PMATH351 - Real Analysis

Classnotes for Fall 2018

by
Johnson Ng

Table of Contents

Table of Contents 2
List of Definitions 7
List of Theorems 10
List of Procedures 15
1 Lecture 1 Sep 06th 17
1.1 Course Logistics 17
1.2 Preview into the Introduction 17
2 Lecture 2 Sep 1oth 19
2.1 Basic Set Theory 19
2.2 Products of Sets 23
3 Lecture 3 Sep 12th 27
3.1 Axiom of Choice 27
3.2 Relations 29
4 Lecture 4 Sep 14th 35
4.1 Zorn's Lemma 35
4.2 Cardinality 38
4.2.1 Equivalence Relation 38
5 Lecture 5 Sep 17th 41
5.1 Cardinality (Continued) 41
6 Lecture 6 Sep 19th 47
6.1 Cardinality (Continued 2) 47
7 Lecture 7 Sep 21st 53
7.1 Cardinality (Continued 3) 53
7.1.1 Cardinal Arithmetic 55
8 Lecture 8 Sep 24th 57
8.1 Cardinality (Continued 4) 57
8.1.1 Cardinal Arithmetic (Continued) 57
9 Lecture 9 Sep 26th 61
9.1 Introduction to Metric Spaces 61
10 Lecture 10 Sep 28th 67
10.1 Introduction to Metric Spaces (Continued) 67
11 Lecture 11 Oct oist 75
11.1 Introduction to Metric Spaces (Continued 2) 75
12 Lecture 12 Oct o3rd 81
12.1 Introduction to Metric Spaces (Continued 3) 81
12.2 Topology on Metric Spaces 82
13 Lecture 13 Oct 05th 87
13.1 Topology on Metric Spaces (Continued) 87
14 Lecture 14 Oct 12th 91
14.1 Topology on Metric Spaces (Continued 2) 91
15 Lecture 15 Oct 15th 97
15.1 Topology on Metric Spaces (Continued 3) 97
15.2 Convergences of Sequences 100
16 Lecture 16 Oct 17th 103
16.1 Convergences of Sequences (Continued) 103
17 Lecture 17 Oct 19th 107
17.1 Induced Metric and Topologies 107
17.2 Continuity on Metric Spaces 108
18 Lecture 18 Oct 22nd 111
18.1 Continuity on Metric Spaces (Continued) 111
19 Lecture 19 Oct 24th 115
19.1 Completeness of Metric Spaces 115
19.1.1 Basic Properties of Cauchy Sequences 116
19.1.2 Examples of Complete Spaces 117
19.1.2.1 Completeness of \mathbb{R} 117
20 Lecture 20 Oct 26th 119
20.1 Completeness of Metric Spaces (Continued) 119
20.1.1 Examples of Complete Spaces (Continued) 119
20.1.1.1 Completeness of ℓ_{p} 119
20.1.1.2 Completeness of $\left(C_{b}(X),\|\cdot\|_{\infty}\right)$ 120
21 Lecture 21 Oct 31st 123
21.1 Completeness of Metric Spaces (Continued 2) 123
21.1.1 Examples of Complete Spaces (Continued 2) 123
21.1.1.1 Completeness of $\left(C_{b}(X),\|\cdot\|_{\infty}\right)$ (Continued) 123
21.1.2 Characteriztions of Completeness 124
22 Lecture 22 Nov o2nd 127
22.1 Completeness of Metric Spaces (Continued 3) 127
22.1.1 Characterizations of Completeness (Continued) 127
23 Lecture 23 Nov 05th 131
23.1 Completeness of Metric Spaces (Continued 4) 131
23.1.1 Characterizations of Completeness (Continued 2) 131
24 Lecture 24 Nov 07th 135
24.1 Completions of Metric Spaces 135
24.2 Banach Contractive Mapping Theorem 138
25 Lecture 25 Nov 09th 141
25.1 Banach Contractive Mapping Theorem (Continued) 141
25.2 Baire Category Theorem 145
26 Lecture 26 Nov 12th 147
26.1 Baire Category Theorem (Continued) 147
27 Lecture 27 Nov 14th 155
27.1 Baire Category Theorem (Continued 2) 155
27.2 Compactness 157
28 Lecture 28 Nov 16th 161
28.1 Compactness (Continued) 161
29 Lecture 29 Nov 19th 169
29.1 Compactness (Continued 2) 169
30 Lecture 30 Nov 21st 175
30.1 Compactness (Continued 3) 175
30.2 Finite Dimensional Normed Linear Spaces 175
31 Lecture 31 Nov 23rd 181
31.1 Finite Dimensional Normed Linear Space (Continued) 181
31.2 Uniform Continuity 182
31.3 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ 184
31.3.1 Weierstrass Approximation Theorem 184
32 Lecture 32 Nov 26th 187
32.1 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ (Continued) 187
32.1.1 Weierstrass Approximation Theorem (Continued) 187
33 Lecture 33 Nov 28th 193
33.1 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ (Continued 2) 193
33.1.1 Weierstrass Approximation Theorem (Continued 2) 193
33.1.2 Stone-Weierstrass Theorem 193
33.1.2.1 Lattice Version 194
33.1.2.2 Subalgebra Version 197
34 Lecture 34 Nov 30th 201
34.1 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ (Continued 3) 201
34-1.1 Stone-Weierstrass Theorem (Continued) 201
34.1.1.1 Subalgebra Version (Continued) 201
35 Lecture 35 Dec 03rd 207
35.1 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ (Continued 4) 207
35.1.1 Compactness in $C(X)$ and the Ascoli-Arzela Theorem 207
A Useful Theorems from Earlier Calculus 213

B Assignment $\mathbb{1}$

C Assignment $2 \quad 219$

D Assignment 3 223

Bibliography 233

Index 234

List of Definitions

1 E Definition (Universal Set) 19
2 Definition (Union) 203
20

- 4
E Definition (Set Difference) 20
5 E Definition (Symmetric Difference) 20
6 Definition (Set Complement) 21
7 Definition (Empty Set) 21
8 Definition (Power Set) 21
9 Definition (Product of Sets) 23
10 Definition (Relation) 24
Definition (Function) 24
Definition (Choice Function) 25
13 E Definition (Relations) 29
14 Definition (Partially Ordered Sets) 30
15 Definition (Totally Ordered Sets / Chains) 32
16 Definition (Bounds) 32
17 Definition (Maximal Element) 35
18 回 Definition (Well-Ordered) 36
19 Definition (Equivalence Relation) 38
20 E Definition (Equivalence Class) 38
21 E Definition (Partition) 39
22 E Definition (Finite Sets) 41
23 E Definition (Cardinality) 41
24 E Definition (Infinite Sets) 42
25 E Definition (Countable) 44
26 E Definition (Smaller Cardinality) 44
27 Definition (Uncountable) 49
28
Definition (Sum of Cardinals) 55
29 Definition (Multiplication of Cardinals) 56
30 Definition (Exponentiation of Cardinals) 57
31 Definition (Metric \& Metric Space) 61
32 Definition (Norm \& Normed Linear Space) 63
33
Definition $\left(\|\cdot\|_{p}\right.$-norm) 67
34
E Definition (Open \& Closed) 82
35
Definition (Topology) 84
36 Definition (Closure) 91
37 E Definition (Interior) 91
38 Definition (Neighbourhood) 91
39 트 Definition (Boundary Point) 92
40 Definition (Separable) 94
41 Definition (Dense) 95
42 Definition (Limit Points) 97
43
Definition (Convergence) 101
44
E Definition (Induced Metric \& Induced Topology) 107
45
Definition (Continuity) 108
46 Definition (Continuity on a Space) 111
47 Definition (Homeomorphism) 113
48 Definition (Equivalent Metric Spaces) 113
49
Definition (Continuity on a set) 114
50 Definition (Cauchy) 115
51 回 Definition (Complete Metric Spaces) 116
52 Definition (Boundedness) 117
53
Definition (Convergence of Functions) 120
54
Definition (Diameter of a Set) 125Definition (Formal Sum)129
56 E Definition (Isometry) 135
57 E Definition (Completion) 135
58 E Definition (Uniformly Continuous Functions) 136
59 Definition (Fixed Point) 139
60 E Definition (Lipschitz) 141
61 트 Definition (Contraction) 141
62 Definition (Points of Discontinuity) 145
63 E Definition (F_{σ} Sets) 147
64 E Definition (G_{δ} Sets) 147
65 Eefinition (Nowhere Dense) 148
66 E Definition (First Category) 148
67 Definition (Second Category) 148
68 E Definition (Residual) 148
69 E Definition (Uniformly Convergent Sequence of Functions on a Point) 153
70 E Definition (Cover) 158
71 E Definition (Compact) 158
72 Definition (Sequential Compactness) 162
73 E Definition (Bolzano-Weierstrass Property (BWP)) 162
74 E Definition (Finite Intersection Property (FIP)) 163
75 E Definition (ε-net) 166
76 E Definition (Totally Bounded) 166
77 Definition (Bounded Linear Map) 175
78 Definition (Point-Separating) 194
79 E Definition (Lattice) 194
8o E Definition (Subalgebra) 197
81 E Definition (Equicontinuity) 207
82 Definition (Pointwise Bounded Functions) 209
83 E Definition (Relatively Compact Sets) 209

List of Theorems

PTheorem (De Morgan's Laws) 22
(1) Axiom (Zermelo's Axiom of Choice) 27
3 Axiom (Zermelo's Axiom of Choice v2) 27
(1) Axiom (Zorn's Lemma) 36
DTheorem (Non-Zero Vector Spaces has a Basis) 36
6 Axiom (Well-Ordering Principle) 37
—Theorem (Axioms of Choice and Its Equivalents) 37
8 Proposition (Characterization of An Equivalence Relation) 39
9 - Theorem (Pigeonhole Principle) 41
10 Corollary (Pigeonhole Principle (Finite Case)) 42
v Proposition (\mathbb{N} is the Smallest Infinite Set) 43
Corollary (Infinite Sets are Equivalent to Its Proper Subsets) 43
(Proposition (Injectivity is Surjectivity Reversed) 44
DTheorem (Cantor-Schröder-Bernstein Theorem (CSB)) 47
Corollary (Cantor-Schröder-Bernstein Theorem - Restated) 48
(Proposition (Denumerability Check) 49
PTheorem (Cantor's Diagonal Argument) 49
Corollary (Uncountability of \mathbb{R}) 50
DTheorem (Comparability of Cardinals) 53
DTheorem (Sums of Cardinals) 55
DTheorem (Multiplication of Cardinals) 56

- Theorem (Exponentiation of Cardinals) 58
PTheorem $\left(2^{\aleph_{0}}=c\right)$ 58
24 - Theorem (Russell's Paradox) 59
25 (1) Axiom (Continuum Hypothesis) 60
26 (1) Axiom (Generalized Continuum Hypothesis) 60
27 牵 Lemma (Young's Inequality) 67
28 -Theorem (Hölder's Inequality) 68
29 - Theorem (Minkowski's Inequality) 69
30 PTheorem (Hölder's Inequality v2) 77
31 PTheorem (Minkowski's Inequality v2) 78
32 (Proposition (Properties of Open Sets) 82
33
Corollary (Properties of Closed Sets) 83- Theorem (Open Balls are Open)87
(Proposition (Closed Sets Include Its Boundary Points) 92
(Proposition (Closures include the Boundary Points of a Set) 92
(Proposition (Closed Sets Include Its Limit Points) 98
38 Proposition (Mixing the notions) 98
39 Proposition (More on Closures and Interiors) 99
40
PTheorem (Uniqueness of Limits of Sequences) 101
- Theorem (Sequential Characterizations of Limit Points, Boundaries, and Closedness) 104
Theorem (The Metric Topology of a Subset is Its Induced Topology) 108
PTheorem (Continuity and Neighbourhoods) 109
PTheorem (Sequential Characterization of Continuity) 110
Theorem (Analogue of Sequential Characterization of Continuity on a Space, and Continu-ity and Neighbourhoods)112
46 PTheorem (Convergent Sequences are Cauchy) 115
47 PTheorem (Convergent Cauchy Subsequences) 116
48 Proposition (Cauchy Sequences are Bounded) 117
49 -Theorem (Bolzano-Weierstrass) 117
50 PTheorem (\mathbb{R} is complete) 118
51 Theorem (\leqslant Completeness of ℓ_{p}) 119
52 DTheorem t Uniformly Convergent Pointwise Continuous Functions have a Point- wise Continuous Limit) 121
53 Completeness for $C_{b}(X)$) 123
54 - Theorem (Nested Interval Theorem) 124
55 Proposition (Diameters of Subsets) 125
56 - Theorem (Cantor's Intersection Principle) 127
57 Theorem (Weierstrass M-test) 129
58 Proposition (Subsets of Complete Spaces are Complete if they are Closed) 135
59 - Theorem (Completion Theorem) 137
60 - Theorem (Banach Contractive Mapping Theorem) 142
61 DTheorem (Set of Points of Discontinuity is F_{σ}) 149
62 DTheorem (Baire Category Theorem I) 149
63 - Theorem (Baire Category Theorem II) 151
64 Corollary (Q is not G_{δ}) 152
65 Corollary (There are no Functions Discontinuous on all Irrational Numbers) 152
66 LTheorem (Limit of Sequence of Continuous Functions that Converges Pointwise is Contin- uous) 153
67 DTheorem (Uniform Convergence of A Sequence of Continuous Functions that Converges Point- wise) 155
68 Corollary (Continuity of the Limit of a Sequence of Pointwise Convergent Functions on a Resid- ual Set) 156
69 Corollary (Derivative of a Function is Continuous on a dense G_{δ} set in \mathbb{R}) 157
70 - Theorem (Heine-Borel Theorem) 158
${ }^{1}$ Proposition (Compact Spaces are Closed and Bounded) 159
72 - Proposition (Closed Subsets of Compact Sets are Compact) 161
ETheorem (Sequential Compactness is Equivalent to BWP) 163
PTheorem (FIP and Compactness) 164
74
Corollary (Generalized Nested Interval Theorem for Compact Metric Spaces) 165
- Corollary (Compact Metric Spaces are Complete) 165
77 - Theorem (Compact Sets are Totally Bounded) 166
78 Proposition (A Set is Totally Bounded iff Its Closure is Totally Bounded) 167
79 DTheorem (Compact Sets have BWP) 169
80 (1) Proposition (Sequential Compactness \Longrightarrow Completeness and Total Boundedness) 170
81 ©Theorem (Continuity Preserves Sequential Compactness) 170
82 －Corollary（Extreme Value Theorem） 171
83 —Theorem（Lesbesgue） 171
84 DTheorem（Lesbesgue－Borel） 172
85 PTheorem（Compactness \Longleftrightarrow Completeness＋Totally Bounded） 173
86 －Theorem（Continuity Preserves Compactness） 175
87 PTheorem（Boundedness is Equivalent to Continuity in Finite Dimensional Normed Linear Spaces）17688 絫 Lemma（Continuity of the Norm）176
89 （1）Proposition（Linear Map Between Spaces of Different Dimensions is Bounded） 176
90 －Theorem（Boundedness of Functions between n－dimensional Vector Spaces and n－dimensionalNormed Linear Spaces）177
91 PTheorem（The Basis of a Infinite Dimensional Banach Spaces is Uncountable） 178
92 DTheorem（All Linear Maps Between Finite Dimensional Normed Linear Spaces are Bounded）178
93
Corollary（All Linear Maps from A Finite Dimensional Normed Linear Space to Any NormedLinear Space is Bounded）179
94 PTheorem（Completeness of Finite Dimensional Normed Linear Spaces） 182
95 DTheorem（Sequential Characterization of Uniform Continuity） 182
96 PTheorem（Continuous Functions from a Compact Set Is Uniformly Continuous） 183
97 —Theorem（Continuous Bijections from a Compact Space is a Homeomorphism） 184
98
牵 Lemma（Lemma for Weierstrass Approximation） 187
99 DTheorem \rightarrow Weierstrass Approximation Theorem） 188
100 Proposition（Moments） 189
101 Theorem（Banach－Mazurkiewickz Theorem） 190
102 Corollary（Separability of $\left.\left(C[a, b],\|\cdot\|_{\infty}\right)\right)$ 193
103 －Proposition（ $C(X)$ is Point－Separating） 194
104 DTheorem（Stone－Weierstrass Theorem－Lattice Version） 196
105 重 Lemma（Closure of a Subalgebra is a Subalgebra） 198
106 －Theorem（Stone－Weierstrass Theorem — Subalgebra Version） 201
107 Theorem（Stone－Weierstrass Theorem－Complex Version） 204
（ Proposition（Equicontinuity in a Compact Set is Uniform） 208
109 （ Proposition（Pointwise Bounded Equicontinuous Functions in a Compact Set are Uniformly Bounded） 209
110 DTheorem（Arzelà－Ascoli） 210

14 LIST OF THEOREMS
A.I —Theorem (Monotone Convergence Theorem) . 213

List of Procedures

1.1
 Course Logistics

No content is covered in today's lecture so this chapter will cover some of the important logistical highlights that were mentioned in class.

- Assignments are designed to help students understand the content.
- Due to shortage of manpower, not all assignment questions will be graded; however, students are encouraged to attempt all of the questions.
- To further motivate students to work on ungraded questions, the midterm and final exam will likely recycle some of the assignment questions.
- There are no required text, but the professor has prepared course notes for reading. The course note are self-contained.
- The approach of the class will be more interactive than most math courses.
- Due to the size of the class, students are encouraged to utilize Waterloo Learn for questions, so that similar questions by multiple students can be addressed at the same time.
- If the sets are finite, this is a relatively easy task.
- If the sets are infinite, we will have to rely on functions.
- Injective functions tell us that the domain is of size that is lesser than or equal to the codomain.
- Surjective functions tell us that the codomain is of size that is lesser than or equal to the domain.
- So does a bijective function tell us that the domain and codomain have the same size? Yes, although this is not as intuitive as it looks, as it relies on Cantor-Schröder-Bernstein Theorem.

Now, given two arbitrary sets, are we guaranteed to always be able to compare their sizes? It is tempting to immediately say yes, but to do that, one would have to agree on the Axiom of Choice. Fortunately, within the realm of this course, the Axiom of Choice is taken for granted.

2

2.1 Basic Set Theory

We shall use the following notations for some of the common set of numbers that we are already familiar with:

- \mathbb{N} denotes the set of natural numbers $\{1,2,3, \ldots\}$;
- \mathbb{Z} denotes the set of integers $\{\ldots,-2,-1,0,1,2, \ldots\}$;
- \mathbb{Q} denotes the set of rational numbers $\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{N}\right\}$; and
- \mathbb{R} denotes the set of real numbers.

We shall start with having certain basic properties of \mathbb{N}, \mathbb{Z}, and \mathbb{Q}.

We will use the notation $A \subset B$ and $A \subseteq B$ interchangably to mean that A is a subset of B with the possibility that $A=B$. When we wish to explicitly emphasize this possibility, we shall use $A \subseteq B$. When we wish to explicitly state that A is a proper subset of B, we will either specify that $A \neq B$ or simply $A \subsetneq B$.

Definition 1 (Universal Set)

A universal set, which we shall generally give the label X, is a set that contains all the mathematical objects that we are interested in.

With a universal set in place, we can have the following defini-

This is a hand-wavy definition, but it is not in the interest of this course to further explore on this topic.
tions:

E Definition 2 (Union)
Let X be a set. If $\left\{A_{\alpha}\right\}_{\alpha \in I}$ such that $A_{\alpha} \subset X$, then the union for all A_{α} is defined as

$$
\bigcup_{\alpha \in I} A_{\alpha}:=\left\{x \in X \mid \exists \alpha \in I, x \in A_{\alpha}\right\} .
$$

Definition 3 (Intersection) Let X be a set. If $\left\{A_{\alpha}\right\}_{\alpha \in I}$ such that $A_{\alpha} \subset X$, then the intersection for all A_{α} is defined as $\bigcap_{\alpha \in I} A_{\alpha}:=\left\{x \in X \mid \forall \alpha \in I, x \in A_{\alpha}\right\} .$
Let X be a set and $A, B \subseteq X$. The set difference of A from B is defined as $A \backslash B:=\{x \in X \mid x \in A, x \notin B\} .$

On a similar notion:

Definition 5 (Symmetric Difference)

Let X be a set and $A, B \subseteq X$. The symmetric difference of A and B is defined as

$$
A \Delta B:=\{x \in X \mid(x \in A \wedge x \notin B) \vee(x \notin A \wedge x \in B)\} .
$$

We can also talk about the non-members of a set:

In words, for an element in the symmetric difference of two sets, the element is either in A or B but not both. We can also think of the symmetric difference as

$$
(A \cup B) \backslash(A \cap B)
$$

or

$$
(A \backslash B) \cup(B \backslash A) .
$$Definition 6 (Set Complement)

Let X be a set and $A \subset X$. The set of all non-members of A is called the complement of A, which we denote as

$$
A^{c}:=\{x \in X \mid x \notin A\} .
$$

6 © Note 2.1.1

Note that

$$
\left(A^{c}\right)^{c}=\left\{x \in X \mid x \notin A^{c}\right\}=\{x \in X \mid x \in A\}=A
$$

Now taking a step away from that, we define the following:

Definition 7 (Empty Set)
An empty set, denoted by \varnothing, is a set that contains nothing.
$\int 6$ Note 2.1.2

The empty set is set to be a subset of all sets.

E Definition 8 (Power Set)

Let X be a set. The power set of X is the set that contains all subsets of X, i.e.

$$
\mathcal{P}(X):=\{A \mid A \subset X\} .
$$

6 6 Note 2.1.3

A power set is always non-empty, since $\varnothing \in \mathcal{P}(\varnothing)$, and since $\varnothing \subset X$ for any set X, we have $\varnothing \in \mathcal{P}(X)$.

Example 2.1.1

Let $X=\{1,2, \ldots, n\}$. There are several ways we can show that the size of $\mathcal{P}(X)$ is 2^{n}. One of the methods is by using a characteristic function that maps from A to $\{0,1\}$, defined by

$$
\begin{gathered}
X_{A}: A \rightarrow\{0,1\} \\
X_{A}(x)= \begin{cases}1 & x \in A \\
0 & x \notin A\end{cases}
\end{gathered}
$$

Using this function, each element in X have 2 states: one being in the subset, and the other being not in the subset, which are represented by 1 and 0 respectively. It is then clear that there are 2^{n} of such configurations.

PTheorem 1 (De Morgan's Laws)

Let X be a set. Given $\left\{A_{\alpha}\right\}_{\alpha \in I} \subset \mathcal{P}(X)$, we have

1. $\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}=\bigcap_{\alpha \in I} A_{\alpha}^{c}$; and
2. $\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c}=\bigcup_{\alpha \in I} A_{\alpha}^{c}$.

Proof

1. Note that

$$
\begin{aligned}
x \in\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} & \Longleftrightarrow \nexists \alpha \in I \quad x \in A_{\alpha} \\
& \Longleftrightarrow \forall \alpha \in I \quad x \notin A_{\alpha} \\
& \Longleftrightarrow \forall \alpha \in I x \in A_{\alpha}^{c} \text { by set complementation } \\
& \Longleftrightarrow x \in \bigcap_{\alpha \in I} A_{\alpha}^{c} .
\end{aligned}
$$

2. Observe that, by part 1 ,

$$
\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c}=\left(\left(\bigcup_{\alpha \in I} A_{\alpha}^{c}\right)^{c}\right)^{c}=\bigcup_{\alpha \in I} A_{\alpha}^{c}
$$

Example 2.1.2

Suppose $I=\varnothing$. Then what is $\bigcup_{\alpha \in \varnothing} A_{\alpha}$? It is sensible to think that all we are left with is simply a union of empty sets, and so

$$
\begin{equation*}
\bigcup_{\alpha \in \varnothing} A_{\alpha}=\varnothing . \tag{2.1}
\end{equation*}
$$

And what about $\bigcap_{\alpha \in \varnothing} A_{\alpha}$? By \square Theorem 1, it is quite clear from Equation (2.1) that

$$
\bigcap_{\alpha \in \varnothing} A_{\alpha}=X
$$

Products of Sets

Definition 9 (Product of Sets)

Given 2 sets X and Y, the product of X and Y is given by

$$
X \times Y:=\{(x, y) \mid x \in X, y \in Y\}
$$

We often refer to elements of $X \times Y$ as tuples.

```
    G6 Note 2.2.1
```

Now if

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
& Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}
\end{aligned}
$$

then

$$
X \times Y=\left\{\left(x_{i}, y_{j}\right) \mid i=1,2, \ldots, n, j=1,2, \ldots, m\right\}
$$

and so the size of $X \times Y$ is $m n$.

Consequently, we can think of tuples as two elements being in some "relation".

Definition 10 (Relation)

A relation on sets X and Y is a subset R of the product $X \times Y$. We write

$$
x R y \text { if }(x, y) \in R \subset X \times Y
$$

We call

- $\{x \in X \mid \exists y \in Y,(x, y) \in R\}$ as the domain of R; and
- $\{y \in Y \mid \exists x \in X,(x, y) \in R\}$ as the range of R.

In relation to that, functions are, essentially, relations.Definition 11 (Function)
A function from X to Y is a relation R such that

$$
\forall x \in X \exists!y \in Y(x, y) \in R
$$

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are non-empty ${ }^{1}$ sets. We can define

$$
X_{1} \times X_{2} \times \ldots \times X_{n}=\prod_{i=1}^{n} X_{i}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in X_{i}\right\}
$$

${ }^{1}$ We are typically only interested in non-empty sets, since empty sets usually lead us to vacuous truths, which are not interesting.

Now if $X_{i}=X_{j}=X$ for all $i, j=1,2, \ldots, n$, we write

$$
\prod_{i=1}^{n} X_{i}=\prod_{i=1}^{n} X=X^{n}
$$

And now comes the problem: given a collection $\left\{X_{\alpha}\right\}_{\alpha \in I}$ of non-empty sets ${ }^{2}$, what do we mean by

$$
\prod_{\alpha \in I} X_{\alpha} ?
$$

To motivate for what comes next, consider

$$
\prod_{i=1}^{n} X_{i}=X_{1} \times \ldots \times X_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X_{i}\right\} .
$$

Choose $\left(x_{1}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} X_{i}$. This induces a function

$$
f_{\left(x_{1}, \ldots, x_{n}\right)}:\{1, \ldots, n\} \rightarrow \bigcup_{i=1}^{n} X_{i}
$$

with

$$
\begin{gathered}
f(1)=x_{1} \in X_{1} \\
f(2)=x_{2} \in X_{2} \\
\vdots \\
f(n)=x_{n} \in X_{n}
\end{gathered}
$$

Now assume for a more general f such that

$$
f:\{1, \ldots, n\} \rightarrow \bigcup_{i=1}^{n} X_{i}
$$

is defined by

$$
f(i) \in X_{i} .
$$

Then, we have

$$
(f(1), f(2), \ldots, f(n)) \in \prod_{i=1}^{n} X_{i},
$$

which leads us to the following notion:

Given a collection $\left\{X_{\alpha}\right\}_{\alpha \in I}$ of non-empty sets, let

$$
\prod_{\alpha \in I} X_{\alpha}=\left\{f: I \rightarrow \bigcup_{\alpha \in I} X_{\alpha}\right\}
$$

such that $f(\alpha) \in X_{\alpha}$. Such an f is called a choice function.

And so we may ask a similar question as before: if each X_{α} is nonempty, is $\prod_{\alpha \in I} X_{\alpha}$ non-empty? Turns out this is not as easy to show. In fact, it is essentially impossible to show, because this is exactly the Axiom of Choice.

Axiom of Choice

Recall our final question of last lecture: If $\left\{X_{\alpha}\right\}_{\alpha \in I}$ is a non-empty collection of non-empty sets, is

$$
\prod_{\alpha \in I} X_{\alpha} \neq \varnothing ?
$$

Turns out this is widely known (in the world of mathematics) as the Axiom of Choice.
(1) Axiom 2 (Zermelo's Axiom of Choice)

If $\left\{X_{\alpha}\right\}_{\alpha \in I}$ is a non-empty collection of non-empty sets, then

$$
\prod_{\alpha \in I} X_{\alpha} \neq \varnothing .
$$

An equivalent statement of the above axiom is:
(D) Axiom 3 (Zermelo's Axiom of Choice v2)
$X \neq \varnothing \Longrightarrow$

$$
\exists f: \mathcal{P}(X) \backslash\{\varnothing\} \rightarrow X \forall A \in \mathcal{P}(X) \backslash\{\varnothing\} f(A) \in A
$$

where f is the choice function.

