R → R and ψ : R2 → R2

and show that each such map is surjective.

(b) Given an example of an isometry ϕ : (X, dX) → (X, dX) that is

not onto.

7. *A topological space (X, τ) is called separable if there exists a

countable subset S ⊂ X such that S = X.

Show that (`1, d1) is separable but (`∞, d∞) is not.

8. *Let ~xn = {xn,1, xn,2, xn,3, . . .} ∈ l∞. Show that if ~xn → ~x0 in l∞
where ~x0 = {x0,1, x0,2, x0,3, . . .}, then for each k ∈ N, lim

n→∞
xn,k =

x0,k but that the converse can fail.

9. Let P0 = [0, 1]. Let P1 be obtained from P0 by removing the open

interval of length 1
3 from the middle of P0. Then construct P2 from

P1 by removing open intervals of length 1
32 from the two closed

subintervals of P1. In general, Pn+1 is obtained from Pn by remov-

ing the open interval of length 1
3n+1 from the middle of each of the

2n closed subintervals of Pn. Let

P =
∞⋂

n=0
Pn.

P is called the Cantor set.

(a) A subset A of a metric space is nowhere dense if A◦ = ∅. Show

that P is closed and nowhere dense.

(b) Show that P is uncountable. (Hint: You may use the fact that

x ∈ P if and only if we can express x =
∞
∑

n=1

an
3n where an = 0, 2.)

(c) A subset A of R is said to be perfect if A = Lim(A). Show that

the Cantor set P is perfect. (Again, you can use the fact that

x ∈ P if and only if we can express x =
∞
∑

n=1

an
3n where am = 0, 2.)
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1.(a) Let (X, d) be a metric space. Let x0 ∈ X be fixed. Define Fx0 :

X → R by

Fx0(x) = d(x0, x).

Show that Fx0 is continuous.

(b) * Let (X, ‖·‖) be a normed linear space. Define F : X → R by

F(x) = ‖x‖ .

Show that F is continuous.

2. * Let fn[0, 1]→ R be defined by

fn(x) = sin(xn).

(a) Show that fn(x) does not converge uniformly on [0, 1].

(b) Show that fn(x) does converge uniformly on
[
0, 1

2

]
.

3. Connectedness of R

Let A ⊆ (X, d). We say that A is disconnected if there exists two

open sets U and V such that

i) U ∩V ∩ A = ∅

ii) U ∩ A 6= ∅ and V ∩ A 6= ∅

iii) A ⊆ U ∪V.

We say that A is conected if it is not disconnected.

(a) Let (X, d) be a metric space and let A ⊂ X. Show that the
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characteristic function

χA(x) :=

1 if x ∈ A

0 if x /∈ A

is continuous on X if and only if A is both open and closed.

(b) * Show that R is connected.

(c) Let A ⊆ (X, dX) be connected. Let f : A → (Y, dY) be continu-

ous. Show that f (A) is connected.

4. A function f : (X, dX) → (Y, dY) is said to be uniformly con-

tinuous if for every ε > 0 there exists a δ > 0 such that if

dX(x1, x2) < δ, then dY( f (x1), f (x2)) < ε.

(a) Let f : (X, dX) → (Y, dY) be uniformly continuous. Show that if

{xn} is Cauchy in X, then { f (xn)} is Cauchy in Y.

(b) Let (X, d) be a metric space and let A ⊂ X. Let f : A → R.

Show that if f is uniformly continous on A, then there exists

g : A → R that is continuous on A and for which g �A= f . That

is g extends f to A.

5. Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed linear spaces. Let T : X →
Y be linear. We say that T is bounded if

sup
‖x‖X≤1

{‖T(x)‖Y} < ∞.

In this case, we write

‖T‖ = sup
‖x‖X≤1

{‖T(x)‖Y}.

Otherwise, we say that T is unbounded.

(a) * Prove that the following are equivalent

i. T is continuous.

ii. T is continuous at 0.

iii. T is bounded.

(b) Assume that L : Rn → Rn is linear and that L is represented by
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the matrix A. We let ‖A‖ = ‖L‖.

i. Assume that

D =



d1

d2

d3
. . .

dn


is a diagonal matrix. Show that ‖D‖ = max

i=1,...,n
{|di|}.

ii. Show that if

D =



d1

d2

d3
. . .

dn


is a diagonal matrix, then

sup
‖x‖≤1

{|〈Dx, x〉|} = max
i=1,...,n

{|di|}.

iii. Let U be an orthonormal n× n matrix. Show that if x ∈ Rn,

then ‖Ux‖ = ‖x‖.

iv. * Assume that L : Rn → Rn is linear and that L is represented

by the matrix A. Show that ‖L‖ = ‖A‖ =
√
|α| where α is the

largest eigenvalue of the matrix At A.

v. * Assume that L : R2 → R2 is represented by the matrix

A =

1 1

2 −1

 .