Exercise 3.1.1

Prove that * Axiom 2 and * Axiom 3 are equivalent.

Proof

From * Axiom 2 to * Axiom 3:

Since $X \neq \varnothing$, we have that $\mathcal{P}(X) \backslash\{\varnothing\}$ is a non-empty collection of non-empty sets. Therefore,

$$
\prod_{A \in \mathcal{P}(X) \backslash\{\varnothing\}} A \neq \varnothing
$$

So we know that

$$
\exists\left(x_{A}\right)_{A \in \mathcal{P}(X) \backslash\{\varnothing\}} \in \prod_{A \in \mathcal{P}(X) \backslash\{\varnothing\}} A .
$$

We then simply need to choose the choice function $f: \mathcal{P}(X) \backslash$
$\{\varnothing\} \rightarrow X$ such that

$$
f(A)=x_{A} \in A
$$

From * Axiom 3 to * Axiom 2:

Let $X_{\alpha} \in \mathcal{P}(X)$ for $\alpha \in I$, where I is some index set. We know that not all $X_{\alpha}=\varnothing$ since $X \neq \varnothing$. Choose $J \subseteq I$ such that $\left\{X_{\alpha}\right\}_{\alpha \in J}$ is a non-empty collection of non-empty sets. Let $f: \mathcal{P}(X) \backslash\{\varnothing\}$ be any choice function. By * Axiom 3,

$$
\forall X_{\alpha} \in \mathcal{P}(X) \backslash\{\varnothing\} \quad f\left(X_{\alpha}\right) \in X_{\alpha} .
$$

Therefore,

$$
\left(f\left(X_{\alpha}\right)\right)_{\alpha \in J} \in \prod_{\alpha \in J} X_{\alpha}
$$

Now, it is in our interest to start talking about comparisons or relations between the mathematical objects that we have defined.

E Definition 13 (Relations)

A relation R on a set X is ${ }^{1}$

- (Reflexive) $\forall x \in X \quad x R x$;
- (Symmetric) $\forall x, y \in X \quad x R y \Longleftrightarrow y R x$;
- (Anti-symmetric) $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y$;
- (Transitive) $\forall x, y, z \in X x R y \wedge y R z \Longrightarrow x R z$.

Example 3.2.1

Let $X=\mathbb{R}$, and let $x R y \Longleftrightarrow x \leq y$, where \leq is the notion of "less than or equal to", which we shall assume that it has the meaning that we know. Observe that \leq is:

- reflexive: $\forall x \in \mathbb{R} x \leq x$ is true;
- anti-symmetric: $\forall x, y \in \mathbb{R} x \leq y \wedge y \leq x \Longrightarrow x=y$; and
- transitive: $\forall x, y, z \in \mathbb{R} x \leq y \wedge y \leq z \Longrightarrow x \leq z$.

Example 3.2.2

Let $Y \neq \varnothing, X=\mathcal{P}(Y)$, with $A R B \Longleftrightarrow A \subseteq B$. Observe that \subseteq is:

- reflexive: $\forall A \in \mathcal{P}(Y) A R A \Longleftrightarrow A \subseteq A$ is true;
- anti-symmetric: $\forall A, B \in \mathcal{P}(Y) A R B \wedge B R A \Longleftrightarrow A \subseteq B \wedge B \subseteq$ $A \Longrightarrow A=B ;$
- transitive: $\forall A, B, C \in \mathcal{P}(Y) A R B \wedge B R C \Longleftrightarrow A \subseteq B \wedge B \subseteq C \Longrightarrow$ $A \subseteq C$.

Example 3.2.3

Let $Y \neq \varnothing, X=\mathcal{P}(Y)$, with $A R B \Longleftrightarrow A \supseteq B$. Observe that \supseteq is:
${ }^{1}$ We can look at this definition as $R \subseteq X \times X$. Under such a definition, we would have

- (Reflexive) $\forall x \in X \quad(x, x) \in R$;
- (Symmetric) $\forall x, y \in X(x, y) \in$ $R \Longleftrightarrow(y, x) \in R$;
- (Anti-symmetric) $\forall x, y \in$ $X(x, y),(y, x) \in R \Longrightarrow x=y$;
- (Transitive) $\forall x, y, z \in$ $X(x, y),(y, z) \in R \Longrightarrow(x, z) \in R$.
- reflexive: $\forall A \in \mathcal{P}(Y) A R A \Longleftrightarrow A \subseteq A$;
- anti-symmetric: $\forall A, B \in \mathcal{P}(Y) A R B \wedge B R A \Longleftrightarrow A \supseteq B \wedge B \supseteq$ $A \Longrightarrow A=B ;$
- transitive: $\forall A, B, C \in \mathcal{P}(Y) A R B \wedge B R C \Longleftrightarrow A \supseteq B \wedge B \supseteq C \Longrightarrow$ $A \supseteq C$.

All the above examples are also known as partially ordered sets.

E Definition 14 (Partially Ordered Sets)

The set X with the relation R on X is called a partially ordered set (or a poset) if R is

- reflexive;
- anti-symmetric; and
- transitive.

We denote a poset by (X, R).

66 Note 3.2.1

If (X, R) is a poset, then if $A \subseteq X$, and $R_{1}=R \upharpoonright_{A \times A}$, then $\left(A, R_{1}\right)$ is also a poset.

Example 3.2.4

How many possible relations can we define on these sets to make them into posets?

1. $X=\varnothing$

Solution

We have that $R=\varnothing \times \varnothing$, and so the only relation we have is an empty relation. Then it is vacuously true that (X, R) a poset.
2. $X=\{x\}$

The "partial" in 'partially ordered" indicates that not every pair of elements need to be comparable, i.e. there may be pairs for which neither precedes the other (anti-symmetry).

Solution

We have that $R=X \times X=\{(x, x)\}$. It it clear that (X, R) is a poset.
3. $X=\{x, y\}$

Solution

There are 3 possible relations:

- a relation where $x R x$ and $y R y$;
- a relation where $x R y$; or
- a relation where $y R x$.

4. $X=\{x, y, z\}$

Solution

The following are all the possibilities represented by graphs, where the underlined numbers represent the number of ways we can rearrange the elements for unique relations:
$\underline{1} \quad \bullet x \quad y \quad \bullet z$
$\underline{3}$

- x

6

6

Therefore, we see that there are a total of

$$
1+3+3+6+6=19 \text { relations. }
$$

Exercise 3.2.1

How many possible relations can we define on a set of 6 elements to the set into a poset?

Solution

3 possibilities represented as graphs (known as Hasse diagram), separated by lines:

Definition 15 (Totally Ordered Sets / Chains)

The set X with the relation R on X is called a totally ordered set (or a chain) if (X, R) is a poset with the exception that, for any $x, y \in X$, either $x R y$ or $y R x$ but not both.

Definition 16 (Bounds)

Let (X, \leq) be a poset. Let $A \subset X$. We say $x_{0} \in X$ is an upper bound for A if

$$
\forall a \in A \quad a \leq x_{0}
$$

If A has an upper bound, we say that A is bounded above. If A is bounded above, then x_{0} is the least upper bound (or supremum) of A is for any $x_{1} \in X$ that is an upper bound of A, we have

$$
x_{0} \leq x_{1}
$$

We write $x_{0}=\operatorname{lub}(A)=\sup (A)$. If $\sup (A) \in A$, then $\sup (A)=$ $\max (A)$ is the maximum of A.

We can analogously define for:

$$
\begin{aligned}
\text { upper bound } & \rightarrow \text { lower bound } \\
\text { bounded above } & \rightarrow \text { bounded below } \\
\text { least upper bound, lub } & \rightarrow \text { greatest lower bound, glb } \\
\text { supremum, sup } & \rightarrow \text { infimum, inf } \\
\text { maximum, max } & \rightarrow \text { minimum, min }
\end{aligned}
$$

ff Note 3.2.2

By anti-symmetry of posets, we have that max, sup, min, inf are all unique if they exists.

Example 3.2.5 (Least Upper Bound Property of \mathbb{R})

Let $X=\mathbb{R}$, and \leq be the order that we have defined. Every bounded non-empty subset of X has a supremum.

Example 3.2.6

Let $Y \neq \varnothing$, and $X=\mathcal{P}(Y)$, and \subseteq the ordering by inclusion. We know that Y is the maximum element of (X, \subseteq). Then the collection $\left\{A_{\alpha}\right\}_{\alpha \in I} \subset \mathcal{P}(Y)$ is bounded above by Y, and we have that

$$
\begin{aligned}
& \sup \left(\left\{A_{\alpha}\right\}_{\alpha \in I}\right)=\bigcup_{\alpha \in I} A_{\alpha} \\
& \inf \left(\left\{A_{\alpha}\right\}_{\alpha \in I}\right)=\bigcap_{\alpha \in I} A_{\alpha}
\end{aligned}
$$

Now if $Y=\varnothing$, we would end up having

$$
\begin{gathered}
\sup \left(\left\{A_{\alpha}\right\}_{\alpha \in I}\right)=\varnothing \\
\inf \left(\left\{A_{\alpha}\right\}_{\alpha \in I}\right)=X
\end{gathered}
$$

T This makes sense, since the empty set would be the least of upper bounds, and since $X=\mathcal{P}(Y)$ would have to be the greatest of lower bounds.

Definition 17 (Maximal Element)

Let (X, \leq) be a poset. An element $x \in X$ is maximal if whenever $y \in X$ is such that $x \leq y$, we must have $y=x$.

Example 4.1.1

Looking back at Example 3.2.4, on the set $X=\{x, y, z\}$, we have that the maximal element in each possible poset is/are:

$$
\text { - } x \quad y \quad y \quad z \quad x, y, z \text { are all maximal }
$$

z is maximal

x, y are both maximal

- $x \quad \int_{z}^{y} \quad x, z$ are both maximal

$$
0^{x} y
$$

z is maximal

Example 4.1.2

- Given $X \neq \varnothing$, the maximal element of the poset $(\mathcal{P}(X), \subseteq)$ is X.
- Given $X \neq \varnothing$, the maximal element of the poset $(\mathcal{P}(X), \supseteq)$ is \varnothing.
- The poset (\mathbb{R}, \leq) has no maximal element.

Axiom 4 (Zorn's Lemma)
If (X, \leq) is a non-empty poset such that every chain $S \subset X$ has an upper bound, then (X, \leq) has a maximal element.

PTheorem 5 (Non-Zero Vector Spaces has a Basis)

Every non-zero vector space, V, has a basis.

Proof (t)

Let

$$
\mathcal{L}:=\{A \subset V \mid A \text { is linearly independent }\}
$$

Note that $\mathcal{L} \neq \varnothing$ since $V \neq\{0\}$. Now order elements of \mathcal{L} with \subseteq. It suffices to show that (\mathcal{L}, \subseteq) has a maximal element, since this maximal element must be a basis. Otherwise, we would contradict the maximality of such an element. ${ }^{1}$

Now let $S=\left\{A_{\alpha}\right\}_{\alpha \in I}$ be a chain in \mathcal{L}. Let

$$
A_{0}=\bigcup_{\alpha \in I} A_{\alpha} .
$$

Require clarification before proceeding...

Definition 18 (Well-Ordered)

We say that a poset (X, \leq) is well-ordered if every non-empty subset $A \subset X$ has a least/minimal element in A.

The flow of this proof is a typical approach when Zorn's Lemma is involved.
${ }^{1}$ This is the key to this proof.

Exercise 4.1.1
Prove that well-ordered sets are chains.

Example 4.1.3

(\mathbb{N}, \leq) is well-ordered.

Axiom 6 (Well-Ordering Principle)
Every non-empty set can be well-ordered.

Theorem 7 (Axioms of Choice and Its Equivalents)
TFAE:

1. Axiom of Choice, * Axiom 2

Prove 트 Theorem 7
2. Zorn's Lemma, * Axiom 4
3. Well-Ordering Principle, * Axiom 6.

> Proof
(3) \Longrightarrow (1) is simple; let the choice function be such that we pick the minimal element from each set among a non-empty collection of non-empty sets. It is clear that the product of these sets will always have an element, in particular the tuple where each component is the minimal element of each set.

The rest will be added once I've worked it out

Example 4.1.4

Let $X=\mathbb{Q}$. Let $\varphi: \mathbb{Q} \rightarrow \mathbb{N}$ be defined such that

$$
\varphi\left(\frac{m}{n}\right)= \begin{cases}2^{m} 5^{n} & m>0 \\ 1 & m=1 \\ 3^{-m} 7^{n} & m<0\end{cases}
$$

By the unique prime factorization of natural numbers (or Fundamental Theorem of Arithmetic), we have that φ is injective. In fact,

$$
r \leq s \Longleftrightarrow \varphi(r) \leq \varphi(s),
$$

showing to us that we have a well-ordering on Q.

4.2 Cardinality

Equivalence Relation

国 Definition 19 (Equivalence Relation)
Let X be non-empty set. A relation \sim on X is an equivalence relation if it is

- reflexive;
- symmetric; and
- transitive.Definition 20 (Equivalence Class)
Let X be a non-empty set, and $x \in X$. An equivalence class of x under the equivalence relation \sim is defined as

$$
[x]:=\{y \in X \mid x \sim y\} .
$$

© 6 Note 4.2.1

Note that we either have $[x]=[y]$ or $[x] \cap[y]=\varnothing$. This is sensible, since if $w \in[x]$, then $w \sim x$. If $w \in[y]$, then we are done. If $w \notin[y]$, suppose $\exists v \in[y]$ such that $w \sim v$, which then implies $w \in[y]$ which is a contradiction.

This results shows to us that

$$
X=\bigcup_{x \in X}[x]
$$

or in words, equivalence classes partition the set.

Definition 21 (Partition)

Let $X \neq \varnothing$. A partition of X is a collection $\left\{A_{\alpha}\right\}_{\alpha \in I} \subset \mathcal{P}(X)$ such that

1. $A_{\alpha} \neq \varnothing$;
2. $A_{\alpha} \cap A_{\beta}=\varnothing$ if $\alpha \neq \beta$ in I; and
3. $X=\bigcup_{\alpha \in I} A_{\alpha}$.

With this, we have ourselves another method to show that \sim is an equivalence relation.

> Proposition 8 (Characterization of An Equivalence Relation)
> If $\left\{A_{\alpha}\right\}_{\alpha \in I}$ is a partition of X and $x \sim y \Longleftrightarrow x, y \in A_{\alpha}$, then \sim is an equivalence relation.

Similar to when we defined partial orders, we can ask ourselves the following question:

Example 4.2.1

How many equivalence relations are there on the set $X=\{1,2,3\} ?^{2}$

Solution

Note that we can partition X as

$$
\{\{1\},\{2\},\{3\}\},\{\{1,2,3\}\},
$$

The proof of this statement has been stated above.
${ }^{2}$ By Proposition 8, this question is equivalent to asking for the number of partitions we can create from the set X. The study of counting partitions is what is covered by Bell's Number.
and

$$
\{\{1,2\},\{3\}\}
$$

which we can rearrange in 3 different ways. Therefore, there are 5 different equivalence relations that we can define on X.

Example 4.2.2

Let X be any set. Consider $\mathcal{P}(X)$. Define \sim on $\mathcal{P}(X)$ by

$$
A \sim B \Longleftrightarrow \exists f: A \rightarrow B
$$

such that f is surjective ${ }^{3}$. It is easy to verify that \sim is an equivalence
${ }^{3} \sim$ partitions X into sets that have the relation.Definition 22 (Finite Sets)
A set X is finite if $X=\varnothing$ or if $X \sim\{1,2, \ldots, n\}$ for some $n \in \mathbb{N}$, where \sim is the equivalence relation defined in Example 4.2.2.

Definition 23 (Cardinality)
If $X \sim n$, we say X has cardinality n and write $\|X\|=n$. We also let
$\|\varnothing\|=0$.

Now a good question here is: if $n \neq m$, is $\{1,2, \ldots, n\} \sim$ $\{1,2, \ldots, m\}$?

PTheorem 9 (Pigeonhole Principle)

The set $\{1,2, \ldots, n\}$ is not equivalent to any of its proper subset.

Proof

We shall prove this by induction on n.
Base case: $\{1\} \nsim \varnothing$.

This is a proof by contradiction, using the fact that we cannot find an injective function from a "larger" set to a "smaller" set.
We can assume that the function f is not surjective, since if the larger set is indeed equivalent to the smaller set, then it should not matter if f is surjective or not. In particular, we only require that there be an injective function.
Requires clarification and confirmation

Assume that the statement holds for $\{1, \ldots, k\}$. Suppose we have an injective function

$$
f:\{1,2, \ldots, k, k+1\} \rightarrow\{1,2, \ldots, k, k+1\}
$$

that is not surjective.
Case 1: $k+1 \notin \operatorname{range}(f)$, where range (f) is the range of f. Then we have

$$
f \upharpoonright_{\{1, \ldots, k\}}:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \backslash\{f(k+1)\} .
$$

However, f is an injective function and clearly

$$
\{1, \ldots, k\} \backslash\{f(k+1)\} \subseteq\{1, \ldots, k\}
$$

a contradition.

Case 2: $k+1 \in \operatorname{range}(f)$. Then $\exists j_{0} \in\{1, \ldots, k, k+1\}$ such that $f\left(j_{0}\right)=k+1$, and since f is not surjective, $\exists m \in\{1, \ldots, k\}$ such that $m \notin \operatorname{range}(f)$. Then consider a new function $g:\{1, \ldots, k, k+$ $1\} \rightarrow\{1, \ldots, k\}$ such that

$$
g(a)= \begin{cases}m & a=k+1 \\ f(k+1) & a=j_{0} \\ f(a) & a \neq j_{0}, k+1\end{cases}
$$

Corollary 10 (Pigeonhole Principle (Finite Case))
If the set X is finite, then X is not equivalent to any proper subset.

Sketch of proof:

Definition 24 (Infinite Sets)
X is infinite if it is not finite.

Example 5.1.1

Observe that we can construct a function $f: N \rightarrow\{2,3, \ldots\}$ by $f(n)=n+1$. It is clear that f is a bijective funciton, and so $\mathbb{N} \sim$ $\{2,3, \ldots\}$.

Proposition 11 (\mathbb{N} is the Smallest Infinite Set)
Every infinite set contains a subset $A \sim \mathbb{N}$.

```
    * Proof
```

Suppose X is infinite. Let

$$
f: \mathcal{P}(X) \backslash\{\varnothing\} \rightarrow X
$$

such that for $S \subset X$ where $S \neq \varnothing, f(S) \in S^{1}$. Let $x_{1}=f(X)$. Let $\quad{ }^{1 *}$ Axiom 3 ahoy! $x_{2}=f\left(X \backslash\left\{x_{1}\right\}\right)$. Recursively, define

$$
x_{n}=f\left(X \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}\right) .
$$

This gives us a sequence

$$
X \supset S=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}
$$

which is equivalent to \mathbb{N} via the map $n \mapsto x_{n}$.

Corollary 12 (Infinite Sets are Equivalent to Its Proper Subsets)

Every infinite set X is equivalent to a proper subset of X.

[^0]Given such an X, we construct a sequence $\left\{x_{n}\right\}$ as in the previous proof. Define $f: X \rightarrow X \backslash\left\{x_{n}\right\}$ by

$$
f(x)= \begin{cases}x_{n+1} & x \in\left\{x_{n}\right\} \\ x & x \notin\left\{x_{n}\right\}\end{cases}
$$

Clearly so, f is injective.

E Definition 25 (Countable)

We say that a set is countable (or denumerable) is either X is finite or if $X \sim \mathbb{N}$. If $X \sim \mathbb{N}$, we can say that X is countably infinite and write $|X|=|\mathbb{N}|=\aleph_{0}$.

Given 2 sets X, Y, we write

$$
|X| \leq|Y|
$$

if $\exists f: X \rightarrow Y$ injective.
(1) Proposition 13 (Injectivity is Surjectivity Reversed)

TFAE

1. $\exists f: X \rightarrow Y$ injective
2. $\exists g: Y \rightarrow X$ surjective

Proof
$(1) \Longrightarrow(2)$: Define

$$
g(y)= \begin{cases}x & \exists x \in X f(x)=y \\ x_{0} & \text { any } x_{0} \in X\end{cases}
$$

Clearly g is surjective.
$(2) \Longrightarrow(1):$ Since g is surjective, for each $x \in X$, we have that ${ }^{2}$

$$
g^{-1}(|x|)=\{y \in Y: g(y)=x\} \neq \varnothing
$$

By the Axiom of Choice, there exists a choice function $h: \mathcal{P}(Y) \backslash$ $\{\varnothing\} \rightarrow Y$ such that for each $A \subset Y, h(A) \in A$. Then, let $f: X \rightarrow Y$ such that

$$
f(x)=h\left(g^{-1}(\{x\})\right)
$$

Clearly so, f is injective.

66 Note 5.1.1

Note that we have $|\mathbb{N}| \leq|\mathbb{Q}|$, since we can define an injective function $f: \mathbb{N} \rightarrow \mathbb{Q}$ such that $f(n)=\frac{n}{1}$.

We have also shown that $|\mathbb{Q}| \leq|\mathbb{N}|$ using our injective function $g: \mathbb{Q} \rightarrow \mathbb{N}$, given by

$$
g\left(\frac{m}{n}\right)= \begin{cases}2^{m} 3^{n} & m>0 \\ 1 & m=0 \\ 5^{-m} 7^{n} & m<0\end{cases}
$$

Question: Is $|\mathbb{N}=|\mathbb{Q}||$? In other words, given $|X| \leq|Y| \wedge|Y| \leq$ $|X|$, is $|X|=|Y|$?
${ }^{2}$ The idea here is to collect the preimages into a set, and use the choice function as an injective map.

Before delving into resolving our last question in the previous lecture, note the following:

G Note 6.1.1

Suppose $f: X \rightarrow Y$ is bijective. Let $A \subseteq B$, then

$$
f(B \backslash A)=f(B) \backslash f(A)
$$

PTheorem 14 (thtor-Schröder-Bernstein Theorem (CSB))

Let $A_{2} \subset A_{1} \subset A_{0}=A$. Assume that $A_{2} \sim A_{0}$. Then $A_{0} \sim A_{1}$.

Proof

Let $\varphi: A_{0} \rightarrow A_{2}$ be bijective, by assumption. Since $A_{1} \subset A_{1}$, let $A_{3}=\varphi\left(A_{1}\right) \subset A_{2}$, and since $A_{2} \subset A_{0}$, let $A_{4}=\varphi\left(A_{2}\right) \subset A_{3}$. Recursively so, let

$$
A_{n+2}=\varphi\left(A_{n}\right)
$$

Prove this observation as an exercise:

Exercise 6.1.1

Prove the note on the left.

Figure 6.1: The core idea of the proof for Cantor-Schröder-Bernstein Theorem

Notice that

$$
\begin{aligned}
& A_{0}=\left(A_{0} \backslash A_{1}\right) \cup\left(A_{1} \backslash A_{2}\right) \cup\left(A_{2} \backslash A_{3}\right) \cup\left(A_{3} \backslash A_{4}\right) \cup \ldots \bigcap_{n=0}^{\infty} A_{n} \\
& A_{1}=\left(A_{1} \backslash A_{2}\right) \cup\left(A_{2} \backslash A_{3}\right) \cup\left(A_{3} \backslash A_{4}\right) \cup\left(A_{4} \backslash A_{5}\right) \cup \ldots \bigcap_{n=1}^{\infty} A_{n}
\end{aligned}
$$

Observe that

$$
\bigcap_{n=0}^{\infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n} .
$$

${ }^{1}$ Define $f: A \rightarrow A_{1}$ by

$$
f(x)= \begin{cases}x & x \in \bigcap_{n=0}^{\infty} A_{n} \\ x & x \in A_{2 k+1} \backslash A_{2 k+2}, k=0,1,2, \ldots \\ \varphi(x) & x \in A_{2 k} \backslash A_{2 k+1}, k=0,1,2, \ldots\end{cases}
$$

${ }^{1}$ Here, we employ the idea from Figure 6.1.
${ }^{2}$ This is equivalent to the statement

$$
|A| \leq|B| \wedge|B| \leq|A| \Longrightarrow|A|=|B|
$$

Proof

By assumption, let $f: A \rightarrow B_{1}$ be bijective, and let $g: B \rightarrow A_{1}$ be bijective. Let $A_{2}=g\left(B_{1}\right) \subseteq A_{1} \subset A$ Let $A_{2}=g\left(B_{1}\right) \subseteq A_{1} \subset A$. Then the composite function $g \circ f: A \rightarrow A_{2}$ is bijective, and so $A \sim A_{2}$. By DTheorem 14, we have

$$
A \sim A_{2} \sim A_{1} \sim B
$$

Example 6.1.1

Our question from last lecture now has an answer: by Theorem 14, we have that $|\mathrm{Q}|=|\mathbb{N}| .{ }^{3}$
${ }^{3}$ Now that we know that they have the
same cardinality:
Exercise 6.1.2
Find a bijection between Q and \mathbb{N}.

If X is infinite, then

$$
|X|=|\mathbb{N}|=\aleph_{0} \Longleftrightarrow \exists f: X \rightarrow \mathbb{N} \text { bijective. }
$$

```
    Proof
```

(\Longrightarrow) is immediate. For (\Longleftarrow), suppose $f: X \rightarrow \mathbb{N}$, which implies that $|X| \leq|\mathbb{N}|$. By Proposition $11,|\mathbb{N}| \leq|X|$. Therefore, $|X|=|b b N|=\aleph_{0}$.

Example 6.1.2

$\mathbb{N} \times \mathbb{N}$ is countable. The function

$$
f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \text { given by } f(m, n)=2^{n} 3^{m}
$$

is injective.
\qquad
Definition 27 (Uncountable)
A set X is uncountable if it is not countable.

Theorem 17 (Cantor's Diagonal Argument)
$(0,1)$ is uncountable.

Suppose, for contradiction, that $(0,1)$ is countable. Then we can write

$$
\begin{aligned}
& a_{1}=a_{11} a_{12} a_{13} \cdots \\
& a_{2}=. a_{21} a_{22} a_{23} \cdots
\end{aligned}
$$

$$
\begin{gathered}
\vdots \\
a_{n}=. a_{n 1} a_{n 2} a_{n 3} \ldots
\end{gathered}
$$

in $(0,1)$. This representation is unique if we do not allow the representation to end in a string of 9 's. Let $b \in(0,1)$, expressed as $b=. b_{1} b_{2} b_{3} \ldots$ such that

$$
b_{i}= \begin{cases}5 & a_{i} \neq 5 \\ 2 & a_{i}=5\end{cases}
$$

However, $b \notin(0,1)$, otherwise b would be one of the a_{n} 's, a contradiction.

Corollary 18 (Uncountability of \mathbb{R})
\mathbb{R} is uncountable.

Let $f:(0,1) \rightarrow \mathbb{R}$ be given by

$$
f(x)=\tan \left(\pi x-\frac{\pi}{2}\right)
$$

Clearly so, $(0,1)$ is bijective.

Gf Note 6.1.2

We denote $|\mathbb{R}|=c$.

Question: Given sets X, Y, is it always true that either ${ }^{4}$

1. $|X|=|Y|$;
${ }^{4}$ As compare to $\leq,<$ implies that there is no surjection from the set on the LHS to the RHS.
2. $|X|<|Y|$; or
3. $|Y|<|X|$.

7
 Lecture 7 Sep 21st

7.1 Cardinality (Continued 3)

PTheorem 19 (Comparability of Cardinals)

If X and Y are non-empty, then either

$$
|X| \leq|Y| \vee|Y| \leq|X| .
$$

Let

$$
S=\{(A, B, f) \mid A \subseteq X, B \subseteq Y, f: A \rightarrow B \text { bijective }\} .
$$

Note that $S \neq \varnothing$, since X and Y are non-empty, and so we can have $f(a)=b$ for $A=\{a\} \subset X$ and $B=\{b\} \subset Y .{ }^{1}$ We order S as follows: we say

$$
\left(A_{1}, B_{1}, f_{1}\right) \leq\left(A_{2}, B_{2}, f_{2}\right)
$$

if

$$
A_{1} \subseteq A_{2}, \quad B_{1} \subseteq B_{2}, \quad f_{1}=f_{2} \upharpoonright_{A_{1}} .
$$

Let $C=\left\{\left(A_{\alpha}, B_{\alpha}, f_{\alpha}\right)\right\}_{\alpha \in I}$ be a chain in (S, \leq). Let $A_{0}=\bigcup_{\alpha \in I} A_{\alpha}$, $B_{0}=\bigcup_{\alpha \in I} B_{\alpha}$, and define $f_{0}: A_{0} \rightarrow B_{0}$ by

$$
f_{0}(x)=f_{\alpha_{0}}(x) \text { if } x \in A_{\alpha_{0}} .
$$

${ }^{1}$ We want to use the maximal element to obtain our result. To that end, we need Zorn's Lemma. So we need S to build this up.

Now if $x \in A_{\alpha_{1}}, x \in A_{\alpha_{2}}$ and

$$
\left(A_{\alpha_{1}}, B_{\alpha_{1}}, f_{\alpha_{1}}\right) \leq\left(A_{\alpha_{2}}, B_{\alpha_{2}}, f_{\alpha_{2}}\right)
$$

we have that

$$
f_{\alpha_{1}}(x)=f_{\alpha_{2}} \upharpoonright_{A_{\alpha_{1}}}(x)=f_{\alpha_{2}}(x)
$$

i.e. f_{0} is well-defined.

Claim 1: $f_{0}: A_{0} \rightarrow B_{0}$ is injective.

Let $x_{1}, x_{2} \in A_{0}$ such that $x_{1} \neq x_{2}$.
$\Longrightarrow \exists \alpha_{1}, \alpha_{2} \in I x_{1} \in A_{\alpha_{1}} \wedge x_{2} \in A_{\alpha_{2}} \wedge A_{\alpha_{1}} \subseteq A_{\alpha_{2}}(\mathrm{wlog})$
$\Longrightarrow x_{1} \cdot x_{2} \in A_{\alpha_{2}}$
$\Longrightarrow\left(\because f_{\alpha_{2}}\right.$ injective $\left.\Longrightarrow f_{\alpha_{2}}\left(x_{1}\right) \neq f_{\alpha_{2}}(x)\right)$
$\Longrightarrow f_{0}\left(x_{1}\right) \neq f_{0}\left(x_{2}\right) \Longrightarrow f_{0}$ injective.
Claim 2: $f_{0}: A_{0} \rightarrow B_{0}$ is surjective.

Let $y_{0} \in B_{0}$
$\Longrightarrow \exists \alpha_{0} \in I \quad y_{0} \in B_{\alpha_{0}}$
$\Longrightarrow \exists x_{0} \in A_{\alpha_{0}} f_{\alpha_{0}}\left(x_{0}\right)=y_{0}\left(\because f_{\alpha_{0}}\right.$ surjective $)$
$\Longrightarrow f_{0}\left(x_{0}\right)=y_{0}$
$\therefore\left(A_{0}, B_{0}, f_{0}\right)$ is an upper bound for C. Then by Zorn's Lemma, (S, \leq) has a maximal element (A, B, f).

Case 1: If $A=X$, then injectivity of f implies $|X| \leq|Y|$.
Case 2: If $B=Y$, then surjectivity of f implies $|Y| \leq|A| \leq|X|$.

Case 3: If $A \neq X \wedge B \neq Y$, then $X \backslash A \neq \varnothing \wedge Y \backslash B \neq \varnothing$. Let $x_{0} \in X \backslash A, y_{0} \in Y \backslash B$. Let $A^{*}=A \cup\left\{x_{0}\right\}, B^{*}=B \cup\left\{y_{0}\right\}$, and $f^{*}: A^{*} \rightarrow B^{*}$ such that

$$
f^{*}(x)= \begin{cases}f(x) & x \in A \\ y_{0} & x=x_{0}\end{cases}
$$

Then $(A, B, f) \leq\left(A^{*}, B^{*}, f^{*}\right)$, contradicting maximality.

Sum of Cardinals Observe that if $X=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, \ldots, y_{m}\right\}$, and $X \cap Y=\varnothing$, then $|X|=n,|Y|=m$ and $|X \cup Y|=n+m$. This motivates us to provide the following definition:

Definition 28 (Sum of Cardinals)

Assume that X and Y are such that $X \cap Y=\varnothing$. We define

$$
|X|+|Y|=|X \cup Y| .
$$

Question: So what about $\aleph_{0}+\aleph_{0}$?
A thought that motivates us to give the following answer lies in the observation that: if X is the set of even natural numbers and Y the odd natural numbers, then $X \cup Y$ is the set of all natural numbers. All three sets are countably infinite, i.e. they have cardinality \aleph_{0}.

Question: What about $c+c$?
A similar motivation comes from the observation that: given $X=$ $(0,1)$ and $Y=(1,2)$, we have

$$
c=|X| \leq|X|+|Y| \leq|R|=c,
$$

and so $|X|=|Y|=c \Longrightarrow|X \cup Y|=c$.

Theorem 20 (Sums of Cardinals)
Given sets X and Y, if X is infinite, then

1. $|X|+|X|=|X|$
2. $|X|+|Y|=\max (|X|,|Y|)$

Multiplication of Cardinals Given

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
& Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}
\end{aligned}
$$

we have that

$$
X \times Y=\left\{\left(x_{i}, y_{j}\right) \mid i=1,2, \ldots, n, j=1,2, \ldots, m\right\}
$$

and so

$$
|X \times Y|=n m
$$

E Definition 29 (Multiplication of Cardinals)

Given sets X and Y, define

$$
|X||Y|=|X \times Y|
$$

Example 7.1.1

We have $|\mathbb{N} \times \mathbb{N}|=\aleph_{0}$ since the function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
f(n, m)=2^{n} 3^{m}
$$

is injective.

Question: What about $c \cdot c$?

Theorem 21 (Multiplication of Cardinals)

If X is infinite and $Y \neq \varnothing$, then

- $|X \times X|=|X| \Longrightarrow|X||X|=|X|$;
- $|X \times Y|=\max (|X|,|Y|)$.

8.1.1 Cardinal Arithmetic (Continued)

Exponentiation of Cardinals Recall if $\left\{Y_{x}\right\}_{x \in X}$ is a collection of nonempty sets, we have ${ }^{1}$
${ }^{1}$ This should remind you of * Axiom 3

$$
\prod_{x \in X} Y_{x}=\left\{f: X \rightarrow \bigcup_{x \in X} Y_{x} \mid f(x) \in Y_{x}\right\} .
$$

Now if $Y=Y_{x}$ for all $x \in X$, we have

$$
Y^{X}=\prod_{x \in X}=\{f: X \rightarrow Y\} .
$$

Example 8.1.1

Given

$$
Y=\{1, \ldots, m\} \quad X=\{1, \ldots, n\}
$$

we have

$$
Y^{X}=\{f:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}\} .
$$

Observe that Y^{X} is similar to Y^{n}. So $\left|Y^{X}\right|=m^{n}$. ${ }^{2}$

Given sets X and Y, define

$$
|Y|^{|X|}:=\left|Y^{X}\right| .
$$

Theorem 22 (Exponentiation of Cardinals)
If X, Y, Z are non-empty sets, then

- $|Y|^{|X|} \cdot|Y|^{|Z|}=|Y|^{|X|+|Z|}$;
- $\left(|Y|^{|X|}\right)^{|Z|}=|Y|^{|X| \cdot|Z|}$.

PTheorem $23\left(2^{\aleph_{0}}=c\right)$
We have that $2^{\aleph_{0}}=c$.

Proof

Note that $2^{\aleph_{0}}=\left|\{0,1\}^{\mathbb{N}}\right|$, where ${ }^{3}$

$$
\left|\{0,1\}^{\mathbb{N}}\right|=\mid\left\{f: \mathbb{N} \rightarrow\{0,1\}\left|=\left|\left\{\left\{a_{n}\right\}_{n=1}^{\infty} \mid a_{i}=0,1\right\}\right|\right.\right.
$$

Given a sequence $\left\{a_{n}\right\} \in\{0,1\}^{\mathbb{N}}$, define $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow(0,1)$ such that ${ }^{4}$

$$
\varphi\left(\left\{a_{n}\right\}\right):=\sum_{i=1}^{\infty} \frac{a_{n}}{3^{n}}
$$

which is injective since there are no trailing 2's. Therefore $2^{\aleph_{0}} \leq c$.

Given $\alpha \in(0,1)$, let 5

$$
\alpha=\sum_{n=1}^{\infty} \frac{b_{n}}{2^{n}}
$$

where $b_{n}=0,1$. Let $\psi:(0,1) \rightarrow\{0,1\}^{\mathbb{N}}$ such that

$$
\psi(\alpha)=\psi\left(\sum_{i=1}^{\infty} \frac{b_{n}}{2^{n}}\right)=\left\{b_{n}\right\}
$$

Then ψ is injective, and so $c \leq 2^{\aleph_{0}}$. Thus $2^{\aleph_{0}}=c$ as required.

Example 8.1.2

Exercise 8.1.1

Prove - Theorem 22.

This requires closer studying.
${ }^{3}$ Explain 2nd equality.
${ }^{4}$ This is a base 3 representation (of what?)
${ }^{5}$ This is a base 2 representation.

Find $\left|\aleph_{0}^{\aleph_{0}}\right|$ and $c^{\aleph_{0}}$.

Solution

We have that

$$
c=2^{\aleph_{0}} \leq \aleph_{0}^{\aleph_{0}} \leq c^{\aleph_{0}}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0} \cdot \aleph_{0}}=2^{\aleph_{0}}=c
$$

Example 8.1.3

Show $|\mathcal{P}(X)|=2^{|X|}=\left|2^{X}\right|$.

Solution

Given $f: X \rightarrow\{0,1\}$, let 6

$$
A=\{x \in X \mid f(x)=1\} \subset X
$$

Define $\Gamma: 2^{X} \rightarrow \mathcal{P}(X)$ by

$$
\Gamma(f)=f^{-1}(|1|)
$$

Γ is injective ${ }^{7}$.
Conversely, given $A \subset X$, define the characteristic function

$$
\chi_{A}(x)=\left\{\begin{array}{ll}
1 & x \in A \\
0 & x \notin A
\end{array} \in 2^{X} .\right.
$$

Then define $\Phi: P(A) \rightarrow 2^{X}$ such that

$$
\Phi(A)=\chi_{A}
$$

Clearly so, Φ is injective.

Ⓣheorem 24 (Russell's Paradox)

For any X, we have $|X|<|\mathcal{P}(X)|=2^{|X|}$.

[^1]
${ }^{6} A$ is a collection of all x 's that gets mapped to f.

Let $f: X \rightarrow \mathcal{P}(X)$ be $f(X)=\{x\}$. Clearly, f is injective, and so $|X|<|\mathcal{P}(X)|$.

Claim: $\nexists g: X \rightarrow \mathcal{P}(X)$ surjective.
Suppose not. Let ${ }^{8}$

$$
A=\{x \in X \mid x \notin g(x)\}
$$

Pick $x_{0} \in X$ with $g\left(x_{0}\right)=A$. Now if $x_{0} \in A$, then $x_{0} \in g\left(x_{0}\right)$, but this implies that $x \notin A$, a contradiction.

So $x_{0} \notin A$, i.e. $x \notin g\left(x_{0}\right)$, which in turn implies that $x \in A$, yet another contradiction. Therefore such a function g cannot exist, as claimed.

Therefore, we have $|X|<|\mathcal{P}(X)|$ as required.

Question: Is there anything between \aleph_{0} and c ?
(1) Axiom 25 (Continuum Hypothesis)

If $\aleph_{0} \leq \gamma \leq c$, then either $\gamma=\aleph_{0}$ or $\gamma=c$.

$$
\begin{aligned}
& \text { (1) Axiom } 26 \text { (Generalized Continuum Hypothesis) } \\
& \text { If }|X| \leq \gamma \leq 2^{|X|} \text {, then either } \gamma=|X| \text { or } \gamma=2^{|X|} \text {. }
\end{aligned}
$$

In this course, we shall assume that the Continuum Hypothesis is true.
${ }^{8}$ By the Bounded Separation Axiom (see ZF Set Theory), this is a set, and since it is a subset of X, it is a valid element of $\mathcal{P}(X)$. Thus, we can consider such a set.

E Definition 31 (Metric \& Metric Space)
Given a set X, a metric on X is a function $d: X \times X \rightarrow \mathbb{R}$ such that

1. (positive definiteness) $d(x, y) \geq 0$ and $d(x, y)=0 \Longleftrightarrow x=y$;
2. (symmetry) $d(x, y)=d(y, x)$; and
3. (triangle inequality) $d(x, y) \leq d(x, z)+d(z, y)$.

The pair (X, d) is called a metric space.

Example 9.1.1 (Standard Metric on \mathbb{R})

Let $X=\mathbb{R}$, and let $d(x, y)=|x-y|$.
Clearly so, the first 2 criterias are satisfied:

- $|\cdot| \geq 0$ and $|x-y|=0 \Longleftrightarrow x=y$; and
- $|x-y|=|y-x|$.

The triangle inequality property is the usual triangle inequality of the absolute value function, i.e.

$$
|x-y| \leq|x|+|y| .
$$

Question: For an arbitrary set X, can we define a metric on X ? The

Remark 9.1.1

A metric is an abstract notion of distance.
following example shows that we can,

Example 9.1.2 (Discrete Metric)

Let X be any set. We can simply define

$$
d(x, y)= \begin{cases}1 & x \neq y \\ 0 & x=y\end{cases}
$$

This metric clearly satisfies all 3 criterias of being a metric:

- $d: X \times X \rightarrow\{0,1\}$ and so $d(x, y) \geq 0$, and by definition, we have

$$
d(x, y)=0 \Longleftrightarrow x=y
$$

- By definition, $d(x, y)=d(y, x)$ as it does not matter how the pair is ordered; and
- Since $d(x, y) \geq 0$, we have that $d(x, y) \leq d(x, z)+d(y, z)$.

Example 9.1.3 (Euclidean Metric / 2-metric on \mathbb{R}^{n})

Let $X=\mathbb{R}^{n}$. Let $\vec{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\vec{y}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Define

$$
d_{2}(\vec{x}, \vec{y})=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

Note that in \mathbb{R}^{2}, this is our regular (Euclidean) distance between two points.

It is not difficult to see that d_{2} satisfies the first 2 criterion to being a metric:

- d_{2} is the square root of the sum of squares, and so $d_{2}(\vec{x}, \vec{y}) \geq 0$ for any $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, and $d_{2}(\vec{x}, \vec{y})=0 \Longleftrightarrow \forall i \in\{1, \ldots, n\} x_{i}=y_{i} \Longleftrightarrow$ $\vec{x}=\vec{y} ;$
- Since $\left(x_{i}-y_{i}\right)^{2}=\left(y_{i}-x_{i}\right)^{2}$ for any $x_{i}, y_{i} \in \mathbb{R}$, we have that $d_{2}(\vec{x}, \vec{y})=d_{2}(\vec{y}, \vec{x})$.

However, it is not immediately clear that d_{2} satisfies the triangle inequality criterion, especially if $n \geq 3$. If $n=2$, heuristically, the triangle inequality simply tells that the length of any one side of a triangle is less than or equal to the sum of the other two, e.g. Figure 9.1.

Figure 9.1: A visualization of the triangle inequality in \mathbb{R}^{2}.

E Definition 32 (Norm \& Normed Linear Space)
Given a vector space V (usually over \mathbb{R}), a norm on V is a function

$$
\|\cdot\|: V \rightarrow \mathbb{R}
$$

such that

1. (positive definiteness) $\|v\| \geq 0$ and $\|v\|=0 \Longleftrightarrow v=0$;
2. (scalar multiplication) $\|\alpha \cdot v\|=|\alpha|\|v\|$; and
3. (triangle inequality) $\|v+w\| \leq\|v\|+\|w\|$.

The pair $(V,\|\cdot\|)$ is called a normed linear space.

Remark 9.1.3

Given a normed linear space $(V,\|\cdot\|)$, a natural metric, $d_{\|\cdot\|}$, on V induced by $\|\cdot\|$ can be defined as

$$
d_{\|\cdot\|}(x, y)=\|x-y\| .
$$

Exercise 9.1.1

Prove that $d_{\|\cdot\|}$ is indeed a metric.

Proof (Exercise 9.1.1)

1. (positive definiteness) It is clear from the definition of a norm that $d_{\|\cdot\|}(x, y)=\|x-y\| \geq 0$, and $d_{\|\cdot\|}(x, y)=0 \Longleftrightarrow x-y=$ $0 \Longleftrightarrow x=y$.
2. (symmetry) Symmetry follows simply from definition, as $\|x-y\|=$ $\|y-x\|$.
3. (triangle inequality) For $x, y, z \in V$, we have

$$
\begin{aligned}
d_{\|\cdot\|}(x, y) & =\|x-y\|=\|x-z+z-y\| \\
& \leq\|x-z\|+\|z-y\| \quad \because \text { triangle inequality of norms } \\
& =\|x-z\|+\|y-z\| \quad \because \text { symmetry } \\
& =d_{\|\cdot\|}(x, z)+d_{\|\cdot\|}(y, z)
\end{aligned}
$$

Example 9.1.4 (Euclidean Norm)

Let $X=\mathbb{R}^{n}$, and $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{2}$. Define $\|\cdot\|_{2}$ such that

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

From Example 9.1.3, we are given the triangle inequality property, in which we have yet to prove. Positive definiteness is clear. For scalar multiplication, let $\vec{x}=x_{1}, \ldots, x_{n}$, and notice that

$$
\|\alpha \cdot \vec{x}\|_{2}=\sqrt{\sum_{i=1}^{n}\left(\alpha x_{i}\right)^{2}}=\sqrt{\alpha^{2} \sum_{i=1}^{n} x_{i}^{2}}=|\alpha| \sqrt{\sum_{i=1}^{n} x_{i}^{2}}=|\alpha|\|\vec{x}\|_{2}
$$

Thus $\|\cdot\|_{2}$ is indeed a norm. We call $\|\cdot\|_{2}$ the 2-norm or the Euclidean norm.

We observe that, in comparison with Example 9.1.3, we have that

$$
d_{2}(\vec{x}, \vec{y})=\|\vec{x}-\vec{y}\|_{2}
$$

Example 9.1.5 (1-norm)

Let $X=\mathbb{R}^{n}$, and $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$. Define

$$
\|\vec{x}\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right|
$$

Clearly so, $\|\cdot\|_{1}$ is a norm:

- (positive definiteness) This is true by the absolute value function, i.e. every $\left|x_{i}\right| \geq 0$, and so the sum over these x_{i} 's is also nonnegative, and $\sum_{i=1}^{n}\left|x_{i}\right|=0 \Longleftrightarrow \forall i \in\{1, \ldots, n\} x_{i}=0 \Longleftrightarrow \vec{x}=$ 0 .
- (scalar multiplication) This uses a similar argument as in the previous example.
- (triangle inequality) This is true by, again, the triangle inequality on absolute values.

We call $\|\cdot\|_{1}$ the 1 -norm.

Thus, we can define

$$
d_{1}(\vec{x}, \vec{y})=\|\vec{x}-\vec{y}\|_{1}
$$

and it can easily be verified that d_{1} is indeed a metric.

Example 9.1.6

Let $X=\mathbb{R}^{n}$ and $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$. Define

$$
\|\vec{x}\|_{\infty}=\max \left\{\left|x_{i}\right|\right\}
$$

Again, it is easy to see that $\|\cdot\|_{\infty}$ is a norm;

- (positive definiteness) $\because \forall i \in\{1, \ldots, n\} \quad\left|x_{i}\right| \geq 0 \Longrightarrow$ $\max \left\{\mid x_{i}\right\} \geq 0 \mid$ and $\max \left\{\left|x_{i}\right|\right\}=0 \Longleftrightarrow x_{i}=0 \Longleftrightarrow \vec{x}=0$.
- (scalar multiplication) Notice that

$$
\|\alpha \cdot \vec{x}\|_{\infty}=\max \left\{\left|\alpha x_{i}\right|\right\}=|\alpha| \max \left\{\left|x_{i}\right|\right\}=|\alpha|\|\vec{x}\|_{\infty} .
$$

- (triangle inequality) This is once again true by the triangle inequality on the absolute value function, i.e.

$$
\begin{aligned}
& \because \forall i \in\{1, \ldots, n\} \quad\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right| \\
& \max \left\{\left|x_{i}+y_{i}\right|\right\} \leq \max \left\{\left|x_{i}\right|\right\}+\max \left\{\left|y_{i}\right|\right\} .
\end{aligned}
$$

We can then define

$$
d_{\infty}(\vec{x}, \vec{y})=\max \left\{\left|x_{i}-y_{i}\right|\right\},
$$

which we can easily verify that it is indeed a metric ${ }^{1}$.
${ }^{1}$ Symmetry holds by the property of the absolute value function.

Here's an interesting notion: let

$$
S_{i}=\left\{\vec{x} \in \mathbb{R}^{2} \mid\|\vec{x}\|_{i}=1\right\}, \quad i=1,2, \infty
$$

Notice that we would then have the following graph: In fact, it is true that if we let $i \in \mathbb{N} \backslash\{0\}$, as suggested by Figure 9.2, we would see that the "diamond" would grow into a "circle" as in S_{2}, and as $i \geq 3$, the unit ball will expand and approach the "square", which is S_{∞}.

Another observation that we can make is if we can show that a set is open for a "smaller" S_{i}, then the same set is open for any S_{j} for $j \geq i$.

If we apply these norms into metrics, we have

$$
d_{\infty} \leq d_{2} \leq d_{1}
$$

where we say that d_{∞} is the least sensitive, and d_{1} being the most sensitive ${ }^{2}$.

Example 9.1.7

For $1<p<\infty$, define on \mathbb{R}^{n}

$$
\|\vec{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Continuing with the same idea as in previous examples, we can let

$$
d_{p}(\vec{x}, \vec{y})=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

In the next lecture, we will go into proving that this is indeed a norm, and so we can define a metric using this norm.

Figure 9.2: Unit ball depending on $\|\vec{x}\|_{i}$

Note that if we allow for $0<i<1$, then we would have a graph that looks like the following, which is a convex graph, i.e. we cannot create well-defined norms.

Figure 9.3: $\|\cdot\|_{p}$ for $0<p<1$
${ }^{2}$ For sufficently close points, we see that d_{∞} would reflect the least change, while we can see change in d_{1} for every two points that we take.

10.1
 Introduction to Metric Spaces (Continued)

E Definition $33\left(\|\cdot\|_{p}\right.$-norm)
Given $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we define, for $1<p<\infty$, the $\|\cdot\|_{p}$-norm to be

$$
\|\vec{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

We asked the question: why is $\|\cdot\|_{p}$ a norm?

Lemma 27 (Young's Inequality)

If $1<p<\infty$,

$$
\frac{1}{p}+\frac{1}{q}=1
$$

and if α, beta >0, then

$$
\alpha \cdot \beta \leq \frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q} .
$$

Proof

Motivated by Figure 10.1, using notions from calculus, we have from calculus,

Figure 10.1: Motivation for Lemma 27.

$$
\begin{aligned}
\alpha \beta & \leq \int_{0}^{\alpha} t^{p-1} d t+\int_{0}^{\beta} u^{q-1} d u \\
& =\left.\frac{t^{p}}{p}\right|_{0} ^{\alpha}+\left.\frac{u^{q}}{q}\right|_{0} ^{\beta} \\
& =\frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q}
\end{aligned}
$$

where we note that

$$
\begin{gathered}
\frac{1}{p}+\frac{1}{q}=1 \\
\frac{q}{p}=q-1 \\
\frac{p}{q}=p-1 \\
1=(p-1)(q-1)
\end{gathered}
$$

Theorem 28 (Hölder's Inequality)
For $1<p<\infty$, let $\frac{1}{p}+\frac{1}{q}=1^{1}$. Let
${ }^{1}$ We also call q the conjugate of p.

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \quad \vec{y}=\left(y_{1}, \ldots, y_{n}\right)
$$

Then

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{\frac{1}{q}}
$$

66 Note 10.1.1

Note that $p=2$ is just the Cauchy-Schwarz Inequality:

$$
\begin{gathered}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}} \Longrightarrow \\
\left(\sum_{i=1}^{n}\left|x_{i} y_{i}\right|\right)^{2} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right) \cdot\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)
\end{gathered}
$$

Proof

Since if either \vec{x} or \vec{y} is zero, then we have that the inequality is trivially true, we can suppose that $\vec{x} \neq 0 \neq \vec{y}$. Now, note that for $\alpha, \beta \neq 0$, we have that ${ }^{2}$

$$
\begin{gathered}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{\frac{1}{q}} \\
\mathfrak{\imath} \\
\sum_{i=1}^{n}\left|\alpha x_{i} \cdot \beta y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|\alpha x_{i}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^{n}\left|\beta y_{i}\right|^{q}\right)^{\frac{1}{q}} .
\end{gathered}
$$

${ }^{2}$ In the second inequality, notice that we can easily get back to the first equation by dividing both sides by $\alpha \beta$.

So we can assume that

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}=1=\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{\frac{1}{q}} \tag{10.1}
\end{equation*}
$$

and if not, we can simply choose $\alpha, \beta \neq 0$ to scale these values to become one. By Lemma 27, we have

$$
\left|x_{i} y_{i}\right| \leq \frac{\left|x_{i}\right|^{p}}{p}+\frac{\left|y_{i}\right|^{q}}{q}
$$

Hence

$$
\begin{aligned}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| & \leq \sum_{i=1}^{n} \frac{\left|x_{i}\right|^{p}}{p}+\sum_{i=1}^{n} \frac{\left|y_{i}\right|^{q}}{q}=\frac{1}{p}+\frac{1}{q} \quad \because \text { Equation (10.1) } \\
& =1=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

as required.

We are now ready to prove our long-awaited result.

PTheorem 29 (Minkowski's Inequality)

Let $1<p<\infty$. If

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \quad \vec{y}=\left(y_{1}, \ldots, y_{n}\right)
$$

in \mathbb{R}^{n}, then

$$
\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

i.e.

$$
\|\vec{x}+\vec{y}\|_{p} \leq\|\vec{x}\|_{p}+\|\vec{y}\|_{p} .
$$

Proof

Let

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Once again, we may assume that $\vec{x} \neq 0 \neq \vec{y}$, as otherwise the inequality is true trivially so. Now, notice that

$$
\begin{aligned}
\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}= & \sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left|x_{i}+y_{i}\right|^{p-1} \\
\leq & \sum_{i=1}^{n}\left|x_{i}\right|\left|x_{i}+y_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|y_{i}\right|\left|x_{i}+y_{i}\right| \quad \because \text { inequality } \\
\leq & \left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{(p-1) q}\right)^{\frac{1}{q}} \\
& \quad+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{(p-1) q}\right)^{\frac{1}{q}}
\end{aligned}
$$

where the last step is by Hölder's Inequality. Note that $\frac{1}{p}+\frac{1}{q}=$ $1 \Longrightarrow p=q(p-1)$. Thus

$$
\begin{gathered}
\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p} \leq\left[\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}}\right] \cdot\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{\frac{1}{q}} \\
\Longrightarrow\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{1-\frac{1}{q}} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}}
\end{gathered}
$$

f(Note 10.1.2
With this we have that $\|\cdot\|_{p}$ satisfies the triangle inequaltiy condition, and so $\|\cdot\|_{p}$ is a norm on \mathbb{R}^{n}.

66 Note 10.1.3

Given $1 \leq p \leq q<\infty$, we have ${ }^{3}$

$$
\|\cdot\|_{\infty} \leq\|\cdot\|_{q} \leq\|\cdot\|_{p} \leq\|\cdot\|_{1} .
$$

Proof

It is quite clear that $\forall p \geq 1$,

$$
\|\cdot\|_{\infty}=\max \{|\cdot|\} \leq\left(\sum|\cdot|^{p}\right)^{\frac{1}{p}}=\|\cdot\|_{p} .
$$

For $1 \leq p \leq q<\infty$, consider Holder's Inequality, where we have

$$
\sum_{i=1}^{n}\left|a_{i}\right|\left|b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{r}\right)^{\frac{1}{r}} \cdot\left(\sum_{i=1}^{n}\left|b_{i}\right|^{\frac{r}{r-1}}\right)^{1-\frac{1}{r}} .
$$

Let $\left|a_{i}\right|=\left|x_{i}\right|^{p},\left|b_{i}\right|=1$ and $r=\frac{q}{p} \geq 14$. Then we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left|x_{i}\right|^{p} & \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{p}{q}} \cdot\left(\sum_{i=1}^{n} 1^{\frac{q}{q-p}}\right)^{1-\frac{p}{\eta}} \\
& =n^{1-\frac{p}{q}} \cdot\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{p}{q}}
\end{aligned}
$$

Therefore, for $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}$,

$$
\begin{aligned}
\|\vec{x}\|_{p} & =\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(n^{1-\frac{p}{q}} \cdot\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{p}{q}}\right)^{\frac{1}{p}} \\
& =n^{\frac{1}{p}-\frac{1}{q}} \cdot\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}}=n^{\frac{1}{p}-\frac{1}{q}} \cdot\|\vec{x}\|_{q} .
\end{aligned}
$$

Thus, we have

$$
\|\cdot\|_{q} \leq\|\cdot\|_{p}
$$

The chain of inequality follows.