Find ‖A‖. (You can use Maple or MATLAB if you like.)

6. * Let x0 ∈ [0, 1]. Define the linear map Tx0 : C[0, 1]→ R by

Tx0( f ) = f (x0).

(a) Show that as a map from (C[0, 1], ‖·‖∞) → R, Tx0 is bounded
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with ‖Tx0‖ = 1.

(b) Show that as a map from (C[0, 1], ‖·‖1)→ R, T0 is unbounded.

7. Define the linear map T : C[0, 1]→ R by

T( f ) =
∫ 1

0
x f (x) dx.

(a) Show that if ‖ f (x)‖∞ ≤ 1, then |T( f )| ≤ 1
2 .

(b) Show that if T(1) = 1
2 and hence that ‖T‖ = 1

2 .

8. * Let (X, d) be a metric space and { fn} be a sequence of real val-

ued functions on X which converges pointwise on X to a function

f : X → R. Let x0 ∈ X.

We say that { fn} converges uniformly at x0 if for every ε > 0, there

exists a δ > 0 and an N ∈ N such that if n > N and d(x, x0) < δ,

then

| fn(x)− f (x)| < ε.

Show that if each function fn is continuous at x0 and if fn →
f uniformly at x0 then f is also continouus at x0. (Hint: This is

almost exactly the same as the proof for uniform convergence with

one minor change.)

9. Let (X, d) be a metric space. Let f : X → R. Let

D( f ) = {x0 ∈ X | f (x) is discontinous at x0}.

For each n ∈N, let

Dn( f ) =
{

x0 ∈ X | ∀δ > 0, ∃y, z ∈ B(x0, δ) for which | f (y)− f (z)| ≥ 1
n

}
.

(a) * Show that for each n ∈ N, Dn( f ) is closed. (Hint: Let {xk} ⊆
Dn( f ) be such that xk → x0. Show that x0 ∈ Dn( f ).)

(b) * A subset A of a metric space is said to be an Fσ set if A =
∞⋃

n=1
Fn, where each Fn is closed. Show that D( f ) is an Fσ set by

showing that

D( f ) =
∞⋃

n=1

Dn( f ).
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(c) * A subset A of (X, d) is said to be nowhere dense if A◦ = ∅.

Assume that F ⊂ R is closed and nowhere dense. Let

f (x) = χF(x) =

1 if x ∈ F

0 if x ∈ FC
.

Find D( f ).

(d) * A subset A of (X, d) is said to be first category if A =
⋃∞

n=1 An

where each An is nowhere dense. Show that if A ⊂ R is Fσ

and of first category, then there exists a function f (x) on R with

D( f ) = A.

(e) Bonus Question 5: Show that if A ⊂ R is Fσ then there exists a

function f (x) on R with D( f ) = A.

10.(a) * Explain why the integral equation

f (x) = x +
∫ x

0
t f (t) dt

has a unique solution ϕ(x) in C[0, 1], and then find a power

series representation for ϕ(x).

(b) Fredholm Equation: Assume that K(x, y) ∈ C([a, b] × [a, b])

with ‖K(x, y)‖∞ = M. Show that if |λ|M(b − a) < 1 and if

ϕ(x) ∈ C[a, b], then the map Γ : C[a, b]→ C[a, b] given by

Γ( f )(x) = ϕ(x) + λ
∫ b

a
K(x, y) f (y) dy

is contractive and hence that the integral equation

f (x) = ϕ(x) + λ
∫ b

a
K(x, y) f (y) dy (∗)

has a unique solution in C[a, b].

11. * Dini’s Theorem: Let (X, d) be a compact metric space. Let

{ fn(x)} be a sequence of continous functions on X such that

fn(x) ≤ fn+1(x) for each n ∈N and f (x) = lim
n→∞

fn(x).

(a) Show that f (x) is continuous on X if and only if the sequence

converges uniformly. (Hint: Let ε > 0. Let Un = {x ∈ X |
fn(x) > f (x)− ε} and show that {Un} is an open cover of X.)
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(b) Show that Dini’s Theorem fails on [0, ∞) by giving a sequence

{ fn(x)} of continuous functions on [0, ∞) such that fn(x) ≤
fn+1(x) for each n ∈ N and lim

n→∞
fn(x) = 1 for each x but for

which the convergence is not uniform.

12. Let A ⊂ (X, d) be non-empty. For each x ∈ X, define the distance

from x to A by

dist(x, A) = inf{d(x, y) | y ∈ A}.

(a) Show that A is closed if and only if the following property

holds:

x ∈ A ⇐⇒ dist(x, A) = 0.

(b) Let F ⊆ X be closed and non-empty. Show that

F =
⋂

n∈N

(⋃
x∈F

B
(

x,
1
n

))
.

(Note: This shows that every closed sets is also Fσ.)