Example 10.1.1 (Sequence Spaces)

1. Let $\ell_{1}=\left\{\left\{x_{i}\right\}\left|\sum_{i=1}^{\infty}\right| x_{i} \mid<\infty\right\}$. Define

$$
\left\|\left\{x_{i}\right\}\right\|_{1}=\sum_{i=1}^{\infty}\left|x_{i}\right|
$$

Let $\left\{x_{i}\right\},\left\{y_{i}\right\} \in \ell_{1}$. Observe that $\forall n \in \mathbb{N}$, we have

$$
\sum_{i=1}^{n}\left|x_{i}+y_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|+\sum_{i=1}^{n}\left|y_{i}\right| \leq\left\|\left\{x_{i}\right\}\right\|_{1}+\left\|\left\{y_{i}\right\}\right\|_{1}
$$

Then by the Monotone Convergence Theorem, we have that

$$
\sum_{i=1}^{\infty}\left|x_{i}+y_{i}\right| \leq\left\|\left\{x_{i}\right\}\right\|_{1}+\left\|\left\{y_{i}\right\}\right\|_{1}
$$

Thus $\left\{x_{i}+y_{i}\right\} \in \ell_{1}$ and

$$
\left\|\left\{x_{i}+y_{i}\right\}\right\|_{1} \leq\left\|\left\{x_{i}\right\}\right\|_{1}+\left\|\left\{y_{i}\right\}\right\|_{1} .
$$

Let $\left\{x_{n}\right\} \in \ell_{1}$ and $\alpha \in \mathbb{R}$. Then

$$
\sum_{i=1}^{\infty}\left|\alpha x_{i}\right|=|\alpha| \sum_{i=1}^{\infty}\left|x_{i}\right|
$$

Therefore $\left\{\alpha x_{n}\right\} \in \ell_{1}$ and $\left\|\left\{\alpha x_{n}\right\}\right\|_{1}=|\alpha|\left\|\left\{x_{n}\right\}\right\|_{1}$.

Thus, we have that ℓ_{1} is a vector space, and $\left(\ell_{1},\|\cdot\|_{1}\right)$ is a normed linear space.
2. Let $\ell_{\infty}(\mathbb{N})=\ell_{\infty}=\left\{\left\{x_{i}\right\} \mid\left\{x_{i}\right\}\right.$ is bounded $\}$. Define

$$
\left\|\left\{x_{i}\right\}\right\|_{\infty}=\sup \left\{\left|x_{1}\right| \mid i \in \mathbb{N}\right\} .
$$

Observe that $\forall\left\{x_{i}\right\},\left\{y_{i}\right\} \in \ell_{\infty}$, then $\forall i \in \mathbb{N}$, we have

$$
\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right| \leq\left\|\left\{x_{i}\right\}\right\|_{\infty}+\left\|\left\{y_{i}\right\}\right\|_{\infty}
$$

So $\left\{x_{i}+y_{i}\right\} \in \ell_{\infty}$, and

$$
\left\|\left\{x_{i}+y_{i}\right\}\right\|_{\infty} \leq\left\|\left\{x_{i}\right\}\right\|_{\infty}+\left\|\left\{y_{i}\right\}\right\|_{\infty}
$$

Consequently so, $\left\{\alpha x_{i}\right\} \in \ell_{\infty}$ and

$$
\left\|\left\{\alpha x_{i}\right\}\right\|_{\infty}=|\alpha|\left\|\left\{x_{i}\right\}\right\|_{\infty} .
$$

$$
*
$$

Question: What about $\ell_{p}(\mathbb{R})$?

11.1 Introduction to Metric Spaces (Continued 2)

We wondered about $\ell_{p}(\mathbb{R})$ in the last lecture but let us consider a case that is even more general.

Question: Can we define $\ell_{p}(\Gamma)$ for any set Γ ?

Example 11.1.1

Let $\ell_{\infty}(\Gamma)=\{f: \Gamma \rightarrow \mathbb{R} \mid f(\Gamma)$ is bounded $\}$. If $f \in \ell_{\infty}(\Gamma)$, define

$$
\|f\|_{\infty}=\sup \{|f(x)| \mid x \in \Gamma\}
$$

Notice that for $f, g \in \ell_{\infty}(\Gamma)$, and $\alpha \in \mathbb{R}$, then we have, by the Triangle Inequality,

$$
\begin{aligned}
\|f+g\|_{\infty} & =\sup \{|(f+g)(x)| \mid x \in \Gamma\} \\
& =\sup \{|f(x)+g(x)| \mid x \in \Gamma\} \\
& \leq \sup \{|f(x)| \mid x \in \Gamma\}+\sup \{|g(x)| \mid x \in \Gamma\} \\
& =\|f\|_{\infty}\|g\|_{\infty}
\end{aligned}
$$

So $f+g \in \ell_{\infty}(\Gamma)$, and

$$
\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|f\|_{\infty} .
$$

Also, we have

$$
\begin{aligned}
\|\alpha f\|_{\infty} & =\sup \{|(\alpha f)(x)| \mid x \in \Gamma\} \\
& =\sup \{|\alpha||f(x)| \mid x \in \Gamma\}
\end{aligned}
$$

$$
\begin{aligned}
& =|\alpha| \sup \{|f(x)| \mid x \in \Gamma\} \\
& =|\alpha|\|f\|_{\infty}
\end{aligned}
$$

So $\alpha f \in \ell_{\infty}(\Gamma)$, and $\|\alpha f\|_{\infty}=|\alpha|\|f\|$.

Therefore, $\left(\ell_{\infty}(\Gamma),\|\cdot\|_{\infty}\right)$ is a normed linear space.

Example 11.1.2

Let $\ell_{1}(\Gamma)=\{f: \Gamma \rightarrow \mathbb{R} \mid P(f)\}$, where $P(f)$ is the statement

$$
\|f\|_{1}=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right| \mid x_{1}, \ldots, x_{n} \in \Gamma, n \in \mathbb{N} \backslash\{0\}\right\}<\infty
$$

It is clear that $\ell_{1}(\Gamma) \subseteq \ell_{\infty}(\Gamma)$, where $\ell_{\infty}(\Gamma)$ is from Example 11.1.I. Consequently, $\left(\ell_{1}(\Gamma),\|\cdot\|_{1}\right)$ is a normed linear space.

We can extend the same idea onto ℓ_{p} spaces.

Example 11.1.3

Let $X=C[a, b]=\{f:[a, b] \rightarrow \mathbb{R} \mid f$ is continuous on $[a, b]\}$, and define ${ }^{1}$

$$
\begin{aligned}
\|f\|_{\infty} & =\sup \{|f(x)| \mid x \in[a, b]\} \\
& =\max \{|f(x)| \mid x \in[a, b]\}
\end{aligned}
$$

By (regular) Triangle Inequality, for any $f, g \in C[a, b]$, we have

$$
\begin{aligned}
\|f+g\|_{\infty} & =\max \{|f(x)+g(x)| \mid x \in[a, b]\} \\
& \leq \max \{|f(x)| \mid x \in[a, b]\}+\max \{|g(x)| \mid x \in[a, b]\} \\
& =\|f\|_{\infty}+\|g\|_{\infty}
\end{aligned}
$$

and, for $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
\|\alpha f\|_{\infty} & =\max \{|\alpha f(x)| \mid x \in[a, b]\} \\
& =|\alpha| \max \{|f(x)| \mid x \in[a, b] \\
& =|\alpha|\|f\|_{\infty}
\end{aligned}
$$

Thus $\|\cdot\|_{\infty}$ is a norm on $C[a, b]$, and $\left(C[a, b],\|\cdot\|_{\infty}\right)$ is a normed linear space ${ }^{2,3}$.

Require clarification Notice that $\forall f \in \ell_{1}(\Gamma)$, for each $n \in \mathbb{N}$,

$$
A_{n}=\left\{x \in \Gamma| | f(x) \left\lvert\, \geq \frac{1}{n}\right.\right\} \text { is finite. }
$$

So

$$
A_{0}=\bigcup_{n=1}^{\infty} A_{n} \text { is countable. }
$$

and

$$
A_{0}=\{x \in \Gamma| | f(x) \mid \neq \varnothing\}
$$

[^2][^3]Also, observe that

$$
C[a, b] \subset \ell_{\infty}([a, b])
$$

Example 11.1. 4

Let $X=C[a, b] 4$ have the same definition as the previous example, but this time define

$$
\|f\|_{1}=\int_{a}^{b}|f(t)| d t
$$

By linearity of integration, both the triangle equality and scalar multiplication hold, and so $\left(C[a, b],\|\cdot\|_{1}\right)$ is a normed linear space ${ }^{5}$.

Example 11.1. 5

Let $X=C[a, b]$, and $1<p<\infty$. Define

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

Again, by linearity of integration, scalar multiplication holds. However, it is not as easy to show for the triangle inequality; we are now asking the same question as we did before for ℓ_{p}, which we solved using Hölder's Inequality and Minkowski's Inequality. But now, instead of summations, we have integrations.
—Theorem 30 (Hölder's Inequality v2)
Let $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. For each $f, g \in C[a, b]$, we have

$$
\int_{a}^{b}|f(t) g(t)| d t \leq\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(t)|^{q} d t\right)^{\frac{1}{q}}
$$

- Proof

If either $f(x)=0$ or $g(x)=0$ for all $x \in[a, b]$, then the inequality holds trivially so. Thus, we may assume that $\forall x \in[a, b], f(x) \neq$ $0 \neq g(x)$. By the linearity of integration, we can apply the same
reasoning as we did in Theorem 28, and assume that

$$
\int_{a}^{b}|f(t)|^{p} d t=1=\int_{a}^{b}|g(t)|^{q} d t
$$

By Lemma 27, we have

$$
|f(t) g(t)| \leq \frac{|f(t)|^{p}}{p}+\frac{|g(t)|^{q}}{q}
$$

Thus

$$
\begin{aligned}
\int_{a}^{b}|f(t) g(t)| d t & \leq \int_{a}^{b}\left(\frac{|f(t)|^{p}}{p}+\frac{|g(t)|^{q}}{q}\right) d t \\
& =\frac{1}{p}+\frac{1}{q}=1 \\
& =\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(t)|^{q} d t\right)^{\frac{1}{q}}
\end{aligned}
$$

as required.

Theorem 31 (Minkowski's Inequality v2)

Let $1<p<\infty$. If $f, g \in C[a, b]$, then

$$
\left(\int_{a}^{b}|(f+g)(t)|^{p} d t\right)^{\frac{1}{p}} \leq\left(|f(t)|^{p} d t\right)^{\frac{1}{p}} \cdot\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{\frac{1}{p}}
$$

Proof

The proof is similar to the one we had in - Theorem 29; if $\forall x \in$ $[a, b]$, either $f(x)=0$ or $g(x)=0$, then the inequality holds trivially so. Thus we may assyme that $\forall x \in[a, b], f(x) \neq 0 \neq g(x)$.
Now, notice that by (regular) Triangle Inequality and, later on,
PTheorem 30,

$$
\begin{aligned}
& \int_{a}^{b}|(f+g)(t)|^{p} d t \\
& =\int_{a}^{b}|(f+g)(t)||(f+g)(t)|^{p-1} d t \\
& \leq \int_{a}^{b}|f(t)||(f+g)(t)|^{p-1} d t+\int_{a}^{b}|g(t)||(f+g)(t)| d t
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|(f+g)(t)|^{q(p-1)} d t\right)^{\frac{1}{q}} \\
& +\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|(f+g)(t)|^{q(p-1)} d t\right)^{\frac{1}{q}} \\
= & {\left[\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}+\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{\frac{1}{p}}\right] } \\
& \cdot\left(\int_{a}^{b}|(f+g)(t)|^{p}\right)^{\frac{1}{q}}
\end{aligned}
$$

where we note that $\frac{1}{p}+\frac{1}{q}=1 \Longrightarrow p=q(p-1)$. Consequently, since $\frac{1}{p}=1-\frac{1}{q}$,

$$
\left(\int_{a}^{b}|(f+g)(t)|^{p} d t\right)^{\frac{1}{p}} \leq\left(|f(t)|^{p} d t\right)^{\frac{1}{p}} \cdot\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{\frac{1}{p}}
$$

as required.

This shows that our definition of $\|\cdot\|_{p}$ on $C[a, b]$ is indeed a norm, and so $\left(C[a, b],\|\cdot\|_{p}\right)$ is a normed linear space.

Example 11.1.6 (Bounded Operator)

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed linear spaces. Let $T: X \rightarrow Y$ be linear. Define

$$
\|T\|=\sup \left\{\left\|T_{X}\right\|_{Y} \mid\|x\|_{X}<1\right\} .
$$

We say that T is bounded if $\|T\|<\infty$. Let

$$
B(X, Y)=\{T: X \rightarrow Y \mid T \text { is bounded }\}
$$

In the next lecture, we shall show that $(B(X, Y),\|\cdot\|)$ is a normed linear space.

Question: Consider the transformation $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. What is a norm $\left\|\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]\right\|$ that works?

Exercise 11.1.1

Show that there exists an injection from $\left(C[a, b],\|\cdot\|_{2}\right)$ to $\ell_{2}(\mathbb{N})$. Note that this does not work for $p \geq 3$.

Example 12.1.1 (Bounded Operator)

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed linear spaces. Let $T: X \rightarrow Y$ be linear. Define

$$
\|T\|=\sup \left\{\|T(x)\|_{Y} \mid\|x\|_{X}<1\right\}
$$

In this example, we look at how we can apply a translation of norms from X to Y that preserves the norm.

We say that T is bounded if $\|T\|<\infty$. Let

$$
B(X, Y)=\{T: X \rightarrow Y \mid T \text { is bounded }\} .
$$

To show that $B(X, Y)$ is a normed linear space, let $S, T \in B(X, Y)$, and let $\|x\|_{X} \leq 1$. Then

$$
\begin{aligned}
\|(S+T)(x)\|_{Y} & =\|S(x)+T(x)\|_{Y} \\
& \leq\|S(x)\|_{Y}+\|T(x)\|_{Y} \quad \because\|\cdot\|_{Y} \text { is a norm } \\
& \leq\|S\|+\|T\|
\end{aligned}
$$

and so $S+T \in B(X, Y)$ and $\|S+T\| \leq\|S\|+\|T\|$. For $\alpha \in \mathbb{R}$, we have

$$
\begin{aligned}
\|\alpha S\| & =\sup \left\{\|(\alpha S)(x)\|_{Y} \mid\|x\|_{X} \leq 1\right\} \\
& =|\alpha| \sup \left\{\|S(x)\|_{Y} \mid\|x\|_{X} \leq 1\right\} \quad \because\|\cdot\|_{Y} \text { is a norm } \\
& =|\alpha|\|S\| .
\end{aligned}
$$

So $(\alpha S) \in B(X, Y)$ and $\|\alpha S\|=|\alpha|\|S\|$. It is clear that due to $\|\cdot\|_{Y}$ being a norm, and so $\|\cdot\|$ is also positive definite. Thus $B(X, Y)$ is a
normed linear space as claimed.

12.2 Topology on Metric Spaces

Definition 34 (Open \& Closed)

Let $X(, d)$ be a metric space. If $x_{0} \in X$, then

$$
B\left(x_{0}, \varepsilon\right)=\{y \in X \mid d(x, y)<\varepsilon\}
$$

is called the open ball centered at x_{0} with radius $\varepsilon>0$.

$$
B\left[x_{0}, \varepsilon\right]=\{y \in X \mid d(x, y) \leq \varepsilon\}
$$

is called the closed ball centered at x_{0} with radius $\varepsilon>0$.
We say that $U \subset X$ is open if

$$
\forall x \in U \exists \varepsilon_{0}>0 \quad B\left(x_{0}, \varepsilon_{0}\right) \subset U .
$$

We say that $F \subset X$ is closed if F^{C} is open.

Proposition 32 (Properties of Open Sets)
Let (X, d) be a metric space.

1. X, \varnothing are open,
2. If $\left\{U_{\alpha}\right\}_{\alpha \in I}$ is a collection of open sets, then $U=\bigcup_{\alpha \in I}$ is open.
3. If $\left\{U_{1}, \ldots, U_{n}\right\}$ is a collection of open sets, then $U=\bigcap_{i=1}^{n} U_{i}$ is open.

- Proof

1. If $x_{0} \in X$, then $B\left(x_{0}, 1\right) \subseteq X$, and so X is open. The empty set is open vacuously so.
2. Let $U=\bigcup_{\alpha \in I} U_{\alpha}$ and $x_{0} \in U$. Then $\exists \alpha_{0} \in I$ such that $x_{0} \in U_{\alpha_{0}}$.

Then $\exists \varepsilon_{0}>0$ such that

$$
B\left(x_{0}, \varepsilon_{0}\right) \subset U_{\alpha_{0}} \subset U
$$

3. Let $x_{0} \in U=\bigcap_{i=1}^{n}$. Then for each $i \in\{1, \ldots, n\}, \exists \varepsilon_{i}>0$ such that $B\left(x_{0}, \varepsilon_{i}\right) \subset U_{i}$. Let

$$
\varepsilon_{0}=\min \left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\} .
$$

Then we have that $\forall i \in\{1, \ldots, n\}, \varepsilon_{0} \leq \varepsilon_{i}$. Thus

$$
B\left(x_{0}, \varepsilon_{0}\right) \subset B\left(x_{0}, \varepsilon_{i}\right) \subset U_{i}
$$

for each i. Therefore $B\left(x_{0}, \varepsilon_{0}\right) \subset U$.

Corollary 33 (Properties of Closed Sets)
Let (X, d) be a metric space.

1. X, \varnothing are closed.
2. If $\left\{F_{\alpha}\right\}_{\alpha \in I}$ is a collection of closed sets, then $F=\bigcap_{\alpha \in I} F_{\alpha}$ is closed.
3. If $\left\{F_{1}, \ldots, F_{n}\right\}$ is a collection of closed sets, then $F=\bigcup_{i=1}^{n} F_{i}$ is closed.

Proof

The proof follows from De Morgan's Laws, Proposition 32, and by taking set complements.

Example 12.2.1

Let X be any set and d the discrete metric

$$
d(x, y)= \begin{cases}1 & x \neq y \\ 0 & x=y\end{cases}
$$

We want to know what sets are open on X under d. Notice that any

Exercise 12.2.1

Write out the full proof for Corollary 33 as an exercise.
set of just a singleton is open, since

$$
B\left(x_{0}, \frac{1}{2}\right) \subset X .
$$

Consequently, any $A \in \mathcal{P}(X)$ is an arbitrary union of open sets, i.e.

$$
A=\bigcup_{x \in A}\{x\} .
$$

Thus by Proposition 32, A is open.

```
G6 Note 12.2.1
```

On \mathbb{R}, only \varnothing and \mathbb{R} itself are both open and closed. This can be proven using the Intermediate Value Theorem.

Given any X, a set $\tau \subset \mathcal{P}(X)$ is called a topology on X is

1. $X, \varnothing \in \tau$
2. If $\left\{U_{\alpha}\right\}_{\alpha \in I}$ such that for each $\alpha \in I, U_{\alpha} \in \tau$, then

$$
U=\bigcup_{\alpha \in I} U_{\alpha} \in \tau .
$$

3. If $\left\{U_{1}, \ldots, U_{n}\right\}$ such that $U_{i} \in \tau$ for each $i \in\{1, \ldots, n\}$, then

$$
U=\bigcap_{i=1}^{n} U_{i} \in \tau
$$

If (X, d) is a metric space, then

$$
\tau_{d}=\{U \subset X \mid U \text { open in }(X, d)\}
$$

is called a metric topology, or d-topology, associated with the metric d.
We call (X, τ) a topological space.

Example 12.2.2

Given X,

1. $\mathcal{P}(X)$ is a topology on X, and it is called the discrete topology;
2. $\{\varnothing, X\}$ is a topology on X, and it is called the indiscrete topology.

13
 Lecture 13 Oct 05th

13.1 Topology on Metric Spaces (Continued)

Theorem 34 (Open Balls are Open)

1. $B\left(x_{0}, \varepsilon\right)$ is open.
2. $B\left[x_{0}, \varepsilon\right]$ is closed.
3. Every open set is the union of open balls.
4. $\forall x \in X,\{x\}$ is closed.

Proof

1. Consider $x \in B\left(x_{0}, \varepsilon\right)$ and let $r=d\left(x, x_{0}\right)$.

Let $\alpha=\varepsilon-r$. Assume that $y \in B(x, \alpha)$. By the Triangle Inequality,

$$
d\left(x_{0}, y\right) \leq d\left(x_{0}, x\right)+d(x, y)<r+\alpha=\varepsilon .
$$

2. Let $y \in B\left[x_{0}, \varepsilon\right]^{C}$, and let $r=d\left(x_{0}, y\right)$.

Let $\alpha=r-\varepsilon$. Assume $z \in B(y, \alpha)$, and suppose, for contradiction, that $z \in B\left[x_{0}, \varepsilon\right]$. Then

$$
r=d\left(x_{0}, y\right) \leq d\left(x_{0}, z\right)+d(z, y)<\varepsilon+\alpha=r
$$

Figure 13.1: Idea of proof for 1 . in \mathbb{R}^{2}.

Figure 13.2: Idea of proof for 2. in \mathbb{R}^{2}.
but $r<r$ contradicts the fact that $r=r$.
3. Let $U \subset X$ be open. $\forall x \in U$, let $\varepsilon_{x}>0$ be such that $B\left(x, \varepsilon_{x}\right) \subset U$.

Then

$$
U=\bigcup_{x \in U} B\left(x, \varepsilon_{x}\right)
$$

4. Let $y \in X$ such that $y \neq x$. Let $r=d(y, x)$. Then $x \notin B\left(y, \frac{r}{2}\right)$, and so

$$
B\left(y, \frac{r}{2}\right) \subset\{x\}^{C}
$$

Example 13.1.1 (Open Intervals are Open)

Let $X=\mathbb{R}$, and $d(x, y)=|x-y|$, the standard metric. Let $I=(a, b)$, for some $a, b \in \mathbb{R} \cup\{ \pm \infty\}$. Let $x \in I$. Now let

$$
\varepsilon=\min \{1,|x-a|,|x-b|\}
$$

Then, clearly so, $B(x, \varepsilon) \subset I$.

If $U \subset \mathbb{R}$ is open, and if we define \sim on U by $x \sim y{ }^{1}$. if $(x, y),(y, x) \subset{ }^{1}$ This is what we did in Q1. U. We proved that \sim is an equivalence relation. Let $I_{x}=[x]$ be the interval defined by \sim. We proved that I_{x} is an open interval.

Consequently, if we have U being open in \mathbb{R}, then U can be expressed as the union of a countable collection $\left\{I_{\alpha}, \alpha \in I\right\}$ of open intervals, which are pairwise disjoint.

Question: Given $U=\{(x, y)| | x|,|y|<1\}$, can we do the same as above, i.e. can we use a countable collection of disjoint open sets to express U, or, in other words, cover U ?

Example 13.1.2 (Cantor Set)

Let's consider the closed interval $[0,1]$, of which we shall label as P_{0}.

Figure 13.3: Cantor set showing up to $n=2$, with the excluded interval in $n=3$ shown.

Define P_{1} by removing an open interval of length $\frac{1}{3}$ sitting in the
middle of P_{0}, i.e.

$$
P_{1}=[0,1] \backslash\left(\frac{1}{3}, \frac{2}{3}\right)=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]
$$

Define P_{2} by removing an open interval of length $\frac{1}{3^{2}}$ sitting in the middle of each of the 2 closed intervals in P_{1}, ie.

$$
P_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]
$$

Recursively so, define P_{n+1} by removing an open interval of length $\frac{1}{3^{n+1}}$ sitting in the middle of each of the 2^{n} closed intervals in P_{n}.

Let P, the Cantor Set (or Cantor Ternary Set), be defined as

$$
P=\bigcap_{n=0}^{\infty} P_{n}
$$

The following are some properties of P :

1. P is closed, since it is closed under an arbitrary number of closed
sets (see Corollary 33).
2. We have

$$
x \in P \Longleftrightarrow x=\sum_{i=1}^{\infty} \frac{a_{n}}{3^{n}}
$$

where $a_{n}=0,2$. In other words, every element of P is a ternary number.
3. $|P|=2^{\aleph_{0}}=c$.
4. P_{n} does not contain any interval of length greater than or equal to $\frac{1}{3^{n}}$.
5. Consequently, the length of P is 0 .

$14 \approx$ Lecture 14 Oct 12th

14.1 Topology on Metric Spaces (Continued 2)

E Definition 36 (Closure)

Let $A \subseteq(X, d)$. We define the closure \bar{A} of A to be

$$
\bar{A}=\cap\{F \subset X \mid F \text { is closed }, A \subset F\} .
$$

\bar{A} is the smallest closed set that contains A.

Definition 37 (Interior)

Let $A \subseteq(X, d)$. We define the interior A° of A to be

$$
A^{\circ}=\cup\{U \subset X \mid U \text { is open }, U \subset A\}
$$

A° is the largest open set contained in A.

Remark 14.1.1

We have that

$$
A^{\circ} \subset A \subset \bar{A}
$$Definition 38 (Neighbourhood)

We say that a set A is a neighbourhood of a point $x \in X$ if $x \in A^{\circ} .{ }^{1}$

G6 Note 14.1.1
A is a neighourhood of $x \in X$ if and only if $\exists \varepsilon>0$ such that $B(x, \varepsilon) \subset$ A.

Definition 39 (Boundary Point)

Given $A \subset(X, d)$, a point x is called a boundary point for A if

$$
\forall \varepsilon>0 \quad B(x, \varepsilon) \cap A \neq \varnothing \wedge B(x, \varepsilon) \cap A^{C} \neq \varnothing .
$$

We denote the collection of all boundary points of A by $\operatorname{bdy}(A)$.

Proposition 35 (Closed Sets Include Its Boundary Points)
Let (X, d) be a metric space and $A \subset X$. Then A is closed \Longleftrightarrow $\operatorname{bdy}(A) \subset A$.

Proof

(1) \Longrightarrow (2): Suppose $x \in A^{C}$, which is open. Then $\exists \varepsilon>0$ such that $B(x, \varepsilon) \subset A^{C}$. Then $x \notin \operatorname{bdy}(A)$, i.e. $\operatorname{bdy}(A) \subset A^{2}$
$(2) \Longrightarrow$ (3): ${ }^{3}$ Let $x \in A^{C}$. Then, by assumption, $x \notin \operatorname{bdy}(A)$. Then $\exists \varepsilon>0$ such that either $B(x, \varepsilon) \subset A$ or $B(x, \varepsilon) \subset A^{C}$. But since $x \notin A$, we must have $B(x, \varepsilon) \subset A^{C}$, i.e. A^{C} is open.

Proposition 36 (Closures include the Boundary Points of a Set)

Given $A \subset(X, d)$, we have $\bar{A}=A \cup \operatorname{bdy}(A)$.

```
Proof
```

By definition, $A \subseteq \bar{A}$, so it suffices to show that bdy $(A) \subset \bar{A}$ to show that $A \cup \operatorname{bdy}(A) \subseteq \bar{A}$.
${ }^{4}$ Assume that $x \notin \bar{A}$, i.e. $x \in \bar{A}^{C}$, which is open since \bar{A} is closed by definition. Then $\exists \varepsilon>0$ such that $B(x, \varepsilon) \subset \bar{A}^{C}$. Since $x \notin A \subset \bar{A}$, we have that $B(x, \varepsilon) \cap A=\varnothing$, i.e. $x \notin \operatorname{bdy}(A)$. Therefore $\operatorname{bdy}(A) \subset \bar{A}$, and so $A \cup \operatorname{bdy}(A) \subseteq \bar{A}$ as claimed.
${ }^{5}$ Let $x \in \operatorname{bdy}(A \cup \operatorname{bdy}(A))$. Then $\forall \varepsilon>0$, we have

$$
\begin{gather*}
B(x, \varepsilon) \cap(A \cup \operatorname{bdy}(A)) \neq \varnothing \tag{14.1}\\
\wedge \\
B(x, \varepsilon) \cap(A \cup \operatorname{bdy}(A))^{C} \neq \varnothing \tag{14.2}
\end{gather*}
$$

Note that by De Morgan's Laws, we have that

$$
(A \cup \operatorname{bdy}(A))^{C}=A^{C} \cap \operatorname{bdy}(A)^{C}
$$

Then (14.2) would be

$$
B(x, \varepsilon) \cap A^{C} \cap \operatorname{bdy}(A)^{C} \neq \varnothing
$$

and so

$$
\begin{gather*}
B(x, \varepsilon) \cap A^{C} \neq \varnothing \tag{14.3}\\
\wedge \\
B(x, \varepsilon) \cap \operatorname{bdy}(A)^{C} \neq \varnothing . \tag{14.4}
\end{gather*}
$$

From (14.1), we have

$$
B(x, \varepsilon) \cap A \neq \varnothing \vee B(x, \varepsilon) \cap \operatorname{bdy}(A) \neq \varnothing
$$

If $B(x, \varepsilon) \cap A \neq \varnothing$, then $\because(14.3), x \in \operatorname{bdy}(A)$, and so

$$
\begin{equation*}
\operatorname{bdy}(A \cup \operatorname{bdy}(A)) \subseteq(A \cup \operatorname{bdy}(A)) \tag{†}
\end{equation*}
$$

If $B(x, \varepsilon) \cap \operatorname{bdy}(A) \neq \varnothing$, let $z \in B(x, \varepsilon) \cap \operatorname{bdy}(A) . \because z \in B(x, \varepsilon)$, let $r=d(x, z)$, and $\alpha=\varepsilon-r>0$. Let $z_{0} \in B(z, \alpha)$. Then by the

Abstract

${ }^{4}$ Here, we employ the same proof as the previous proposition.

${ }^{5}$ For this part, if we can show that $A \cup \operatorname{bdy}(A)$ is closed, then by definition, $\bar{A} \subseteq A \cup \operatorname{bdy}(A)$ since \bar{A} is the smallest such set that contains A. To show that $A \cup \operatorname{bdy}(A)$ is closed, we can either show that $(A \cup \operatorname{bdy}(A))^{C}$ is open, or use Proposition 35 to show that $\operatorname{bdy}(A \cup \operatorname{bdy}(A)) \subset(A \cup \operatorname{bdy}(A))$. We shall show for the more complicated expression.

Triangle Inequality

$$
d\left(x, z_{0}\right) \leq d(x, z)+d\left(z, z_{0}\right)<r+\alpha=\varepsilon .
$$

Thus $z_{0} \in B(x, \varepsilon) \Longrightarrow(B(z, \alpha) \subseteq B(x, \varepsilon))$. Then $\because z \in \operatorname{bdy}(A)$, we have $B(z, \alpha) \cap A \neq \varnothing$, and so $B(x, \varepsilon) \cap A \neq \varnothing$. Then we can just follow the argument we did in (\dagger) and arrive as the same conclusion. Consequently, by Proposition $35, A \cup \operatorname{bdy}(A)$ is closed as claimed.

Example 14.1.1

Let $X=\mathbb{R}$ and $A=[0,1)$. We have that

- $\operatorname{bdy}(A)=\{0,1\}$;
- $A^{\circ}=(0,1)$; and
- $\bar{A}=[0,1]$.

Example 14.1.2

Let $X=\mathbb{R}$ and $A=\mathbb{Q}$. We have that

- $\operatorname{bdy}(A)=\mathbb{R}$ since every open ball around $a \in A$ will always contain elements in \mathbb{Q} and \mathbb{Q}^{C};
- $A^{\circ}=\varnothing$ since $A^{\circ}=A \backslash \operatorname{bdy}(A)$; and
- $\bar{A}=\mathbb{R}$ since $\bar{A}=A \cup \operatorname{bdy}(A)$.

Definition 40 (Separable)

A metric space (X, d) is separable if there exists a countable set $A \subset X$ such that $\bar{A}=X$, and call the metric space non-separable otherwise.

Example 14.1.3

Every finite metric space (X, d) is separable.
This is true since every subset A of X is countable since X itself
is countable. Consequently, if we pick A to be a subset that takes every other element in X, then it is clear that $\bar{A}=X$, and so (X, d) is separable.

Example 14.1.4

\mathbb{R} is separable as shown in Example 14.1.2. ${ }^{6}$
$\rightarrow \quad 6$

Example 14.1.5

Prove that $\overline{\mathbb{Q}}=\mathbb{R}$ using the Archimedean
Property of \mathbb{R}.
\mathbb{R}^{n} is separable if d_{p} for all $1 \leq p \leq \infty$. We can apply the same argument that we had for Example 14.1.2 and apply it componentwise. Consequently, $\overline{\mathbf{Q}^{n}}=\mathbb{R}^{n}$. In other words, for any $\left(x_{1}, \ldots, x_{n}\right) \in$ $\left(\mathbb{R}^{n}, d_{p}\right)$, we can pick a $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Q}^{n}$ that is as close to $\left(x_{1}, \ldots, x_{n}\right)$ as possible.

Remark 14.1.2

Notice that

$$
\bar{A}=X \Longleftrightarrow \forall x \in X \forall \varepsilon>0 B(x, \varepsilon) \cap A \neq \varnothing .
$$

Definition 41 (Dense)

A is dense in (X, d) if $\bar{A}=X$. Equivalently, A is dense if for every open set $W \subset X, W \cap A \neq \varnothing$.

Question: Is $\left(\ell_{1},\|\cdot\|_{1}\right)$ separable? Is $\left(\ell_{\infty},\|\cdot\|_{\infty}\right)$ separable?
Recall Example 10.1.1.

15
 Lecture 15 Oct 15th

15.1 Topology on Metric Spaces (Continued 3)

Definition 42 (Limit Points)

Let (X, d) be a metric space, and $A \subset X$. We say that x_{0} is a limit point for A if for any neighbourhood of x_{0}, we have that

$$
N \cap\left(A \backslash\left\{x_{0}\right\}\right) \neq \varnothing .
$$

Equivalently, $\forall \varepsilon>0, \exists x \in A$, where $x \neq x_{0}$, such that $x \in B\left(x_{0}, \varepsilon\right) .{ }^{1}$ We sometimes call limit points as cluster points. We denote the set of limit points of A as $\operatorname{Lim}(A) \subset X^{2}$

Abstract

${ }^{1}$ This also means that $B\left(x_{0}, \varepsilon\right)$ must have infinitely many points close to x_{0}, for otherwise, we would be able to find some $\varepsilon>\varepsilon_{0}>0$ such that $B\left(x_{0}, \varepsilon_{0}\right) \cap A=\varnothing$. ${ }^{2}$ Note that the set of limit points is not necessarily a subset of A.

Example 15.1. 1

Let $X=\mathbb{R}$, and $A=[0,1) \subset \mathbb{R}$. We have that

$$
\operatorname{Lim}[0,1)=[0,1]
$$

Example 15.1.2

Let $X=\mathbb{R}$ and $A=\mathbb{N} \subset \mathbb{R}$. Since $\forall n \in \mathbb{N}, \exists \varepsilon=\frac{1}{2}$ such that $\forall m \in \mathbb{N} \backslash\{n\}$, we have that $m \notin B\left(n, \frac{1}{2}\right)$, we have

$$
\operatorname{Lim} \mathbb{N}=\varnothing
$$

Proposition 37 (Closed Sets Include Its Limit Points)

Let $A \subset(X, d)$. Then

1. A is closed $\Longleftrightarrow \operatorname{Lim}(A) \subset A$;
2. $\bar{A}=A \cup \operatorname{Lim}(A)$.

Proof

1. For the (\Longrightarrow) direction, suppose A is closed. ${ }^{3}$ Let $x_{0} \in A^{C}$. Then $\exists \varepsilon>0$ such that $B\left(x_{0}, \varepsilon\right) \cap A=\varnothing$. Thus, by definition, we have that $x_{0} \notin \operatorname{Lim}(A)^{4}$. Therefore, $\operatorname{Lim}(A) \subset A$.

For the (\Longleftarrow) direction, suppose $\operatorname{Lim}(A) \subset A$. Let $x_{0} \in$ A^{C}. Then $x_{0} \notin \operatorname{Lim}(A)$, which means that $\exists \varepsilon>0$ such that $B\left(x_{0}, \varepsilon\right) \cap A=\varnothing$, i.e. $B\left(x_{0}, \varepsilon\right) \subset A^{C}$. Thus A is closed.
2. ${ }^{5}$ It is clear that $A \subset \bar{A}$. Let $x_{0} \in \bar{A}^{C}$. Then $\exists \varepsilon>0$ such that $B\left(x_{0}, \varepsilon\right) \subset \bar{A}^{C}$. In particular, we have that $B\left(x_{0}, \varepsilon\right) \cap A=\varnothing$, i.e. $x_{0} \notin \operatorname{Lim}(A)$. Thus $\operatorname{Lim}(A) \subset \bar{A}$.

Again, it suffices to show that $A \cup \operatorname{Lim}(A)$ is closed to CTP. Let $x_{0} \in(A \cup \operatorname{Lim}(A))^{C} 6$. Then $\exists \varepsilon>0$ such that $B\left(x_{0}, \varepsilon\right) \cap A=\varnothing$. If $z \in \operatorname{Lim}(A)$ and $z \in B\left(x_{0}, \varepsilon\right)$, then we have $B\left(x_{0}, \varepsilon\right)$ is a neighbourhood of z, and so we must have that $B\left(x_{0}, \varepsilon\right) \cap A \neq \varnothing$, which is a contradiction. Thus $(A \cup \operatorname{Lim}(A))^{C}$ is open, and so $A \cup \operatorname{Lim}(A)$ is closed, as required.

Proposition 38 (Mixing the notions)

Let $A \subseteq B \subseteq(X, d)$.

1. $\bar{A} \subseteq \bar{B}$;
2. $A^{\circ} \subset B^{\circ}$;
3. $A^{\circ}=A \backslash \operatorname{bdy}(A)$;
4. $\operatorname{bdy}(A)=\operatorname{bdy}\left(A^{C}\right)$;

Abstract

${ }^{3}$ This uses a reversed way of thinking: if we want to show that $\operatorname{Lim}(A) \subset A$, then instead of trying to directly show the containment, we show that all elements in A^{C} are in fact not limit points due to A being closed. ${ }^{4}$ Notice there that there are no elements in A that are close to x_{0}, and so it's not a limit point.

${ }^{5}$ This proof is similar to that of - Proposition 36.
${ }^{6}$ It is clear by De Morgan's Law that $x_{0} \in A^{C}$ and $x_{0} \notin \operatorname{Lim}(A)$, which implies that $\operatorname{Lim}(A) \subset A$. But this does not give us a clear geometrical picture of the notion.

Exercise 15.1.1

Prove (1) Proposition 38.
5. $A^{\circ}=\left(\overline{A^{C}}\right)^{C}$.

Proof

1. It is clear that $A \subset B \subset \bar{B}$. Suppose $\operatorname{Lim}(A)$ is not a subset of \bar{B}.

Then $\exists x \in \operatorname{Lim}(A) \backslash \bar{B}$, i.e. $x \in \bar{B}^{C}$. Since \bar{B} is closed, B^{C} is open and so $\exists \varepsilon>0$ such that $B(x, \varepsilon) \subset B^{C}$. Since $x \in \operatorname{Lim}(A), \exists a \in A$ such that $a \in B(x, \varepsilon) \subset B^{C}$, but $A \subset B$, a contracdiction. Thus $\operatorname{Lim}(A) \subset \bar{B}$.
2. $a \in A^{\circ} \Longrightarrow \exists \varepsilon>0 B(a, \varepsilon) \subset A \subset B \Longrightarrow a \in B^{\circ} \dashv$
3. $x \in A \backslash \operatorname{bdy}(A) \Longrightarrow \exists \varepsilon>0 B(x, \varepsilon) \cap A^{C}=\varnothing \Longrightarrow x \in A^{\circ} \dashv$
$x \in A^{\circ} \Longrightarrow \exists \varepsilon_{0}>0 B\left(x, \varepsilon_{0}\right) \subset A$
Sps $x \in \operatorname{bdy}(A)$. Then $\forall \varepsilon>0 B(x, \varepsilon) \cap A^{C} \neq \varnothing \Longrightarrow B\left(x, \varepsilon_{0}\right) \cap$
$A^{C}=\varnothing\left\{B\left(x, \varepsilon_{0}\right) \subset A \dashv\right.$
4. $x \in \operatorname{bdy}(A) \Longrightarrow \forall \varepsilon>0 B(x, \varepsilon) \cap A \neq \varnothing \wedge B(x, \varepsilon) \cap A^{C} \neq \varnothing$
$x \notin \operatorname{bdy}\left(A^{C}\right) \Longrightarrow \exists \varepsilon_{0}>0 B\left(x, \varepsilon_{0}\right) \cap A=\varnothing \vee B\left(x, \varepsilon_{0}\right) \cap A^{C}=\varnothing$
But $B\left(x, \varepsilon_{0}\right) \cap A=\varnothing$ 立 $\forall \varepsilon>0 B(x, \varepsilon) \cap A^{C} \neq \varnothing$
and $B\left(x, \varepsilon_{0}\right) \cap A^{C}=\varnothing$ z $\forall \varepsilon>0 B(x, \varepsilon) \cap A^{C} \neq \varnothing$ $\Longrightarrow x \in \operatorname{bdy}\left(A^{C}\right) \dashv$. The converse is a similar argument.
5. $\left(\overline{A^{C}}\right)^{C}=\left(A^{C} \cup \operatorname{bdy}\left(A^{C}\right)\right)^{C}=A \cap \operatorname{bdy}(A)^{C}=A \backslash \operatorname{bdy}(A)=$ $A^{\circ} \dashv$

Proposition 39 (More on Closures and Interiors)
Let $A, B \subseteq(X, d)$.

1. $\overline{A \cup B}=\bar{A} \cup \bar{B}$;

Exercise 15.1.2

Prove Item 2 for Proposition 39.
2. $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$.

Proof

1. We have that $A \subset \bar{A}$ and $B \subset \bar{B}$, so $A \cup B \subset \bar{A} \cup \bar{B}$. Since $\bar{A} \cup \bar{B}$ is closed, we must have that $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$. Similarly so, we have

$$
\begin{aligned}
& A \subseteq A \cup B \Longrightarrow \bar{A} \subseteq \overline{A \cup B} \\
& B \subseteq A \cup B \Longrightarrow \bar{B} \subseteq \overline{A \cup B}
\end{aligned}
$$

and so $\bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$.
2. Since $A^{\circ} \subseteq A$ and $B^{\circ} \subseteq B$, and $A^{\circ} \cap B^{\circ}$ is open, we must have that $A^{\circ} \cap B^{\circ} \subseteq(A \cap B)^{\circ}$. On the other hand, since $(A \cap B)^{\circ} \subset$ A° and $(A \cap B)^{\circ} \subset B^{\circ}$, we have that $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$.

Question: Is $\overline{A \cap B}=\bar{A} \cap \bar{B}$? No.

Example 15.1.3

Let $X=\mathbb{R}, A=\mathbb{Q}$ and $B=\mathbb{Q}^{C}$. We know that $\bar{A}=\mathbb{R}=\bar{B}$. But, observe that

$$
\overline{A \cap B}=\varnothing \text { while } \bar{A} \cap \bar{B}=\mathbb{R} .
$$

However, we do have that $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$.

Question: Given (X, d) a metric space, is

$$
B\left(x_{0}, \varepsilon\right)=B\left[x_{0}, \varepsilon\right]
$$

true? Again, no.

Example 15.1.4

Let X be a set with $|X| \geq 2$, and d the discrete metric. We have that

$$
B\left(x_{0}, 1\right)=\left\{x_{0}\right\} \text { but } B\left[x_{0}, 1\right]=X .
$$

Definition 43 (Convergence)

Given a sequence $\left\{x_{n}\right\} \subset(X, d)$ and $x_{0} \in X$, we say that the sequence converges to x_{0} if

$$
\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} d\left(x_{n}, x_{0}\right)<\varepsilon .
$$

This is equivalent to saying that the sequence $\left\{d\left(x_{n}, x_{0}\right)\right\}$ converges to 0 in X. We denote this by

$$
x_{0}=\lim _{n \rightarrow \infty} x_{n} \text { or } x_{n} \rightarrow x_{0}
$$

If no such x_{0} exists, we say that the sequence diverges.

Theorem 40 (Uniqueness of Limits of Sequences)
If $\left\{x_{n}\right\}$ is a sequence in (X, d) with $x_{n} \rightarrow x_{0}$ and $x_{n} \rightarrow y_{0}$, then
$x_{0}=y_{0}$.

© Proof

$x_{0} \neq y_{0} \Longrightarrow \exists \varepsilon=d\left(x_{0}, y_{0}\right) \Longrightarrow B\left(x_{0}, \frac{\varepsilon}{2}\right) \cap B\left(y_{0}, \frac{\varepsilon}{2}\right)=\varnothing$
However, $\exists N_{0} \in \mathbb{N} \forall n \geq N_{0}$

$$
x_{n} \in B\left(x_{0}, \frac{\varepsilon}{2}\right) \wedge x_{n} \in B\left(y_{0}, \frac{\varepsilon}{2}\right)
$$

which is impossible. Thus $x_{0}=y_{0}$.

Example 16.1.1

Let $X=\mathbb{R}^{n}, d=d_{p}$, for $1 \leq p \leq \infty$, and $\vec{x}_{k}=\left\{\left(x_{k, 1}, x_{k, 2}, \ldots, x_{k, n}\right)\right\}$. Claim :

$$
\vec{X}_{k} \xrightarrow{\ell_{p}} \vec{x}_{0}=\left(x_{0,1}, x_{0,2}, \ldots, x_{0, n}\right) \Longleftrightarrow \forall j \in\{1, \ldots, n\} x_{k, j} \rightarrow x_{0, j}
$$

Note: In general, we have

$$
\left|x_{k, j}-x_{0, j}\right| \leq\left\|\vec{x}_{k}-\vec{x}_{0}\right\|_{p}
$$

So it is clear that the (\Longrightarrow) direction is true, i.e.

$$
\vec{X}_{k} \rightarrow \vec{x}_{0} \Longrightarrow \forall j \in\{1, \ldots, n\} x_{k, j} \rightarrow x_{0, j}
$$

For the other direction, we look at the different p^{\prime} s to see how it works differently: in all cases, assume that $x_{k, j} \rightarrow x_{0, j}$ for all j, and that $\varepsilon>0$
$p=\infty:$ we have that $\exists k_{0} \in \mathbb{N}$ such that $\forall k \geq k_{0}$,

$$
\left|x_{k, j}-x_{0, j}\right|<\varepsilon \text { for } j \in\{1, \ldots, n\},
$$

and so

$$
\left\|\vec{x}_{k}-\vec{x}_{0}\right\|_{\infty}=\max \left\{\left|x_{k, j}-x_{0, j}\right|: 1 \leq j \leq n\right\}<\varepsilon
$$

$p=1$: if we assume that for each j,

$$
\left|x_{k, j}-x_{0, j}\right|<\frac{\varepsilon}{n^{\prime}}
$$

then

$$
\left\|\vec{x}_{k}-\vec{x}_{0}\right\|_{1}=\sum_{j=1}^{n}\left|x_{k, j}-x_{0, j}\right|<\sum_{j=1}^{n} \frac{\varepsilon}{n}=\varepsilon
$$

$1<p<\infty$: this time, we assume that for each j,

$$
\left|x_{k, j}-x_{0, j}\right|<\frac{\varepsilon}{\sqrt[p]{n}}
$$

Then

$$
\left\|\vec{x}_{k}-\vec{x}_{0}\right\|_{p}=\left(\sum_{j=1}^{n}\left|x_{k, j}-x_{0, j}\right|^{p}\right)^{\frac{1}{p}}<\left(\sum_{j=1}^{n}\left(\frac{\varepsilon}{\sqrt[p]{n}}\right)^{p}\right)^{\frac{1}{p}}=\varepsilon
$$

This completes the proof of our claim.

Example 16.1.2

Let $X=\left(C[a, b],\|\cdot\|_{\infty}\right)$. Then

$$
f_{n} \rightarrow f \Longleftrightarrow\left\|f_{n}-f\right\|_{\infty} \rightarrow 0
$$

Notice that for the (\Longrightarrow) direction, ${ }^{1}$
${ }^{1}$ Note that this is uniform convergence, which implies pointwise convergence.

$$
\begin{aligned}
& \left(\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n \geq N_{0}\left|f_{n}-f\right|<\varepsilon\right) \\
& \Longrightarrow\left\|f_{n}-f\right\|_{\infty}=\max \left\{\left|f_{n}(x)-f(x)\right|: x \in[a, b]\right\}<\varepsilon
\end{aligned}
$$

The (\Longleftarrow) direction is easy, since

$$
\left|f_{n}(x)-f(x)\right| \leq \max \left\{\left|f_{n}(x)-f(x)\right|: x \in[a, b]\right\}<\varepsilon
$$

PTheorem 41 (Sequential Characterizations of Limit Points,

 Boundaries, and Closedness)Given $A \subset(X, d)$,

1. $x_{0} \in \operatorname{Lim}(A) \Longleftrightarrow \exists\left\{x_{n}\right\} \subset A\left(x_{n} \neq x_{0}\right) \wedge\left(x_{n} \rightarrow x_{0}\right)$;
2. $x_{0} \in \operatorname{bdy}(A) \Longleftrightarrow \exists\left\{x_{n}\right\} \subset A,\left\{y_{n}\right\} \subset A^{C}\left(x_{n} \rightarrow x_{0}\right) \wedge\left(y_{n} \rightarrow\right.$ x_{0});
3. A is closed $\Longleftrightarrow\left(\forall\left\{x_{n}\right\} \subset A x_{n} \rightarrow x_{0} \in X \Longrightarrow x_{0} \in A\right)$

Proof

1. $x_{0} \in \operatorname{Lim}(A) \Longrightarrow \forall n \in \mathbb{N} x_{n} \in B\left(x_{0}, \frac{1}{n}\right) \backslash\left\{x_{0}\right\} \Longrightarrow$

$$
d\left(x_{n}, x_{0}\right)<\frac{1}{n} \Longrightarrow x_{n} \rightarrow x_{0} \dashv
$$

$$
\begin{aligned}
& \left\{x_{n}\right\} \subset A\left(x_{n} \rightarrow x_{0}\right) \wedge\left(x_{n} \neq x_{0}\right) \Longrightarrow \\
& \forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} x_{n} \in B\left(x_{0}, \varepsilon\right) \dashv
\end{aligned}
$$

2. $x \in \operatorname{bdy}(A) \Longrightarrow$
$(\because \forall \varepsilon>0 A \cap B(x, \varepsilon) \neq \varnothing) \exists x_{n} \in A \cap B\left(x, \frac{1}{n}\right) \wedge$
$\left(\because \forall \varepsilon>0 A^{C} \cap B(x, \varepsilon) \neq \varnothing\right) \exists y_{n} \in A^{C} \cap B\left(x, \frac{1}{n}\right)$
$\Longrightarrow\left(\left\{x_{n}\right\} \subset A \wedge x_{n} \rightarrow x_{0}\right) \wedge\left(\left\{y_{n}\right\} \subset A^{C} \wedge y_{n} \rightarrow x_{0}\right) \dashv$
$\left(\left\{x_{n}\right\} \subset A \wedge x_{n} \rightarrow x_{0}\right) \wedge\left(\left\{y_{n}\right\} \subset A^{C} \wedge y_{n} \rightarrow x_{0}\right)$
$\Longrightarrow \forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} x_{n}, y_{n} \in B(x, \varepsilon)$
$\Longrightarrow x_{0} \in \operatorname{bdy}(A) \dashv$
3. $\mathrm{Sps} A$ is closed and $\left(\left\{x_{n}\right\} \subset A\right) \wedge\left(x_{n} \rightarrow x_{0} \in X\right)$.

$$
\begin{aligned}
& x_{0} \in A^{C} \Longrightarrow \exists \varepsilon>0 B\left(x_{0}, \varepsilon\right) \subset A^{C} \Longrightarrow x_{n} \notin B\left(x_{0}, \varepsilon\right) \notin x_{n} \rightarrow x_{0} \\
& \Longrightarrow x_{0} \in A
\end{aligned}
$$

Sps A is \neg closed $\Longrightarrow\left(\because\right.$ Proposition 37) $\exists x_{0} \in \operatorname{Lim}(A) \backslash A$
$\Longrightarrow(\because$ Item I $) \exists\left\{x_{n}\right\} \subset A\left(x_{n} \neq x_{0}\right) \wedge\left(x_{n} \rightarrow x_{0} \notin A\right)$, showing that RHS is false \dashv

Example 16.1.3

Let X be a set and d a discrete metric. Then

$$
x_{n} \rightarrow x_{0} \Longleftrightarrow \exists N \in \mathbb{N} \forall \ln \geq N x_{n}=x_{0}
$$

Example 16.1.4

Let $c_{0}=\left\{\left\{x_{n}\right\} \mid \lim _{n \rightarrow \infty} x_{n}=0\right\} \subset \ell_{\infty}$.
Claim : c_{0} is closed in ℓ_{∞}.
Assume $\vec{x}_{k}=\left\{x_{k, j}\right\}_{j=1}^{\infty} \subset c_{0}$, and let

$$
\vec{x}_{k} \xrightarrow{\|\cdot\|_{\infty}} \vec{x}_{0}=\left\{x_{0, j}\right\}_{j=1}^{\infty} \subset \ell_{\infty}
$$

i.e.

$$
\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall k \geq N_{0}\left\|\vec{x}_{k}-\vec{x}_{0}\right\|_{\infty}<\frac{\varepsilon}{2}
$$

Let $k_{0} \geq N_{0} . \because \vec{x}_{k_{0}} \in c_{0}, \exists J_{0} \in \mathbb{N}$ such that $\forall j \geq J_{0}$, we have $\left|x_{k_{0}, j}\right|<\frac{\varepsilon}{2}$, and so

$$
\left|x_{0, j}\right| \leq\left|x_{k_{0}, j}-x_{0, j}\right|+\left|x_{k_{0}, j}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Thus we have that

$$
\lim _{j \rightarrow \infty} x_{0, j}=0
$$

and so $\vec{x}_{0} \in c_{0}$. Therefore, by DTheorem 41 Item $3, c_{0}$ is closed in ℓ_{∞}.

Note, however, that $c_{00} \subset \ell_{1} \subset c_{0}$ is not closed. Also ℓ_{p} is not closed in c_{0}.

$17 \approx$ Lecture 17 Oct 19th

17.1 Induced Metric and Topologies

Definition 44 (Induced Metric \& Induced Topology)
Given (X, d) and $A \subset X$, we define the induced metric d_{A} on A by

$$
d_{A}: A \times A \rightarrow \mathbb{R}
$$

where $d_{A}(x, y)=d(x, y)$, for all $x, y \in A$, i.e. $d_{A}=d \upharpoonright_{A \times A}$.
We define τ_{A}, the induced topology on A by

$$
\tau_{A}=\{W \subset A \mid W=U \cap A, U \subset X \text { is open }\}
$$

G6 Note 17.1.1

Note that τ_{A} is indeed a topology: it is clear that $\varnothing \in \tau_{A}$. Also, $A \in \tau_{A}$, since X is open and $A=X \cap A$.

For an arbitrary collection $\left\{U_{\alpha}\right\}_{\alpha \in I} \subset \tau_{A}$, we know that each $U_{\alpha} \subset$ A, and so $\bigcup_{\alpha \in I} U_{\alpha} \subset A$. Since each $U_{\alpha} \in \tau_{A}, \exists F_{\alpha} \subset X$ that is an open set such that $U_{\alpha}=F_{\alpha} \cap A$. Then

$$
\bigcup_{\alpha \in I} U_{\alpha}=\bigcup_{\alpha \in I} F_{\alpha} \cap A .
$$

Thus $\bigcup_{\alpha \in I} U_{\alpha} \in \tau_{A}$.
For a finite collection $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\} \subset \tau_{A}$, we have that for each U_{i},
$\exists F_{i} \subset X$ that is open such that $U_{i}=F_{i} \cap A$. By Proposition 32, we have that

$$
\bigcap_{i=1}^{n} F_{i} \subset X
$$

is open, and so

$$
\bigcap_{i=1}^{n} U_{i}=\bigcap_{i=1}^{n} F_{i} \cap A \subset A
$$

Therefore, $\bigcap_{i=1}^{n} U_{i} \in \tau_{A}$.