(c) Show that the function f (x) = dist(x, A) is continuous.

13. Let (X, ‖·‖) be a normed linear space.

(a) * Prove that if A ⊂ (X, ‖·‖) is compact and non-empty, then for

each x0 ∈ X, there exists a y0 ∈ A such that

‖x0 − y0‖ = inf{‖x0 − y‖ | y ∈ A}.

(b) * Assume that X is finite dimensional. Prove that if A ⊂ (X, ‖·‖)
is closed and non-empty, then for each x0 ∈ X, there exists a

y0 ∈ A such that

‖x0 − y0‖ = inf{‖x0 − y‖ | y ∈ A}.

(c) A subset A of a vector space is said to be convex if αx + (1−
α)y ∈ A whenever x, y ∈ A and 0 ≤ α ≤ 1.

Let A ⊆ R2 be convex and closed and let x0 ∈ AC. Show that

if R2 is given the norm ‖·‖2, then the point y0 obtained in part

13b above is unqiue but that this need not be the case if we use
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the norm ‖·‖∞.

(d) Given A, B ⊆ X non-empty sets, define dist(A, B) = inf{d(a, b) |
a ∈ A, b ∈ B}. Show that if A is closed, B is compact with

A ∩ B = ∅, then dist(A, B) > 0.

(e) Show that even in R, 13d can fail if you only assume that B is

closed.

(f) * Let f (x) ∈ C[0, 1]. Let

Pn = {p(x) = a0 + a1x + . . . + anxn | ai ∈ R}.

Show that there exists a polynomial p(x) ∈ Pn such that

‖ f (x)− p(x)‖∞ ≤ ‖ f (x)− q(x)‖∞

for any q(x) ∈ Pn.

(g) * Show that if {pk(x)} is a sequence of polynomials such that

{pk(x)} converges uniformly to f (x) = ex on [0, 1], then

lim
k→∞

deg(pk(x)) = ∞.

14. * Let (V, ‖·‖) be an infinite dimensional Banach space.

(a) Show that if B = {vα}α∈I is a basis for V, then I is uncountable.

(Hint: Assume that B = {v1, v2, v3, . . .} was countable. Let

Fn = span{v1, v2, v3, . . . , vn}.)

(b) Show that there exist a linear function ϕ : V → R that is un-

bounded. (Hint: You can assume that V has a basis consisting

of vectors of norm 1. From here you need only define ϕ on the

basis elements and then extend it linearly.)

15. * Let f (x) be continuous on [0, 1]. Assume that

∫ 1

0
f (x) dx = 0

and that ∫ 1

0
f (x)xn dx = 0

for each n ∈N. Show that f (x) = 0 for all x ∈ [0, 1].
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16. Let X = [0, 1]× [0, 1] ⊂ (R2, ‖·‖2). Let f (x, y) ∈ C(X). For each

y ∈ [0, 1], define fy(x) = f (x, y) for each x ∈ [0, 1].

(a) Show that F = { fy | y ∈ [0, 1]} is equicontinuous.

(b) Show that the map Γ : [0, 1]→ (C[0, 1], ‖·‖∞) given by

Γ(y) = fy

is continuous.

(c) Is F compact in C(X)? Explain your answer.

17. Let

Ψ =

{
F(x, y) ∈ C([0, 1]× [0, 1]) | F(x, y) =

k

∑
i=1

fi(x)gi(y)

}

where in the sum above, the functions fi and gi are continous on

[0, 1]. Show that ψ is dense in C([0, 1]× [0, 1]).

18. Let g(x) be continuous and strictly increasing on [a, b]. Let f (x) ∈
C[a, b]. Let ε > 0. Then there exists constants c0, c1, . . . , cn such that∣∣∣∣∣ f (x)−

n

∑
k=0

ckgk(x)

∣∣∣∣∣ < ε

for each x ∈ [a, b].

19. Let I be a closed ideal of C[0, 1]. (That is, I is a closed subalgebra

of C[0, 1] with the property that if g(x) ∈ I and if f (x) ∈ C[0, 1],

then f (x)g(x) ∈ I.)

(a) Let Z(I) = {x ∈ [0, 1] | ∀ f ∈ I, f (x) = 0}. Show that Z(I) is a

closed subset of [0, 1].

(b) Show that if Z(I) = ∅, then I = C[0, 1]. (Hint: Show that

there exists a function f (x) ∈ I such that f (x) > 0 for every

x ∈ [0, 1].)

(c) Let A ⊆ [0, 1] be closed. Let I(A) = { f ∈ C[0, 1] | ∀x ∈
A, f (x) = 0}. Show that I is a maximal closed ideal in C[0, 1] if

and only if I = I({x0}) for some x0 ∈ [0, 1].

(Recall: A closed ideal I is maximal if I 6= C[0, 1] and if J is any

closed ideal containing I, then either I = J or J = C[0, 1].)
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