Theorem 42 (The Metric Topology of a Subset is Its Induced Topology)

We have

$$
\tau_{A}=\tau_{d_{A}}
$$

Proof
$\subseteq: W \in \tau_{A} \Longrightarrow \exists U \subset X$ open such that $W=U \cap A$
$\Longrightarrow \forall x_{0} \in W \exists>0 B_{X}\left(x_{0}, \varepsilon\right) \subset U$
$\Longrightarrow B_{A}\left(x_{0}, \varepsilon\right)=B_{X}\left(x_{0}, \varepsilon\right) \cap A \subset W \Longrightarrow W \in \tau_{d_{A}} \dashv$
$\supseteq: W \in \tau_{d_{A}} \Longrightarrow \forall x_{0} \in W \exists \varepsilon_{x}>0 B_{A}\left(x_{0}, \varepsilon_{x}\right) \subset W$
$\Longrightarrow W=\bigcup_{x_{0} \in W} B_{A}\left(x_{0}, \varepsilon_{x}\right)$
Let $U=\bigcup_{x_{0} \in W} B_{X}\left(x_{0}, \varepsilon_{x}\right)$, which is open

$$
\Longrightarrow z W=\bigcup_{x_{0} \in W} B_{X}\left(x_{0}, \varepsilon_{0}\right) \cap A=U \cap A
$$

$$
\Longrightarrow W \in \tau_{A} \dashv
$$

17.2

Continuity on Metric Spaces

Definition 45 (Continuity)
Given metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$, and $f: X \rightarrow Y$, we say that f is
continuous at x_{0} if

$$
\forall \varepsilon>0 \exists \delta>0 \forall x \in X d_{X}\left(x, x_{0}\right)<\delta \Longrightarrow d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon .
$$

PTheorem 43 (Continuity and Neighbourhoods)

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, and $f: X \rightarrow Y$, then TFAE:

1. f is continuous at $x_{0} \in X$;
2. if W is a neighbourhood of $f\left(x_{0}\right) \in Y$, then $f^{-1}(W)$ is a neighbourhood of $x_{0} \in X$, where

$$
f^{-1}(W)=\{x \in X: f(x) \in W\} .
$$

Proof

$(1) \Longrightarrow(2): \operatorname{Sps} f$ is continuous at $x_{0} \in X$ and W a neighbourhood of $y_{0}=f\left(x_{0}\right)$
$\Longrightarrow f\left(x_{0}\right)=y_{0} \in W^{\circ}$
$\Longrightarrow \exists \varepsilon>0 B\left(f\left(x_{0}\right), \varepsilon\right) \subset W$
$\because f$ is continuous,

$$
\begin{aligned}
& \exists \delta>0 \forall x \in X x \in B_{X}\left(x_{0}, \delta\right) \Longrightarrow d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon \\
& \Longrightarrow f(x) \in B_{Y}\left(y_{0}, \varepsilon\right) \subset W \\
& \Longrightarrow x \in f^{-1}(W) \Longrightarrow x_{0} \in f^{-1}(W)^{\circ} \dashv
\end{aligned}
$$

$(2) \Longrightarrow(1): \operatorname{Sps} f^{-1}(W)$ is a neighbourhood of $x \in X$ for each neighbourhood W of $y_{0}=f\left(x_{0}\right)$
$\Longrightarrow \forall \varepsilon>0 W=B_{Y}\left(f\left(x_{0}\right), \varepsilon\right)$ is a neighbourhood of $f\left(x_{0}\right)$
$\Longrightarrow U=f^{-1}(W)$ is a neighbourhood of $x_{0} \in X$
$\Longrightarrow x_{0} \in U$
$\Longrightarrow \exists \delta>0 B\left(x_{0}, \delta\right) \subset U=f^{-1}(W)$
$\Longrightarrow\left(d_{X}\left(x, x_{0}\right)<\delta \Longrightarrow d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon\right) \dashv$

-Theorem $44(\$$ Sequential Characterization of Continuity)

For metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, and $f: X \rightarrow Y$, TFAE

1. f is continuous at $x_{0} \in X$;
2. $\left\{x_{n}\right\} \subset X x_{n} \xrightarrow{X} x_{0} \Longrightarrow f\left(x_{n}\right) \xrightarrow{Y} f\left(x_{0}\right)$
```
Proof
```

$(1) \Longrightarrow(2): \operatorname{Sps} f$ is continuous at $x_{0} \in X$.

$$
\begin{aligned}
& x_{n} \rightarrow x_{0} \Longleftrightarrow \\
& \forall \varepsilon>0 \exists \delta>0 x \in B_{X}\left(x_{0}, \delta\right) \Longrightarrow f(x) \in B_{Y}\left(f\left(x_{0}\right), \varepsilon\right) \\
& x_{n} \rightarrow x_{0} \Longrightarrow \exists N_{0} \in \forall n \geq N_{0} \\
& d_{X}\left(x_{0}, x\right)<\delta \Longrightarrow x_{n} \in B_{X}\left(x_{0}, \delta\right) \Longrightarrow f(x) \in B_{Y}\left(f\left(x_{0}\right), \varepsilon\right) \dashv
\end{aligned}
$$

$(2) \Longrightarrow(1)$ (Prove by Contrapositive) : Sps f is \neg continuous at $x_{0} \in X$
$\Longrightarrow \exists \varepsilon_{0}>0 \forall \delta>0\left(x_{\delta} \in B_{X}\left(x_{0}, \delta\right)\right) \wedge\left(f\left(x_{\delta}\right) \notin B_{Y}\left(f\left(x_{0}\right), \varepsilon_{0}\right)\right)$
$\Longrightarrow \forall n \in \mathbb{N} \exists x_{n} \in B_{X}\left(x_{0}, \frac{1}{n}\right) \wedge f\left(x_{n}\right) \notin B_{Y}\left(f\left(x_{0}\right), \varepsilon_{0}\right)$
$\Longrightarrow x_{n} \rightarrow x_{0} \wedge f\left(x_{n}\right) \nrightarrow f\left(x_{0}\right) \dashv$

18.1 Continuity on Metric Spaces (Continued)

E Definition 46 (Continuity on a Space)
We say that

$$
f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)
$$

is continuous on X if f is continous at each $x_{0} \in X$.
We let

$$
C(X, Y):=\{f: X \rightarrow Y \mid f \text { is continous on } X\}
$$

be the set of all continuous functions on X.
$\int 6$ Note 18.1.1

In the case where $Y=\mathbb{R}$, we will simply write $C(X, X)$ as $C(X)$.

Remark 18.1.1

We can also define the following set

$$
C_{b}(X)=\{f \in C(X) \mid f \text { is bounded }\}
$$

We can define $\|\cdot\|_{\infty}$ on $C_{b}(X)$ by

$$
\|f\|_{\infty}=\sup \{|f(x)| \mid x \in X\}
$$

Then we have that $C_{b}(X) \subseteq \ell_{\infty}(X)$.

Theorem 45 (Analogue of Sequential Characterization of Continuity on a Space, and Continuity and Neighbourhoods)

Let $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$. TFAE

1. f is continuous;
2. $f^{-1}(W)$ is open for every open set $W \subset Y$;
3. $x_{n} \rightarrow x_{0} \in X \Longrightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) \in Y$.

Proof

$(1) \Longrightarrow(2):$ Let $W \subset Y$ be open, and $V=f^{-1}(W)$.
$x_{0} \in V \Longrightarrow f\left(x_{0}\right)=y_{0} \in W \Longrightarrow W$ is a neighbourhood of y_{0}
$\Longrightarrow(\because$ - Theorem 43$) V$ is a neighbourhood of x_{0}
$\Longrightarrow x_{0} \in V^{\circ} \Longrightarrow V$ is open \dashv

$$
\begin{aligned}
(2) & \Longrightarrow(3): x_{n} \rightarrow x_{0} \in X \\
& \Longrightarrow \forall \varepsilon>0\left(\because B_{Y}\left(f\left(x_{0}\right), \varepsilon\right) \text { open }\right) \\
& \Longrightarrow x_{0} \in V=f^{-1}\left(B_{Y}\left(f\left(x_{0}\right), \varepsilon\right)\right), \text { which is open } \\
& \Longrightarrow \exists \delta>0 B_{X}\left(x_{0}, \delta\right) \subset V \\
x_{n} & \rightarrow x_{0} \Longrightarrow \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} x_{n} \in B_{X}\left(x_{0}, \delta\right) \\
& \Longrightarrow f\left(x_{n}\right) \in B_{Y}\left(f\left(x_{0}\right), \varepsilon\right) \Longrightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) \dashv
\end{aligned}
$$

$(3) \Longrightarrow(1): \operatorname{Sps} f \neg$ continuous, i.e.

$$
\begin{aligned}
& \exists \varepsilon_{0}>0 \forall \delta \geq 0 \exists x_{\delta} \in X \quad d_{X}\left(x_{\delta}, x_{0}\right)<\delta \wedge d_{Y}\left(f\left(x_{\delta}\right), f\left(x_{0}\right)\right)>\varepsilon_{0} \\
& \Longrightarrow \forall n \in \mathbb{N} \exists x_{n} \in d_{X}\left(x_{0}, x_{n}\right)<\frac{1}{n} \wedge d_{Y}\left(f\left(x_{0}\right), f\left(x_{n}\right)\right)>\varepsilon_{0} \dashv
\end{aligned}
$$

Remark 18.1.2

Note that if $f: X \rightarrow Y$ and $B \subset Y$, then

$$
\left(f^{-1}(B)\right)^{C}=f^{-1}\left(B^{C}\right)
$$

Thus we have that $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is continuous iff $f^{-1}(F)$ is closed for each closed $F \subset Y$.

Question: For the forward direction ${ }^{1}$, if $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is $\quad{ }^{1}$ instead of talking about the pullback continuous, and if $U \subset X$ is open, is $f(U)$ open? No.

Example 18.1.1

Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x \in X, f(x)=1$. Then $f(\mathbb{R})$ is not open.

This motivates us to consider such "nice" functions that allow us to bring open sets to open sets, and closed to their closed counterpart.

E Definition 47 (Homeomorphism)

A function $\varphi:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is a homeomorphism if φ is bijective and if both φ and φ^{-1} are continuous.

6 Note 18.1. 2

If φ is a homeomorphism, then we have

- $\varphi(W) \subset Y$ is open $\Longleftrightarrow W \subset X$ is open;
- $\varphi(F) \subset Y$ is closed $\Longleftrightarrow F \subset X$ is closed.

Definition 48 (Equivalent Metric Spaces)

We say that $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are equivalent metric spaces if there exists a bijective $\varphi: X \rightarrow Y$, and $c_{1}, c_{2} \geq 0$ such that

$$
c+1 d_{X}\left(x_{1}, x_{2}\right) \leq d_{Y}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right) \leq c_{2} d_{X}\left(x_{1}, x_{2}\right)
$$

Exercise 18.1.1

Show that the φ in Definition 48 is a homeomorphism.

Example 18.1.2

Let (X, d) be a metric space, where X is any set and d is the discrete metric. Let $f:(X, d) \rightarrow\left(Y, d_{Y}\right)$, where $\left(Y, d_{Y}\right)$ is another metric space that is arbitrary. Since (X, d) is discrete, it is clear that if $W \subset Y$ is open, then $f^{-1}(W)$ is open.

Question: Suppose that $f:(\mathbb{R},|\cdot|) \rightarrow(Y, d)$. When is f continuous?
Let $y_{0} \in Y$. We know that $\left\{y_{0}\right\}$ is both open and closed. Then if f is continuous, we must have that $f^{-1}\left(\left\{y_{0}\right\}\right)$ is both open and closed. Therefore, f must be a constant function.

Definition 49 (Continuity on a set)

Let $A \subset(X, d)$ and $f: X \rightarrow\left(Y, d_{Y}\right)$. We say that f is continuous on A iff $f \upharpoonright_{A}$ is continuous on $\left(A, d_{A}\right)$, where d_{A} is the induced metric, and $f \upharpoonright_{A}$ is the restriction of f on A.

Remark 18.1.3

From the sequential characterization of continuity, we have that $\left(A, d_{A}\right)$ is the induced metric iff whenever $\left\{x_{n}\right\} \subset A$ is a sequence with $x_{n} \rightarrow x_{0}$, then $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

Exercise 18.1.2

Use the Intermediate Value Theorem to prove that the only open and closed sets in \mathbb{R} are \varnothing and \mathbb{R}.

19 * Lecture 19 Oct 24th

19.1 Completeness of Metric Spaces

Question: Is there an intrinsic way for us to tell if a sequence
$\left\{x_{n}\right\} \subset(X, d)$ converges?

Observation Assume that $x_{n} \rightarrow x_{0}$. Then

$$
\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} d\left(x_{0}, x_{n}\right)<\frac{\varepsilon}{2} .
$$

Thus if $m, n \geq N_{0}$, we have

$$
d\left(x_{m}, x_{n}\right)<d\left(x_{m}, x_{0}\right)+d\left(x_{0}, x_{n}\right)<\varepsilon .
$$

Definition 50 (Cauchy)

We say that a sequence $\left\{x_{n}\right\} \subset(X, d)$ is Cauchy if

$$
\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall m, n \geq N_{0} d\left(x_{m}, x_{n}\right)<\varepsilon .
$$

```
Theorem 46 (Convergent Sequences are Cauchy)
```

Every convergent sequence is Cauchy.

We proved this in our observation.

Question: Is the converse true? No.

Example 19.1.1

Let $X=(0,1)$ with the usual metric. Let $x_{n}=\frac{1}{n}$. It is clear that $\left\{x_{n}\right\}$ is Cauchy in (X, d), but the sequence does not converge. ${ }^{1}$

[^4]Observation Given a sequence $\left\{x_{n}\right\} \subset(X, d)$, it is possible that $\left\{x_{n}\right\}$ diverges but $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n, k}\right\}$ that converges.

Example 19.1.2

The sequence $\left\{x_{n}\right\}$ defined by $x_{n}=(-1)^{n-1}$, i.e.

$$
\left\{x_{n}\right\}=\{1,-1,1,-1, \ldots\},
$$

is divergent. However, $x_{2 k} \rightarrow-1$ and $x_{2 k+1} \rightarrow 1$.

Let $\left\{x_{n}\right\} \subset(X, d)$ be Cauchy and assume $x_{n, k} \rightarrow x_{0}$ for some subsequence $\left\{x_{n, k}\right\}_{k=1}^{\infty}$. Then $x_{n} \rightarrow x_{0}$.

$$
\begin{aligned}
& \forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall m, n \in N_{0} d\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{2} \\
& x_{n} \rightarrow x_{0} \Longrightarrow \exists k_{0} \in \mathbb{N} n_{k_{0}} \geq N_{0} d\left(x_{0}, x_{k_{0}}\right)<\frac{\varepsilon}{2}
\end{aligned}
$$

$\therefore n \geq N_{0} \Longrightarrow$

$$
d\left(x_{n}, x_{0}\right) \leq d\left(x_{n}, x_{k_{0}}\right)+d\left(x_{k_{0}}, x_{0}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

$\therefore x_{n} \rightarrow x_{0}$
\qquad
Definition 52 (Boundedness)
Let $A \subset(X, d) . A$ is bounded if

$$
\exists M>0 \exists x_{0} \in X A \subset B\left[x_{0}, M\right] .
$$

Proposition 48 (Cauchy Sequences are Bounded)
If $\left\{x_{n}\right\} \subset(X, d)$ is Cauchy, then $\left\{x_{n}\right\}$ is bounded.

Proof

Let $\varepsilon=1$. $\exists N_{0} \in \mathbb{N} \forall m, n \geq N_{0} d\left(x_{n}, x_{m}\right)<\varepsilon$. In particular, if $n \geq N_{0}$, then $d\left(x_{n}, x_{N_{0}}\right)<1$. Then, let

$$
M=\max \left\{d\left(x_{1}, x_{N_{0}}\right), d\left(x_{2}, x_{N_{0}}\right), \ldots, d\left(x_{N_{0}-1}, d_{N_{0}}\right), 1\right\}
$$

Then it is clear that $\left\{x_{n}\right\} \subset B\left[x_{N_{0}}, M\right]$.

19.1.2

Examples of Complete Spaces

19.1.2.1

Completeness of \mathbb{R}

Theorem 49 (Bolzano-Weierstrass)

Every bounded sequence $\left\{x_{n}\right\} \subset \mathbb{R}$ has a convergent subsequence.

Be sure to review a proof of this and add it here

```
- Theorem 50 (\mathbb{R}\mathrm{ is complete)}
```

\mathbb{R} is complete.

Proof

If $\left\{x_{n}\right\} \subset \mathbb{R}$ is Cauchy, then it is bounded by Proposition 48, and so by Bolzano-Weierstrass, $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n, k}\right\}$ such that $x_{n, k} \rightarrow x_{0}$. Since $\left\{x_{n}\right\}$ is Cauchy, by - Theorem 47, $x_{n} \rightarrow x_{0}$.

Example 19.1.3

Consider $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$, with $1 \leq p \leq \infty$. Let $\left\{\vec{x}_{k}\right\}=\left\{\left(x_{k, 1}, x_{k, 2}, \ldots, x_{k, n}\right)\right\}$ be Cauchy in $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$.

$$
\begin{aligned}
\because & \left|x_{k, j}-x_{m, j}\right| \leq\left\|\vec{x}_{k}-\vec{x}_{m}\right\|_{p} \\
& \Longrightarrow\left\{x_{k, j}\right\} \text { is Cauchy for each } j=1, \ldots, n \\
& \Longrightarrow x_{k, j} \rightarrow x_{0, j} \text { for each } j=1, \ldots, n \because \text { Theorem } 47 \\
& \Longrightarrow \vec{x}_{k} \rightarrow \vec{x}_{0}=\left(x_{0,1}, x_{0,2}, \ldots, x_{0, n}\right) \\
& \Longrightarrow\left(\mathbb{R},\|\cdot\|_{p}\right) \text { is complete. }
\end{aligned}
$$

Example 19.1.4

Let (X, d) be discrete ${ }^{2}$. If $\left\{x_{n}\right\}$ is Cauchy, then $\exists N_{0} \in \mathbb{N}$ such that $\forall m, n \geq N_{0}$, we have $x_{n}=x_{m}$, i.e. $\left\{x_{n}\right\}$ converges. Therefore, (X, d) is complete.

Example 19.1.5 ()

Let $X=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\} \subset \mathbb{R}$ with the induced standard metric. Recall that each of the singleton $\left\{\frac{1}{n}\right\}$ is open.

Note that given $Y=\{1,2, \ldots, n, \ldots\}=\mathbb{N}$ with the discrete metric, if we define $\varphi: \mathbb{N} \rightarrow\left\{1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\right\}$ by $\varphi(n)=\frac{1}{n}$, then φ is a homeomorphism, and so (Y, d), where d is the discrete metric, is complete.

However, as shown before, since $\left\{\frac{1}{n}\right\}$ is Cauchy but not convergent, $X=\left\{1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\right\}$ is not complete.

20.1.1 Examples of Complete Spaces (Continued)

Completeness of ℓ_{p}

PTheorem 51 (Completeness of ℓ_{p})

ℓ_{p} is complete for every $1 \leq p \leq \infty$.

```
Proof
```

$p=\infty:$ Let $\left\{\vec{x}_{k}\right\} \subset \ell_{\infty}$ be Cauchy in $\|\cdot\|_{\infty}$. We have

$$
\vec{x}_{k}=\left\{x_{k, 1}, x_{k, 2}, \ldots, x_{k, j}, \ldots\right\}
$$

$\Longrightarrow \forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall m, n \geq N_{0}\left\|\vec{x}_{n}-\vec{x}_{m}\right\|_{\infty}<\frac{\varepsilon}{2}$
$\because\left|x_{n, j}-x_{m, j}\right| \leq\left\|\vec{x}_{n}-\vec{x}_{m}\right\|_{\infty}<\frac{\varepsilon}{2}$,
each of the \vec{x}_{k}, for $k \geq N_{0}$, is Cauchy in \mathbb{R}.

$$
\Longrightarrow \exists x_{0, j} \in \mathbb{R} x_{k, j} \rightarrow x_{0, j} \quad \because \mathbb{R} \text { is complete }
$$

Let $\vec{x}_{0}=\left\{x_{0,1}, x_{0,2}, \ldots, x_{0, j}, \ldots\right\}$ and $x_{0, j}=\lim _{k \rightarrow \infty} x_{k, j}$.
By our argument on Line 4, we have that

$$
\begin{equation*}
\left|x_{n, j}-x_{0, j}\right|=\lim _{m \rightarrow \infty}\left|x_{n, j}-x_{m, j}\right| \leq \frac{\varepsilon}{2}<\varepsilon \tag{20.1}
\end{equation*}
$$

$$
\begin{aligned}
& \Longrightarrow\left\{x_{n, j}-x_{0, j}\right\}_{j=1}^{\infty} \in \ell_{\infty} \\
& \Longrightarrow\left\{x_{0, j}\right\}_{j=1}^{\infty} \in \ell_{\infty}
\end{aligned}
$$

Also, by Equation (20.1), we have

$$
\left\|\vec{x}_{n}-\vec{x}_{0}\right\|_{\infty} \leq \frac{\varepsilon}{2}<\varepsilon
$$

so $\vec{x}_{k} \rightarrow \vec{x}_{0} . \dashv$.
$1 \leq p<\infty$: Let $\left\{\vec{x}_{k}\right\} \subset \ell_{p}$ be Cauchy. By the same argument as above, $\left|x_{n, j}-x_{m, j}\right| \leq\left\|\vec{x}_{n}-\vec{x}_{m}\right\|_{p} \Longrightarrow\left\{x_{k, j}\right\}_{j=1}^{\infty}$ is Cauchy for each j. Since \mathbb{R} is complete, let $x_{0, j}=\lim _{k \rightarrow \infty} x_{k, j}$, and

$$
\vec{x}_{0}=\left\{x_{0,1}, x_{0,2}, \ldots, x_{0, j}, \ldots\right\}
$$

Now $\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n, m \geq N_{0} \quad\left\|\vec{x}_{n}-\vec{x}_{m}\right\|<\frac{\varepsilon}{2}$. Thus for $j \in \mathbb{N}$,

$$
\left(\sum_{i=1}^{j}\left|x_{n, i}-x_{m, i}\right|^{p}\right)^{\frac{1}{p}} \leq\left\|\vec{x}_{n}-\vec{x}_{m}\right\|_{p}<\frac{\varepsilon}{2}
$$

Then for $n \geq N_{0}$,

$$
\left(\sum_{i=1}^{j}\left|x_{k, i}-x_{0, i}\right|^{p}\right)^{\frac{1}{p}}=\lim _{m \rightarrow \infty}\left(\sum_{i=1}^{j}\left|x_{n, i}-x_{m, i}\right|^{p}\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{2}
$$

for each j, and so

$$
\begin{gathered}
\lim _{j \rightarrow \infty}\left(\sum_{i=1}^{j}\left|x_{n, i}-x_{0, i}\right|^{p}\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{2} \\
\Longrightarrow \vec{x}_{0} \in \ell_{p} \text { and }\left\|\vec{x}_{n}-\vec{x}_{0}\right\|_{p} \leq \frac{\varepsilon}{2}<\varepsilon .
\end{gathered}
$$

A sequence of functions $f_{n}:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is said to converge pointwise to some function $f_{0}:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ if for each $x_{0} \in X$,

$$
\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} d_{Y}\left(f_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right)<\varepsilon .
$$

The sequence f_{n} is said to converge uniformly if

$$
\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} \forall x \in X \quad d_{Y}\left(f_{n}(x)-f_{)}(x)\right)<\varepsilon
$$

Remark 20.1.1

It is clear that uniform convergence implies pointwise convergence.

Example 20.1.1 (Pointwise Convergent but not Uniformly Convergent)

Let $X=[0,1], Y=\mathbb{R}, f_{n}(x)=x^{n}$ for each $n \in \mathbb{N}$. It is quite clear that

$$
f_{n}(x) \rightarrow f_{0}(x)= \begin{cases}0 & x \in[0,1) \\ 1 & x=1\end{cases}
$$

f_{n} is pointwise convergent but not uniformly convergent; just take $\varepsilon=\frac{1}{2}$.

Theorem 52 ($t \leqslant$ Uniformly Convergent Pointwise

Continuous Functions have a Pointwise Continuous Limit)

Assume that $f_{n}:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ converges uniformly to $f_{0}:$ $\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$. If each f_{n} is continuous at $x_{0} \in X$, then f_{0} is continuous at x_{0}.

This is a classic $\frac{\varepsilon}{3}$ argument.

Proof
$\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} \forall x \in X \quad d_{Y}\left(f_{n}(x)-f_{0}(x)\right)<\frac{\varepsilon}{3}$
f_{n} is continuous at $x_{0} \Longrightarrow \exists \delta>0 \forall x \in X \quad x \in B\left(x_{0}, \delta\right)$

$$
\begin{aligned}
& \Longrightarrow \forall n_{0} \geq N_{0} d_{Y}\left(f_{n_{0}}(x)-f_{n_{0}}\left(x_{0}\right)\right)<\frac{\varepsilon}{3} \\
& \Longrightarrow d_{Y}\left(f_{0}(x), f_{0}\left(x_{0}\right)\right) \\
& \leq d_{Y}\left(f_{0}(x), f_{n_{0}}(x)\right)+d_{Y}\left(f_{n_{0}}(x), f_{n_{0}}\left(x_{0}\right)\right)+d_{Y}\left(f_{n_{0}}\left(x_{0}\right), f_{0}\left(x_{0}\right)\right) \\
& \quad<\varepsilon
\end{aligned}
$$

122 Lecture 20 Oct 26 th Completeness of Metric Spaces (Continued)
$\Longrightarrow f_{0}$ is continuous at x_{0}.
© \int Note 21.1.1

A normed linear space V is called a Banach space if $(V,\|\cdot\|)$ is complete with respect to d_{V}.

Theorem $53\left(t \rightarrow\right.$ Completeness for $C_{b}(X)$)
The space $\left(C_{b}(X),\|\cdot\|_{\infty}\right)$ is Banach (i.e. complete).
This will come out in the final.

Proof

Let $\left\{f_{n}\right\} \subset C_{b}(X)$ be Cauchy.

$$
\begin{equation*}
\Longrightarrow \forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n, m \geq N_{0} \quad\left\|f_{n}-f_{m}\right\|_{\infty}<\frac{\varepsilon}{2}, \tag{*}
\end{equation*}
$$

and

$$
\forall x \in X \quad\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}<\frac{\varepsilon}{2}
$$

$\therefore\left\{f_{n}(x)\right\}$, for every $x \in X$ is Cauchy, and so $\left\{f_{n}(x)\right\}$ is complete.
Let $f_{0}(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, and in particular, $\forall n \geq N_{0}, \forall x \in X$, we
have

$$
\left|f_{n}(x)-f_{0}(x)\right|=\lim _{m \rightarrow \infty}\left|f_{n}(x)-f_{m}(x)\right| \leq \frac{\varepsilon}{2}<\varepsilon
$$

So $f_{n} \rightarrow f_{0}$ uniformly. By PTheorem $52, f_{0}$ is continuous.
It remains to show that f_{0} is bounded: we have that $\left\{f_{n}\right\}$ is bounded.

Let $M>0$ such that $\left\|f_{n}\right\|_{\infty} \leq M$ for all $n \in \mathbb{N}$. Let $x \in X$.
From $(*)$, we can find $n_{0} \in \mathbb{N}$ such that $\left|f_{n_{0}}(x)-f_{0}(x)\right| \leq 1$.
$\Longrightarrow\left|f_{0}(x)\right| \leq\left|f_{0}(x)-f_{n_{0}}(x)\right|+\left|f_{n_{0}}\right| \leq 1+M$
$\therefore f_{0}(x) \in C_{b}(X)$.

66 Note 21.1.2

Given any set X, if (X, d) is a metric space with the discrete metric, then

$$
\left(C_{b}(X),\|\cdot\|_{\infty}\right)=\left(\ell_{\infty},\|\cdot\|_{\infty}\right)
$$

21.1.2

Characteriztions of Completeness

We shall state the following without proving it, although the proof is straightforward: view $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ as increasing and decreasing sequences respectively and use the monotone convergence theorem.

PTheorem 54 (Nested Interval Theorem)
If $\left\{\left[a_{n}, b_{n}\right]\right\}$ with $\left[a_{n+1}, b_{n+1}\right] \subset\left[a_{n}, b_{n}\right]$, then

$$
\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \neq \varnothing \text {. }
$$

We know that this works for \mathbb{R}, but does this work for (X, d) ? In particular, we conjecture that:

If $\left\{F_{n}\right\}$ is a sequence of non-empty closed sets in (X, d), with

$$
F_{n+1} \subseteq F_{n}, \text { then } \quad \bigcap_{n=1}^{\infty} F_{n} \neq \varnothing .
$$

However, this is not true, as shown in the following example.

Example 21.1.1

Let $X=\mathbb{R}$, and $F_{n}[n, \infty)$, and $F_{n+1} \subsetneq F_{n}$. Note that F_{n} is indeed closed since its complement, $(-\infty, n)$, is open. We notice that

$$
\bigcap_{n=1}^{\infty} F_{n}=\varnothing \text {. }
$$

Example 21.1.2

Let $X=(0,1)$, and $F_{n}\left(0, \frac{1}{n}\right]$, which is closed in X, and that $F_{n+1} \subsetneq$ F_{n}. However, once again, we notice that

$$
\bigcap_{n=1}^{\infty} F_{n}=\varnothing .
$$

Of course, one would ask the question as to why does such a property not hold. The following notion will explain why.

E Definition 54 (Diameter of a Set)
Given a subset $A \subset(X, d)$, we define the diameter of A as

$$
\operatorname{diam}(A)=\sup \{d(x, y) \mid x, y \in A\}
$$

Figure 21.1: Intuitive illustration of E Definition 54. Red lines are the diameters, as captured by the sup function. Blue lines are other possible candidates, but none of them can be a supremum.

Let $A \subseteq B \subset(X, d)$. Then

1. $\operatorname{diam}(A) \leq \operatorname{diam}(B)$;
2. $\operatorname{diam}(A)=\operatorname{diam}(\bar{A})$.

Proof

1. If $A=B$, then there is nothing to proof. Suppose $A \subsetneq B$.

Suppose to the contrary that $\operatorname{diam}(A)>\operatorname{diam}(B)$. Let $x_{A}, y_{A} \in$ A such that $d\left(x_{A}, y_{A}\right)=\operatorname{diam}(A)$ and $x_{B}, y_{B} \in B$ such that $d\left(x_{B}, y_{B}\right)$. By our assumption, we have

$$
d\left(x_{A}, y_{A}\right)>d\left(x_{B}, y_{B}\right)
$$

However, $x_{A}, y_{A} \in A \subseteq B$, and by definition of a diameter, we have

$$
d\left(x_{B}, y_{B}\right) \geq d\left(x_{A}, y_{A}\right)
$$

which is a contradiction. This proves the statement.
2. If $\operatorname{diam}(A)=\infty$, then we must have $\operatorname{diam}(\bar{A})=\infty$ since $A \subseteq \bar{A}$. Thus WMA $\operatorname{diam}(A)=d<\infty$. Let $x_{0}, y_{0} \in \bar{A}$. Then given any $\varepsilon>0$, by definition of limits, we can find $x_{1}, y_{1} \in A$ such that

$$
d\left(x_{0}, x_{1}\right)<\frac{\varepsilon}{2} \text { and } d\left(y_{0}, y_{1}\right)<\frac{\varepsilon}{2}
$$

Hence

$$
\begin{aligned}
d\left(x_{0}, y_{0}\right) & \leq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, y_{1}\right)+d\left(y_{1}, y_{0}\right) \\
& <\frac{\varepsilon}{2}+d+\frac{\varepsilon}{2}=d+\varepsilon .
\end{aligned}
$$

Thus $\operatorname{diam}(\bar{A}) \leq d+\varepsilon$, for any $\varepsilon>0$. Therefore by the earlier part,

$$
\operatorname{diam}(\bar{A}) \leq d=\operatorname{diam}(A) \leq \operatorname{diam}(\bar{A})
$$

With this notion, we have a partial equivalence to the nested interval theorem, of which we shall prove in the next lecture.

We are now ready to prove the following statement.

Theorem 56 (Cantor's Intersection Principle)

Let (X, d) be a metric space. TFAE:

1. (X, d) is complete.
2. If $\left\{F_{n}\right\}$ is a sequence of non-empty closed subsets such that $F_{n+1} \subset F_{n}$
for all $n \in \mathbb{N}$, and if $\lim _{n \rightarrow \infty} \operatorname{diam}\left(F_{n}\right)=0$, then

$$
\bigcap_{n=1}^{\infty} F_{n} \neq \varnothing .
$$

[^5]$(1) \Longrightarrow(2):{ }^{1}$ For each $n \in \mathbb{N}$, pick $x_{n} \in F_{n}$. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence formed from these x_{n} 's.

By the assumption that $\lim _{n \rightarrow \infty} \operatorname{diam}\left(F_{n}\right)=0$, we have that

$$
\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \operatorname{diam}\left(F_{N_{0}}\right)<\varepsilon
$$

In particular, for $n, m \geq N_{0}$, we have that $x_{n}, x_{m} \in F_{N_{0}}$, as $F_{n}, F_{m} \subset$ $F_{N_{0}}$, and so

$$
d\left(x_{n}, x_{m}\right) \leq \operatorname{diam}\left(F_{N_{0}}\right)<\varepsilon
$$

${ }^{1}$ Since we have a sequence of nonempty closed subsets, we can, by using * Axiom 2, form a sequence of elements in X from each of the F_{n} 's. By proving that this sequence of elements is Cauchy, we obtain a limit point from the assumption that X is complete.
From there, it remains to show that the limit point lives in all of the $F_{n}{ }^{\prime}$ s.

Thus $\left\{x_{n}\right\}$ is Cauchy. By assumption that (X, d) is complete, $x_{n} \rightarrow$ $x_{0} \in X$. Thus $\exists N_{1} \in \mathbb{N}$ such that $\forall n \geq N_{1}, d\left(x_{n}, x_{0}\right)<\varepsilon$. Thus, for any such n, since $F_{n+1} \subset F_{n},\left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\} \subset F_{n}$, and the sequence converges to x_{0}. Since F_{n} is closed, we must have $x_{0} \in F_{n}$. This forces $x_{0} \in F_{n}$ for every $n \in \mathbb{N}$. This completes (\Longrightarrow).
$(2) \Longrightarrow(1):$ Let $\left\{x_{n}\right\} \subset X$ be Cauchy. Let $F_{n}=\left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\}$. We have that F_{n} is closed: given any $y \notin F_{n}$, we can pick $\delta=$ $\frac{1}{2} \min \left\{d\left(x_{i}, x_{j}\right): n \leq i<j\right\}$ and we would have that $B(y, \delta) \cap F_{n}=$ \varnothing.

Note that $F_{n+1} \subset F_{n}$.

$$
\because\left\{x_{n}\right\} \text { is Cauchy, } \forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n, m \geq N_{0} d\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{2}
$$

Consequently,

$$
\operatorname{diam}\left(\left\{x_{N_{0}}, x_{N_{0}+1}, \ldots\right)=\operatorname{diam}\left(F_{N_{0}}\right) \leq \frac{\varepsilon}{2}<\varepsilon\right.
$$

$\therefore \operatorname{diam}\left(F_{n}\right) \rightarrow 0$, which, along with assumption, implies that ${ }^{2}$

$$
\bigcap_{n=1}^{\infty} F_{n}=\left\{x_{0}\right\} .
$$

Also, since $\operatorname{diam}\left(F_{n}\right) \rightarrow 0$, we have that for any $k>0, F_{i_{k}} \subseteq$ $B\left(x_{0}, \frac{1}{k}\right)^{3}$. This implies that for each $k, B\left(x_{0}, \frac{1}{k}\right)$ contains the tail of the sequence $\left\{x_{n}\right\}$. Then, inductively so, we have

$$
\begin{aligned}
& k=1 \Longrightarrow \exists n_{1}>0 \quad x_{n_{1}} \in B\left(x_{0}, 1\right) \\
& k=2 \Longrightarrow \exists n_{2}>0 \quad x_{n_{2}} \in B\left(x_{0}, \frac{1}{2}\right) \\
& \vdots \\
& k=m \Longrightarrow \exists n_{m}>0 \quad x_{n_{m}} \in B\left(x_{0}, \frac{1}{m}\right)
\end{aligned}
$$

$\therefore x_{n_{m}} \rightarrow x_{0}$.
Then since $\left\{x_{n}\right\}$ is Cauchy, and $\left\{x_{n_{m}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$, we have $x_{n} \rightarrow x_{0}$.

[^6]${ }^{2}$ Note that the intersection can only contain one element, since $\operatorname{diam}\left(F_{n}\right) \rightarrow$ 0.
${ }^{3}$ Otherwise, x_{0} cannot be a limit point.

Let $(X,\|\cdot\|)$ be a normed linear space. A series in X is called a formal sum, expressed as

$$
\begin{equation*}
\sum_{n=1}^{\infty} x_{n}=x_{1}+x_{2}+\ldots+x_{n}+\ldots \tag{22.1}
\end{equation*}
$$

where $\left\{x_{n}\right\} \subseteq X$. For each $k \in \mathbb{N}$, the $k^{\text {th }}$ partial sum of Equation (22.1) is

$$
S_{k}=\sum_{n=1}^{k} x_{n}=x_{1}+x_{2}+\ldots+x_{k} .
$$

We say that $\sum_{n=1}^{\infty} x_{n}$ converges in $(X,\|\cdot\|)$ if $\left\{S_{k}\right\}_{k=1}^{\infty}$ converges. In this case, we write

$$
\sum_{n=1}^{\infty}=\lim _{k \rightarrow \infty} S_{k} .
$$

Otherwise, $\sum_{n=1}^{\infty} x_{n}$ is said to diverge.

[^7]Let $(X,\|\cdot\|)$ be a normed linear space. TFAE:

1. $(X,\|\cdot\|)$ is complete, i.e. $(X,\|\cdot\|)$ is a Banach space.
2. If $\sum_{n=1}^{\infty} x_{n}$ is such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ converges, then $\sum_{n=1}^{\infty} x_{n}$ converges.
$(1) \Longrightarrow(2):$ Given $\sum_{n=1}^{\infty} x_{n}$, let

$$
S_{k}=\sum_{n=1}^{k} x_{n} \text { and } T_{k}=\sum_{n=1}^{k}\left\|x_{n}\right\| .
$$

Suppose T_{k} converges. Then in particular, $\left\{T_{k}\right\}$ is Cauchy. Thus

$$
\begin{gathered}
\forall \varepsilon>0 \exists N_{0} \in \mathbb{N} \forall n>m \geq N_{0} \\
T_{n}-T_{m}=\sum_{k=1}^{n}\left\|x_{k}\right\|-\sum_{k=1}^{m}\left\|x_{k}\right\|=\sum_{k=m+1}^{n}\left\|x_{k}\right\|<\varepsilon .
\end{gathered}
$$

$\therefore N_{0} \leq m<n \Longrightarrow$

$$
\begin{aligned}
\left\|S_{n}-S_{m}\right\| & =\left\|\sum_{k=1}^{n} x_{k}-\sum_{k=1}^{m} x_{k}\right\|=\left\|\sum_{k=m+1}^{n} x_{k}\right\| \\
& \leq \sum_{k=m+1}^{n}\left\|x_{k}\right\| \quad \because \text { Triangle Ineq. } \\
& <\varepsilon
\end{aligned}
$$

$\therefore\left\{S_{k}\right\}$ is Cauchy, and since $(X,\|\cdot\|)$ is complete, $\left\{S_{k}\right\}$ is convergent.
$(2) \Longrightarrow(1)$: Suppose $\left\{x_{n}\right\}$ is Cauchy in $(X,\|\cdot\|)$. We can find an increasing sequence

$$
N_{0}<n_{1}<n_{2}<\ldots<n_{j}<\ldots \in \mathbb{N}
$$

for some $N_{0} \in \mathbb{N}$ such that

$$
\left\|x_{n_{j}}-x-n_{j+1}\right\|<\frac{1}{2^{j}}
$$

Then by the infinite geometric series,

$$
\sum_{j=1}^{\infty}\left\|x_{n_{j}}-x_{n_{j+1}}\right\| \leq \sum_{j=1}^{\infty} \frac{1}{2^{j}}<\infty
$$

$\therefore \sum_{j=1}^{\infty}\left(x_{n_{j}}-x_{n_{j+1}}\right)$ converges to some $x_{0} \in X$. In particular, notice that the partial sums are telescoping series:

$$
S_{k}=\sum_{j=1}^{k}\left(x_{n_{j}}-x_{n_{j+1}}\right)=x_{n_{1}}-x_{n_{k+1}} \rightarrow x_{0}
$$

It follows that as $k \rightarrow \infty$,

$$
x_{n_{k+1}} \rightarrow x_{n_{1}}-x_{0}
$$

We have that the subsequence $\left\{x_{n_{k}}\right\}$ of our Cauchy sequence $\left\{x_{n}\right\}$ has a limit point.

23.1 Completeness of Metric Spaces (Continued 4)

23.1.1 Characterizations of Completeness (Continued 2)

Example 23.1.1

Let

$$
\varphi(x)=\left\{\begin{array}{ll}
x & x \in[0,1] \\
2-x & x \in[1,2]
\end{array} .\right.
$$

Extend φ to \mathbb{R} by

$$
\varphi(x+2)=\varphi(x) \quad \text { for all } x \in \mathbb{R}
$$

Define

$$
f(x)=\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)
$$

Figure 23.1: Sawtooth-like graph from φ

Figure 23.2 is a simplified graph of f, drawn using the online tool Desmos.

It is clear that $\varphi \in C_{b}(\mathbb{R})$, and $\|\varphi\|_{\infty}=1$. Thus

$$
\sum_{n=1}^{\infty}\left\|\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)\right\|_{\infty}=\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n}<\infty
$$

and so

$$
f(x)=\lim _{L \rightarrow \infty} \sum_{n=1}^{L}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)=\lim _{L \rightarrow \infty} S_{L}(x)
$$

uniformly so. Since the partial sums are continuous, $f \in C_{b}(\mathbb{R})$.

However, f is not differentiable. Let $x \in \mathbb{R}$. For each $m \in \mathbb{N}$, we can find $k \in \mathbb{Z}$ such that

$$
k \leq 4^{m} x \leq k+1
$$

Let

$$
p_{m}=\frac{k}{4^{m}} \text { and } q_{m}=\frac{k+1}{4^{m}}
$$

and for any $n \in \mathbb{N}$,

$$
\alpha=4^{n} p_{m}=4^{n-m} k \text { and } \beta=4^{n} q_{m}=4^{n-m}(k+1) .
$$

Now

- if $n>m$, then since α and β differ by an even integer, $|\varphi(\alpha)-\varphi(\beta)|=$ 0;
- if $n=m$, then α and β differs by 1 , and so $|\varphi(\alpha)-\varphi(\beta)|=1$;
- if $n<m$, then there are no integers between α and β, and so

$$
|\varphi(\alpha)-\varphi(\beta)|=\left|4^{n} p_{m}-4^{n} q_{m}\right|^{1}=\left|4^{n-m} k-4^{n-m}(k+1)\right|=4^{n-m}
$$

${ }^{1}$ Note that if we have $1 \leq \alpha, \beta \leq 2$, we still get the same formula.

For large enough m, consider

$$
\left|f\left(p_{m}\right)-f\left(q_{m}\right)\right|=\left|\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n}\left(\varphi\left(4^{n} p_{m}\right)-\varphi\left(4^{n} q_{m}\right)\right)\right|
$$

$$
\begin{align*}
& =\left|\sum_{n=1}^{m}\left(\frac{3}{4}\right)^{n}\left(\varphi\left(4^{n} p_{m}\right)-\varphi\left(4^{n} q_{m}\right)\right)\right| \tag{23.1}\\
& \left.\geq\left|\left(\frac{3}{4}\right)^{n}-\sum_{n=1}^{m-1}\left(\frac{3}{4}\right)^{n}\right| \varphi\left(4^{n} p_{m}\right)-\varphi\left(4^{n} q_{m}\right) \right\rvert\, \\
& =\left|\left(\frac{3}{4}\right)^{n}-\sum_{n=1}^{m-1}\left(\frac{3}{4}\right)^{n} 4^{n-m}\right| \tag{23.2}\\
& =\left|\left(\frac{3}{4}\right)^{n}-\frac{1}{4^{m}} \sum_{n=1}^{m-1} 3^{n}\right| \\
& =\left|\left(\frac{3}{4}\right)^{n}-\frac{1}{4^{m}}\left[\frac{3^{m}-1}{2}\right]\right| \\
& =\frac{1}{4^{m}}\left[\frac{3^{m}+1}{2}\right]>\frac{1}{2} \cdot\left(\frac{3}{4}\right)^{m} \tag{23.4}
\end{align*}
$$

where we note that
(23.1) terms after m are eliminated as they are 0 as argued previously;
(23.2) by the reverse Triangle ineq. and the case where $n=m$;
(23.3) using the argument for when $n<m$;
(23.4) using the formula for a finite geometric sum.

Hence we observe that

$$
\frac{\left|f\left(p_{m}\right)-f\left(q_{m}\right)\right|}{\left|p_{m}-q_{m}\right|}>4^{m} \cdot \frac{3^{m}}{2 \cdot 4^{m}}=\frac{3^{m}}{2} .
$$

Now if $p_{m}=x$, then

$$
\frac{\left|f(x)-f\left(q_{m}\right)\right|}{\left|x-q_{m}\right|}>\frac{3^{m}}{2} .
$$

If $p_{m} \neq x$, then

$$
\begin{aligned}
\frac{3^{m}}{2} & <\frac{\left|f\left(p_{m}\right)-f\left(q_{m}\right)\right|}{\left|p_{m}-q_{m}\right|} \leq \frac{\left|f\left(p_{m}\right)-f(x)\right|+\left|f(x)-f\left(q_{m}\right)\right|}{\left|p_{m}-q_{m}\right|} \\
& \leq \frac{\left|f\left(p_{m}\right)-f(x)\right|}{\left|p_{m}-x\right|}+\frac{\left|f(x)-f\left(q_{m}\right)\right|}{\left|x-q_{m}\right|},
\end{aligned}
$$

which implies that either

$$
\frac{\left|f(x)-f\left(q_{m}\right)\right|}{\left|x-q_{m}\right|}>\frac{3^{m}}{2}
$$

134 Lecture 23 Nov 05th Completeness of Metric Spaces (Continued 4)
or

$$
\frac{\left|f\left(p_{m}\right)-f(x)\right|}{\left|p_{m}-x\right|}>\frac{3^{m}}{2} .
$$

Then for any sequence $\left\{t_{m}\right\}$ such that $t_{m} \rightarrow x$, and $t_{m} \neq x$, we have that

$$
\frac{\left|f(x)-f\left(t_{m}\right)\right|}{\left|x-t_{m}\right|} \geq \frac{3^{m}}{4} \rightarrow \infty
$$

as $m \rightarrow \infty$. Thus the function f is not differentiable at any x.

$24 \approx$ Lecture 24 Nov 07th

24.1 Completions of Metric Spaces

Definition 56 (Isometry)$A \operatorname{map} \varphi:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is called an isometry if

$$
d_{Y}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)
$$Definition 57 (Completion)

A completion of a metric space (X, d) is a pair $\left(\left(Y, d_{Y}\right), \varphi\right)$ where $\left(Y, d_{Y}\right)$ is a complete metric space, $\varphi: X \rightarrow Y$ is an isometry, and $\overline{\varphi(X)}=Y$.

Proposition 58 (Subsets of Complete Spaces are Complete if they are Closed)

Let (X, d) be a complete metric space. Let $A \subset X$. Then $\left(A, d_{A}\right)$ is complete iff A is closed.

- Proof
$(\Longrightarrow):\left(A, d_{A}\right)$ is complete
$\Longrightarrow\left\{x_{n}\right\} \subset A$ Cauchy $\Longrightarrow x_{n} \rightarrow x_{0} \Longrightarrow x_{0} \in A \Longrightarrow$
$\operatorname{Lim}(A) \subseteq A$
$\Longrightarrow A$ is closed.
(\Longleftarrow) Let $\left\{x_{n}\right\} \subset A$ be Cauchy in $\left(A, d_{A}\right)$
$\Longrightarrow\left\{x_{n}\right\}$ is Cauchy in (X, d)
$\Longrightarrow x_{n} \rightarrow x_{0} \in X$
$\Longrightarrow(\because A$ is closed $) x_{0} \in A$
$\Longrightarrow\left(A, d_{A}\right)$ is complete.

A natural question arises: does every space have a completion?
To answer this, we need the following concept:

Definition 58 (Uniformly Continuous Functions)

We say that a function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is uniformly continuous
if

$$
\begin{gathered}
\forall \varepsilon>0 \exists \delta>0 \forall x_{1}, x_{2} \in X \\
d_{X}\left(x_{1}, x_{2}\right)<\delta \Longrightarrow d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)<\varepsilon
\end{gathered}
$$

Example 24.1.1

Given (X, d), and $x_{0} \in X$, define

$$
g_{x_{0}}(x)=d\left(x, x_{0}\right)
$$

Note that $\left|d\left(x_{0}, x\right)-d\left(x_{0}, y\right)\right| \leq d(x, y) .{ }^{1}$ Thus

$$
\left|g_{x_{0}}\left(x_{1}\right)-g_{x_{0}}\left(x_{2}\right)\right| \leq d\left(x_{1}, x_{2}\right)
$$

Then $\forall \varepsilon>0 \exists \delta=\varepsilon>0$, we have

$$
d\left(x_{1}, x_{2}\right)<\delta \Longrightarrow\left|g_{x_{0}}\left(x_{1}\right)-g_{x_{0}}\left(x_{2}\right)\right|<\varepsilon
$$

Thus $g_{x_{0}}$ is uniformly continuous.

PTheorem 59 (Completion Theorem)
Every metric space (X, d) has a completion.

Proof

Let $a \in X$. Define $\varphi: X \rightarrow C_{b}(X)$ by

$$
(\varphi(u))(x)=f_{u}(x)=d(u, x)-d(x, a) .
$$

By our earlier example, $\varphi(u)$ is continuous. Notice that we have

$$
\left|f_{u}(x)\right|=|d(u, x)-d(x, a)| \leq d(u, a) .
$$

Thus $\varphi(u) i n C_{b}(X)$, proving that φ is well-defined.
WTS φ is an isometry. Let $u, v \in X$. Then

$$
\begin{aligned}
\left|f_{u}(x)-f_{v}(x)\right| & =|d(u, x)-d(x, a)-d(v, x)-+d(x, a)| \\
& =|d(u, x)-d(v, x)| \\
& \leq d(u, v) .
\end{aligned}
$$

Thus $\left\|f_{u}-f_{v}\right\|_{\infty} \leq d(u, v)$ by definition of $\|\cdot\|_{\infty}$. Notice that

$$
\left|f_{u}(v)-f_{v}(v)\right|=d(u, v),
$$

which gives us the greatest possible value. Thus

$$
\|\varphi(u)-\varphi(v)\|_{\infty}=\left\|f_{u}-f_{v}\right\|_{\infty}=d(u, v) .
$$

Thus φ is an isometry.
Since $\left(C_{b}(X),\|\cdot\|_{\infty}\right)$ is a complete metric space, let $Y=\overline{\varphi(X)}$. The proof is complete by Proposition 58.

Question: If (X, d) has 2 completions, how are they related?
Suppose (X, d) is a metric space that has 2 completions through
the functions φ and ψ.

Figure 24.1: Relation of the 2 completions of a metric space.

Since we have that φ is bijective from X to $\varphi(X)$, we can take its inverse. Consequently, we have that the function $\Gamma=\psi \circ \varphi^{-1}$ is an isometry.

Now for some $\left\{x_{n}\right\} \subset X$ that is Cauchy, we know that in $\varphi(X)$, $\varphi\left(x_{n}\right) \rightarrow y_{0} \in \varphi(X)$. Note that y_{0} is a limit point of $\varphi(X)$. Through Γ, we have that

$$
\Gamma\left(\varphi\left(x_{n}\right)\right)=\psi\left(x_{n}\right)
$$

If $\psi\left(x_{n}\right) \rightarrow z_{0} \in \psi(X)$, then we must have

$$
\Gamma\left(y_{0}\right)=z_{0}
$$

and in particular z_{0} is a limit point of $\psi(X)$. This forces limits point of $\varphi(X)$ to also be limit points of $\psi(X)$, and interior to interior. Thus the two completions are isomorphic.

24.2

Banach Contractive Mapping Theorem

Question: Does there exist a function $f \in C[0,1]$ such that

$$
\begin{equation*}
f(x)=e^{x}+\int_{0}^{x} \frac{\sin t}{2} f(t) d t \tag{24.1}
\end{equation*}
$$

Let $\Gamma: C[0,1] \rightarrow C[0,1]$ such that

$$
\Gamma(f)(x)=e^{x}+\int_{0}^{x} \frac{\sin t}{2} f(t) d t
$$

Then f_{0} is a solution to Equation (24.1) iff $\Gamma\left(f_{0}\right)=f_{0}$.

This is known as an integral transform.

E Definition 59 (Fixed Point)
Given $(X, d), \Gamma: X \rightarrow X$, we say that x_{0} is a fixed point of Γ if $\Gamma\left(x_{0}\right)=$ x_{0}.

25
 decture 25 Nov 09th

25.1 Banach Contractive Mapping Theorem (Continued)

E Definition 60 (Lipschitz)

A function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is said to be Lipschitz if there exists $\alpha \geq 0$ such that $\forall x_{1}, x_{2} \in X$,

$$
d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq \alpha d_{X}\left(x_{1}, x_{2}\right)
$$

Definition 61 (Contraction)

A function $f: X \rightarrow Y$ is called a contraction if there exists $0 \leq k<1$ with

$$
d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq k d_{X}\left(x_{1}, x_{2}\right)
$$

for all $x_{1}, x_{2} \in X$.
ff Note 25.1.1

Notice that a Lipschitz function is uniformly continuous: choose $\delta=\frac{\varepsilon}{\alpha}$.

Exercise 25.1.1

Prove that if $f:[a, b] \rightarrow \mathbb{R}$ and f^{\prime} is continuous, then by the Extreme
Value Theorem and the Mean Value Theorem, f is Lipschitz.

Theorem 60 (Banach Contractive Mapping Theorem)
Assume that (X, d) is complete. If $\Gamma: X \rightarrow X$ is contractive, then there exists a unique $x_{0} \in X$ such that $\Gamma\left(x_{0}\right)=x_{0}$.

Proof

Pick $x_{1} \in X$. Then, let

$$
x_{2}=\Gamma\left(x_{1}\right), x_{3}=\Gamma\left(x_{2}\right), \ldots, x_{n+1}=\Gamma\left(x_{n}\right), \ldots
$$

Claim : $\left\{x_{n}\right\}$ is Cauchy ${ }^{1}$
Let $k \in \mathbb{R}$ such that $0<k<1$, so that we have

$$
d(\Gamma(x), \Gamma(y)) \leq k d(x, y)
$$

for any $x, y \in X$. Then

$$
\begin{aligned}
d\left(x_{3}, x_{2}\right) & =d\left(\Gamma\left(x_{2}\right), \Gamma\left(x_{1}\right)\right) \leq k d\left(x_{2}, x_{1}\right) \\
d\left(x_{4}, x_{3}\right) & =d\left(\Gamma\left(x_{3}\right), \Gamma\left(x_{1}\right)\right) \leq k d\left(x_{3}, x_{2}\right) \leq k^{2} d\left(x_{2}, x_{1}\right) \\
& \vdots \\
d\left(x_{n+1}, x_{n}\right) & =d\left(\Gamma\left(x_{n+1}\right), \Gamma\left(x_{n}\right)\right) \leq k^{n-1} d\left(x_{2}, x_{1}\right)
\end{aligned}
$$

Also, notice that if $m>n$, then

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m-1}\right)+d\left(x_{m-1}, x_{m-2}\right)+\ldots+d\left(x_{n+1}, x_{n}\right) \\
& \leq k^{m-2} d\left(x_{2}, x_{1}\right)+k^{m-3} d\left(x_{2}, x_{1}\right)+\ldots+k^{n-1} d\left(x_{2}, x_{1}\right) \\
& =\sum_{j=n-1}^{m-2} k^{j} d\left(x_{2}, x_{1}\right)=\frac{k^{n-1}}{1-k} d\left(x_{2}, x_{1}\right) .
\end{aligned}
$$

Since $k^{n-1} \rightarrow 0$, we have that $\left\{x_{n}\right\}$ is Cauchy. Since (X, d) is com-
plete, $\exists x_{0} \in X$ such that $x_{n} \rightarrow x_{0}$.
In particular, we have that $x_{n+1} \rightarrow x_{0}$, i.e. $\Gamma\left(x_{n}\right) \rightarrow x_{0}$. Since Γ is
ntinuous, we mst have that $\Gamma\left(x_{n}\right) \rightarrow \Gamma\left(x_{0}\right)$. Therefore $\Gamma\left(x_{0}\right)=x_{0}$
In particular, we have that $x_{n+1} \rightarrow x_{0}$, i.e. $\Gamma\left(x_{n}\right) \rightarrow x_{0}$. Since Γ is
continuous, we mst have that $\Gamma\left(x_{n}\right) \rightarrow \Gamma\left(x_{0}\right)$. Therefore $\Gamma\left(x_{0}\right)=x_{0}$
${ }^{1}$ This will CTP since (X, d) is complete, i.e. it will give us a limit point at which Γ must converge to, and thus forcing its iteration to be terminated at the limit point due to Γ being contractive.
as required.
(Uniqueness) Suppose there exists another point $y_{0} \in X$ such that $\Gamma\left(y_{0}\right)=y_{0}$. Then

$$
d\left(x_{0}, y_{0}\right)=d\left(\Gamma\left(x_{0}\right), \Gamma\left(y_{0}\right)\right) \leq k d\left(x_{0}, y_{0}\right),
$$

which implies that $d\left(x_{0}, y_{0}\right)=0$.

Example 25.1.1

Show that the equation

$$
f_{0}(x)=e^{x}+\int_{0}^{x} \frac{\sin t}{2} f_{0}(t) d t
$$

has a unique solution in $C[0,1]$.

Solution

Define $\Gamma: C[0,1] \rightarrow C[0,1]$ by

$$
\Gamma(f)(x)=e^{x}+\int_{0}^{x} \frac{\sin t}{2} f(t) d t .
$$

Let $f, g \in C[0,1]$. We have that

$$
\begin{aligned}
|\Gamma(f)(x)-\Gamma(g)(x)| & =\left|\int_{0}^{x} \frac{\sin t}{2} f(t) d t-\int_{0}^{x} \frac{\sin t}{2} g(t) d t\right| \\
& =\left|\int_{0}^{x} \frac{\sin t}{2}(f(t)-g(t)) d t\right| \\
& \leq \int_{0}^{x}\left|\frac{\sin t}{2}\right||f(t)-g(t)| d t \\
& \leq\|f-g\|_{\infty} \int_{0}^{1} \frac{1}{2} d t \\
& =\frac{1}{2}\|f-g\|_{\infty}
\end{aligned}
$$

Thus $\|\Gamma(f)-\Gamma(g)\|_{\infty} \leq \frac{1}{2}|f-g|_{\infty}$. Thus Γ is contractive. By - Theorem 60 , the unique fixed point is the solution.

Example 25.1.2

Show that the equation

$$
\begin{equation*}
f(x)=x+\int_{0}^{x} t^{2} f(t) d t \tag{25.1}
\end{equation*}
$$

has a unique solution.

θ Solution

Let $\Gamma(f)(x)=x+\int_{0}^{x} t^{2} f(t) d t$. Then

$$
\begin{aligned}
|\Gamma(f)(x)-\Gamma(g)(x)| & =\leq \int_{0}^{1} t^{2}\|f-g\|_{\infty} d t \\
& =\frac{1}{3}\|f-g\|_{\infty}
\end{aligned}
$$

By the Banach Contractive Mapping Theorem, Equation (25.1) has a unique solution. In particular,

$$
\begin{aligned}
f_{1}(x) & =x \\
f_{2}(x) & =\Gamma\left(f_{1}\right)(x)=x+\int_{0}^{x} t^{2} t_{1}(t) d t \\
& =x+\int_{0}^{x} t^{3} d t=x+\frac{1}{4} x^{4} \\
f_{3}(x) & =\Gamma\left(f_{2}\right)(x)=x+\int_{0}^{x} t^{2}\left(t+\frac{1}{4} t^{4}\right) d t \\
& =x+\int_{0}^{x} t^{3}+\frac{1}{4} t^{6} d t=x+\frac{1}{4} x^{4}+\frac{1}{4 \cdot 7} x^{7} \\
& \vdots \\
f_{n}(x) & =\frac{x}{1}+\frac{x^{4}}{4}+\frac{x^{7}}{4 \cdot 7}+\ldots+\frac{x^{3 n-2}}{4 \cdot 7 \cdot \ldots \cdot(3 n-2)}
\end{aligned}
$$

and so the limit is

$$
f_{0}(x)=\sum_{k=1}^{\infty} \frac{x^{3 k-2}}{4 \cdot 7 \cdot \ldots \cdot(3 k-2)}
$$

Example 25.1.3 (Other Applications)

1. Newton's Method.
2. (Picard's Theorem) Let $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ be Lipschitz in \mathbb{R}, i.e.
$\exists \alpha \geq 0$ such that

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq\left.\alpha\right|_{1}-y_{2} \mid
$$

for any $y_{1}, y_{2} \in \mathbb{R}$. If $y_{0} \in \mathbb{R}$, then there exists a unique $\varphi \in C[a, b]$ such that

$$
\varphi^{\prime}(t)=f(t, \varphi(t))
$$

for all $t \in(a, b)$ with $\varphi(a)=y_{0}$.

25.2 Baire Category Theorem

Example 25.2.1 (Dirchlet Function)

Consider the function

$$
f(x)= \begin{cases}0 & x \in \mathbb{R} \backslash \mathbb{Q} \\ 1 & x=0 \\ \frac{1}{m} & x \in \mathbb{Q}\end{cases}
$$

The function g is continuous at each $x \in \mathbb{R} \backslash Q$, and discontinuous otherwise.

Question: Does there exist a function function f such that f is continuous on Q but not on $\mathbb{R} \backslash \mathrm{Q}$? No!

However, to prove that there is need no such function, we need more machinery. In particular, the set of discontinuities of a function $f:(X, d) \rightarrow \mathbb{R}$ has a particular topological nature.

E Definition 62 (Points of Discontinuity)
Let $f: X \rightarrow \mathbb{R}$. For each $n \in \mathbb{N}$, the points of discontinuity is a set defined as

$$
D_{N}(f)=\left\{x_{0} \in X: \forall \delta>0 \exists x_{1}, y_{1} \in B\left(x_{0}, \delta\right)\left|f\left(x_{1}\right)-f\left(y_{1}\right)\right| \geq \frac{1}{n}\right\} .
$$

66 Note 25.2.1

1. For each $n \in \mathbb{N}, D_{n}$ is closed.
2. f is continuous at $x_{0} \Longleftrightarrow x_{0} \notin \bigcap_{n=1}^{\infty} D_{n}$.

Remark 25.2.1

Recall the definition of an F_{σ}-set from the midterm (definition also provided in next lecture).

146 Lecture 25 Nov 09th Baire Category Theorem

The set

$$
D(f)=\left\{x_{0} \in X \mid f \text { is discontinuous at } x_{0}\right\}=\bigcap_{n=1}^{\infty} D_{n}(f)
$$

is an F_{σ}-set.

A natural question to ask is:

Question: Is $\mathbb{R} \backslash \mathbb{Q}$ an F_{σ}-set?

Baire Category Theorem (Continued)

Definition 63 (F_{σ} Sets)

Let (X, d) be a metric space. We say that $A \subseteq X$ is F_{σ} if there exists a sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ of closed sets with

$$
A=\bigcup_{n=1}^{\infty} F_{n} .
$$

Definition $64\left(G_{\delta}\right.$ Sets)

Let (X, d) be a metric space. We say that $A \subseteq X$ is G_{δ} if there exists a sequence $\left\{U_{n}\right\}_{n=1}^{\infty}$ of open sets such that

$$
A=\bigcap_{n=1}^{\infty} U_{n}
$$

Example 26.1.1

The interval $[0,1) \subset \mathbb{R}$ is G_{δ}, since

$$
[0,1)=\bigcap_{n=1}^{\infty}\left(\frac{1}{n}, 1\right)
$$

Remark 26.1.1

A is F_{σ} iff A^{C} is G_{δ}.

Recall the definition of a dense set. We have the following complementary definition.

Definition 65 (Nowhere Dense)

Given a metric space (X, d), we say that $A \subseteq X$ is nowhere dense if $\bar{A}^{\circ}=\varnothing$.

Remark 26.1.2

The above definition is equivalent to saying that \bar{A}^{C} is dense.

Definition 66 (First Category)
We say that a set A is of first category if

$$
A=\bigcup_{n=1}^{\infty} A_{n}
$$

where each A_{n} is nowhere dense.

Definition 67 (Second Category)
We say that A is of second category is A is not of first category.

Remark 26.1.3

We colloquially refer to a set of first category as being topologically thin, and a set of second category as being topologically thick.

Definition 68 (Residual)

We say that $A \subseteq(X, d)$ is a residual in X if A^{C} is of first category.

Theorem 61 (Set of Points of Discontinuity is F_{σ})
Let $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$. Then for each $n \in \mathbb{N}, D_{N}(f)$ is closed in X.
Moreover,

$$
D(f)=\bigcup_{n=1}^{\infty} D_{N}(f) .
$$

In particular, $D(f)$ is F_{σ}.

Exercise 26.1.1

Prove - Theorem 61.

Example 26.1. 2

If $F \subset(X, d)$ is closed, then f is G_{δ}. In particular, notice that

$$
F=\bigcap_{n=1}^{\infty}\left(\bigcup_{x \in F} B\left(x, \frac{1}{n}\right)\right),
$$

where we note that each of the $B\left(x, \frac{1}{n}\right)$ is F_{δ}.

Theorem 62 (Baire Category Theorem I)

Let (X, d) be complete. Let $\left\{U_{n}\right\}_{n=1}^{\infty}$ be a countable collection of dense open sets. Then ${ }^{1}$

$$
\bigcap_{n=1}^{\infty} U_{n} \text { is dense in } X .
$$

In particular, it is not empty.

Proof

Assume that $\left\{U_{n}\right\}_{n=1}^{\infty}$ is a sequence of open and dense sets. Let $W \subset X$ be open and non-empty. Since U_{1} is dense, we have that $W \cap U_{1} \neq \varnothing$. Then $\exists x_{1} \in W \cap U_{1}$ such that $\exists 0<r_{1} \leq 1$ so that

$$
B\left(x_{1}, r_{1}\right) \subset B\left[x_{1}, r_{1}\right] \subset W \cap U_{1} .
$$

Similarly,
${ }^{1}$ Note that we have ourselves a dense G_{δ} set.

Figure 26.1: Visualization of proof for Baire Category Theorem I
we can find $x_{2} \in X$ such that for some $0<r_{2} \leq \frac{1}{2}$,

$$
B\left(x_{2}, r_{2}\right) \subset B\left[x_{2}, r\right] \subset B\left(x_{1}, r_{1}\right) \cap U_{2}
$$

We can proceed recursively and find, for $n \in \mathbb{N}$, an $x_{n} \in X$ with $0<r_{n} \leq \frac{1}{n}$ such that

$$
B\left(x_{n}, r_{n}\right) \subset B\left[x_{n}, r_{n}\right] \subset B\left(x_{n-1}, r_{n-1}\right) \cap U_{n}
$$

Now since (X, d) is complete, $\left\{\operatorname{diam}\left(B\left[x_{n}, r_{n}\right]\right)\right\}=\left\{r_{n}\right\}$ is a decreasing sequence such that $r_{n} \rightarrow 0$, by Cantor's Intersection Principle,

$$
\exists x_{0} \in \bigcap_{n=1}^{\infty} B\left[x_{n}, r_{n}\right]
$$

Then by this construction, we must have $x_{0} \in B\left[x_{1}, r_{1}\right] \subset W \cap U_{1}$, and $x_{0} \in B\left[x_{n}, r_{n}\right] \subset U_{n}$ for each $n \in \mathbb{N}$. Thus

$$
x_{0} \in W \cap\left(\bigcap_{n=1}^{\infty} U_{n}\right) .
$$

Note that the statement does not hold if we have an uncountable collection of dense open sets.

Example 26.1.3

Consider $U_{x}=\mathbb{R} \backslash\{x\}$, where $x \in \mathbb{R}$. This is clearly a dense and open set. Notice, however, that

$$
\bigcap_{x \in \mathbb{R}} U_{x}=\varnothing
$$

Remark 26.1.4

Theorem 62 shows that given a countable sequence $\left\{U_{n}\right\}_{n=1}^{\infty}$ of open
dense sets of X, the countable intersection of these sets, $\bigcap_{n=1}^{\infty} U_{n}$, is a dense G_{δ}.

If (X, d) is complete, then X is of second category.

- Proof

Suppose to the contrary that $X=\cup_{n=1}^{\infty} A_{n}$ where each A_{n} is nowhere dense. Since each A_{n} is nowhere dense, we have that

$$
X=\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} \overline{A_{n}} .
$$

Let $U_{n}={\overline{A_{n}}}^{C}$, which would then be open and dense, as X is complete. However, by De Morgan's Laws, we have that

$$
\left(\bigcap_{n=1}^{\infty} U_{n}\right)^{C}=\bigcup_{n=1}^{\infty} U_{n}^{C}=\bigcup_{n=1}^{\infty} \overline{A_{n}}=X
$$

and so

$$
\bigcap_{n=1}^{\infty} U_{n}=\varnothing,
$$

which is impossible by Theorem 62.

Example 26.1.4

There are set that are neither F_{σ} or G_{δ}. For instance, consider the union of positive rationals and negative irrationals, i.e. a set

$$
S=Q_{>0} \cup Q_{<0}^{C} .
$$

If S is a G_{δ}, then by the Baire Category Theorem, $S \cap(0, \infty)$ is also G_{δ}, but that's the set of positive rationals, which cannot be G_{δ}. Similarly, if S were F_{σ}, then its intersection with $(-\infty, 0)$ is also F_{σ}, but the set of negative irrationals cannot be F_{σ}. Thus S is neither F_{σ} nor G_{δ}.

Example 26.1.5

\mathbb{R} and $\mathbb{R} \backslash \mathbb{Q}$ are of second category. In fact, $\mathbb{R} \backslash Q$ is a residual, since Q is of first category.

Question: Is

$$
Q=\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty}\left(r_{n}-\frac{1}{2^{k+n}}, r_{n}+\frac{1}{2^{k+n}}\right)
$$

where $Q=\left\{r_{1}, r_{2}, \ldots\right\}, \mathbb{Q}$? No. Notice that this is fairly close, but it is not. ${ }^{2}$
${ }^{2}$ It should be \mathbb{R} ?

Corollary $64\left(\mathbb{Q}\right.$ is not $\left.G_{\delta}\right)$
Q is not a G_{δ} set.

Proof

Suppose to the contrary that \mathbb{Q} is G_{δ}, i.e. there exists a countable sequence of open sets $\left\{U_{n}\right\}$ such that

$$
\mathbb{Q}=\bigcap_{n=1}^{\infty} U_{n}
$$

Let $F_{n}=U_{n}^{C}$. Since \mathbb{Q} is dense, it follows that each of the U_{n} 's is also dense. Thus F_{n} is nowhere dense and closed.

Let $\mathbf{Q}=\left\{r_{1}, r_{2}, \ldots\right\}$, an enumeration on \mathbf{Q}, and $S_{n}=F_{n} \cup\left\{r_{n}\right\}$.
Then S_{n} is closed and nowhere dense. However, we would then have

$$
\mathbb{R}=\bigcup_{n=1}^{\infty} S_{n}
$$

which contradicts the fact that \mathbb{R} is of second category.

Consequently:

Corollary 65 (There are no Functions Discontinuous on all Irrational Numbers)

There is no function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which $D(f)=\mathbb{R} \backslash \mathbb{Q}$.

We are now able to show that for a sequence $\left\{f_{n}\right\} \subset C[a, b]$ that converges pointwise, the limit function must be continuous at each point on a residual set. We require the following notion:

Definition 69 (Uniformly Convergent Sequence of Functions

 on a Point)We say that a sequence of functions $\left\{f_{n}\right\}$ where,

$$
f_{n}:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)
$$

converges uniformly at $x_{0} \in X$ if

$$
\begin{gathered}
\forall \varepsilon>0 \exists \delta>0 \exists N \in \mathbb{N} \forall n, m \geq N \\
x \in B\left(x_{0}, \delta\right) \Longrightarrow d_{Y}\left(f_{n}(x), f_{m}(x)\right)<\varepsilon .
\end{gathered}
$$

The proof of the following theorem is left as an exercise.

ETheorem 66 (Limit of Sequence of Continuous Functions that Converges Pointwise is Continuous)

Let $\left(X, d_{X}\right)$ and $\left.) Y, d_{Y}\right)$ be metric spaces. Let $\left\{f_{n}: X \rightarrow Y\right\}$ be a sequence of functions that converges pointwise on X to f_{0}. Assume that $\left\{f_{n}\right\}$ converges uniformly at $x_{0} \in X$. If each f_{n} is continuous at x_{0}, then so is f_{0}.

27
 Lecture 27 Nov 14th

27.1 Baire Category Theorem (Continued 2)

PTheorem 67 (Uniform Convergence of A Sequence of Continuous Functions that Converges Pointwise)

Let $f_{n}:(a, b) \rightarrow \mathbb{R}$ be a sequence of continuous functions that converges pointwise to $f(x)$. Then there exists an $x_{0} \in(a, b)$ such that $f_{n} \rightarrow f$ uniformly at x_{0}.

Proof

Assume that $f_{n} \rightarrow f_{0}$ on (a, b), pointwise.
Claim There exists $\left[\alpha_{1}, \beta_{1}\right] \subset(a, b)$ and $N_{1} \in \mathbb{N}$ such that if $x \in\left[\alpha_{1}, \beta_{1}\right]$ and $n, m \geq N_{1}$, then $\left|f_{n}(x)-f_{m}(x)\right| \leq 1$.

Suppose not. Then $\exists t_{1} \in(a, b)$ and $n_{1}, m_{1} \in \mathbb{N}$ such that
$\left|f_{n_{1}}\left(t_{1}\right)-f_{m_{1}}\left(t_{1}\right)\right|>1$. Since $f_{n_{1}}-f_{m_{1}}$ is continuous, there exists an open interval $I_{1} \subsetneq \bar{I}_{1} \subsetneq(a, b)$ such that $\left|f_{n_{1}}(x)-f_{m_{1}}(x)\right|>1$ for all $x \in I_{1}$.

Similarly, $\exists t_{2} \in I_{1}$ and $n_{2}, m_{2} \geq \max \left\{n_{1}, m_{1}\right\}$ such that $\left|f_{n_{2}}\left(t_{2}\right)-f_{m_{2}}\left(t_{2}\right)\right|>1$. Again, since $f_{n_{2}}-f_{m_{2}}$ is continuous, there exists an open interval $I_{2} \subsetneq \bar{I}_{2} \subsetneq I_{1}$ such that $\left|f_{n_{2}}(x)-f_{m_{2}}(x)\right|>1$ for all $x \in I_{2}$.

Recursively so, we get a sequence $\left\{I_{n}\right\}$ of open interval with $I_{n+1} \subset \bar{I}_{n+1} \subset \bar{I}_{k}$, and two sequence of integers $\left\{n_{k}\right\}$ and
$\left\{m_{k}\right\}$, with $n_{k+1}, m_{k+1} \geq \max \left\{n_{k}, m_{k}\right\}$ and if $x \in I_{k}$, we have $\left|f_{n_{k}}(x)-f_{m_{k}}(x)\right|>1$.

Then, by the Nested Interval Theorem, we have

$$
\bigcap_{k=1}^{\infty} \bar{I}_{k} \neq \varnothing .
$$

Let $x^{*} \in \bigcap_{k=1}^{\infty} \bar{I}_{k}$. Then by construction, we have that for any k, $\left|f_{n_{k}}\left(x^{*}\right)-f_{m_{k}}\left(x^{*}\right)\right|>1$. However, since $\left\{f_{n}\right\}$ converges pointwise, $\left\{f_{n}\left(x^{*}\right)\right\}$ is Cauchy and hence we have a contradiction. This proves the claim \dashv.

In a similar manner, we can find a sequence $\left\{\left[\alpha_{k}, \beta_{k}\right]\right\}$ of closed sets, where $\alpha_{k}<\beta_{k}$, such that

$$
\left(\alpha_{k+1}, \beta_{k+1}\right) \subseteq\left[\alpha_{k+1}, \beta_{k+1}\right] \subseteq\left(\alpha_{k}, \beta_{k}\right) \subseteq \ldots \subseteq(a, b)
$$

and a sequence

$$
N_{1}<N_{2}<\ldots<N_{k}<\ldots,
$$

such that if $x \in\left[\alpha_{k}, \beta_{k}\right]$ and $n, m \geq N_{k}$, then $\left|f_{n}(x)-f_{m}(x)\right| \leq$ $\frac{1}{k}$. Then, once again, by the Nested Interval Theorem, let $x_{0} \in$ $\bigcap_{k=1}^{\infty}\left[\alpha_{k}, \beta_{k}\right]$. Let $\varepsilon>0$. Now if $\frac{1}{k}<\varepsilon$, then if $n, m \geq N_{k}$, then we have

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq \frac{1}{k}<\varepsilon
$$

Since $x_{0} \in \bigcap_{k=1}^{\infty}\left[\alpha_{k}, \beta_{k}\right]$ and $\alpha_{k}<\beta_{k}$, we can choose $\delta=\min \left\{\beta_{k}-\right.$ $\left.\alpha_{k}: k \in \mathbb{N} \backslash\{0\}\right\}>0$, so that $\left(x_{0}-\delta, x_{0}+\delta\right) \subset\left(\alpha_{k}, \beta_{k}\right)$, then for any $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$, we have

$$
\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon
$$

Corollary 68 (Continuity of the Limit of a Sequence of Pointwise Convergent Functions on a Residual Set)

Let $\left\{f_{n}\right\} \subset C[a, b]$ be such that $f_{n} \rightarrow f_{0}$ pointwise on $[a, b]$. Then there exists a residual set $A \subset[a, b]$ such that $f_{0}(x)$ is continuous at each
$x \in A$.

Proof

Theorem 67 shows that the set A of which f_{0} is continuous on is dense in $[a, b]$. However, from XXX that $D\left(f_{0}\right)$ is F_{σ}, and so A is a dense G_{δ}.

Remark 27.1.1

Thus we have that $D\left(f_{0}\right)$ is a nowhere dense F_{σ}, i.e. it is of first category.

Corollary 69 (Derivative of a Function is Continuous on a dense G_{δ} set in \mathbb{R})

Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Then $f^{\prime}(x)$ is continuous for every point on a dense G_{δ}-subset of \mathbb{R}.

Proof

Using notions from the first principles of calculus, notice that $f^{\prime}(x)$ is a pointwise limit of the sequence of continuous functions

$$
\left\{\frac{f\left(x+\frac{1}{n}\right)-f(x)}{\frac{1}{n}}\right\} .
$$

27.2

Compactness

In this section, we study 3 important properties of a topological space, namely:

- compactness;
- sequential compactness; and
- the Bolzano-Weierstrass Property.

We shall see that, in fact, the three properties are equivalent.

E Definition 70 (Cover)
Given (X, d) a metric space, an (open) cover of X is a collection $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of open sets with

$$
X=\bigcup_{\alpha \in I} U_{\alpha} .
$$

A subcover is a subset (or subcollection) $\left\{U_{\alpha}\right\}_{\alpha \in J \subset I}$ such that

$$
X=\bigcup_{\alpha \in J} U_{\alpha} .
$$

If $A \subset X$, then we say that $\left\{U_{\alpha}\right\}_{\alpha \in I}$ covers A if $A \subset \cup_{\alpha \in I} U_{\alpha}$, or, equivalently, if $\left\{U_{\alpha} \cap A\right\}_{\alpha \in I}$ is a cover of $\left(A, d_{A}\right)$.

Definition 71 (Compact)

We say that (X, d) is compact iff each cover of $X,\left\{U_{\alpha}\right\}_{\alpha \in I}$, has a finite subcover.

We say that $A \subset(X, d)$ is compact if every cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of A has a finite subcover (or, equivalently, if $\left(A, d_{A}\right)$ is compact).

From earlier courses in Calculus, recall:

Theorem 70 (Heine-Borel Theorem)
$A \subset \mathbb{R}^{n}$ is compact iff A is closed and bounded.

Example 27.2.1

$[0,1] \subset \mathbb{R}$ is compact, but $(0,1) \subset \mathbb{R}$ is not compact.

However, the Heine-Borel Theorem is not true for arbitrary metric spaces.

Example 27.2.2 (

Let

$$
A=\left\{\left\{x_{n}\right\} \in \ell_{\infty} \mid\left\|x_{n}\right\|_{\infty} \leq 1\right\} .
$$

It is clear that A is closed and bounded. However, consider $U_{\left\{x_{n}\right\}}=$ $B\left(\left\{x_{n}\right\}, \frac{1}{2}\right)$. It is then clear that

$$
A \subset \bigcup_{\left\{x_{n}\right\} \in A} U_{\left\{x_{n}\right\}} .
$$

Let $S=\left\{\left\{x_{n}\right\} \mid x_{n}=1 \vee x_{n}=0\right\}$, which is infinite. Then we notice that $\left|S \cap B\left(\left\{x_{n}\right\}, \frac{1}{2}\right)\right| \leq 1$, showing to us that we cannot find a finite subcover for S itself is infinite.

However, we do have the following implication.
d Proposition 71 (Compact Spaces are Closed and Bounded)
If $A \subset(X, d)$ is compact, then A is closed and bounded.

Proof

Suppose A is not closed. Then $\exists x_{0} \in \operatorname{bdy}(A) \backslash A$. Let

$$
U_{n}=\left(B\left[x_{0}, \frac{1}{n}\right]\right)^{C} .
$$

Since $x_{0} \notin A$, we have that $A \subset \cup_{n=1}^{\infty} U_{n}$. However, $\left\{U_{n}\right\}_{n=1}^{\infty}$ has no finite subcover. Otherwise, if it does have some finite subcover, say $\left\{U_{n}\right\}_{n=1}^{N}$, then for any $n_{0}>N$, we would have that

$$
\left(B\left[x_{0}, \frac{1}{n_{0}}\right]\right) \supsetneq \bigcup_{n=1}^{N} U_{n},
$$

and so $\exists x_{1} \in B\left[x_{0}, \frac{1}{n_{0}}\right]$ such that $x_{1} \in A$ but $x_{0} \notin \cup_{n=1}^{N} U_{n}$. This contradicts the assumption that a subcover exists. But A must have some subcover for we assumed that A is compact. Therefore A
must be closed.
For boundedness, let $x_{0} \in X$. Then $\left\{B\left(x_{0}, n\right)\right\}_{n=1}^{\infty}$ is an open cover of A. Since A is compact, $\left\{B\left(x_{0}, n\right)\right\}_{n=1}^{\infty}$ must have some finite subcover $\left\{B\left(x_{0}, n_{1}\right), B\left(x_{0}, n_{2}\right), \ldots, B\left(x_{0}, n_{k}\right)\right\}$. WMA $n_{1}<$ $n_{2}<\ldots<n_{k}$, for we may rearrange the radii. It follows that $A \subset B\left(x_{0}, n_{k}\right)$, and so A is bounded as required.

28.1 Compactness (Continued)

We also have the following relation between compact sets and their closed subsets.
(Proposition 72 (Closed Subsets of Compact Sets are Compact)
If (X, d) is compact and A is closed, then A is compact.

- Proof

Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be a cover of A. Then

$$
\begin{equation*}
\left\{U_{\alpha}\right\}_{\alpha \in I} \cup A^{C} \tag{*}
\end{equation*}
$$

is a cover of X. Since X is compact, Equation $(*)$ has a finite subcover $\left\{U_{\alpha_{1}}, U_{\alpha_{2}}, \ldots, U_{\alpha_{k}}, A^{C}\right\}$ such that

$$
\left(\bigcup_{i=1}^{k} U_{\alpha_{i}}\right) \cup A^{C}=X
$$

Since $A \subset X$ and $A \cap A^{C}=\varnothing$, we must have

$$
A \subset \bigcup_{i=1}^{k} U_{\alpha_{i}}
$$

We have the following 2 variants of compactness:Definition 72 (Sequential Compactness)
A set $A \subset(X, d)$ is said to be sequentially compact if every sequence ${ }^{1}$ $\left\{x_{n}\right\} \subset A$ has a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x_{0} \in A$.
${ }^{1}$ Beware that this is not the same as completeness.

Exercise 28.1.1

Show that for $A \subset \mathbb{R}^{n}, A$ is compact iff A is sequentially compact.

Proof

(\Longrightarrow) Suppose A is not sequentially compact. Then

$$
\exists\left\{x_{n}\right\} \subset A \forall\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\} \forall x_{0} \in A x_{n_{k}} \nrightarrow x_{0}
$$

Let this $\left\{x_{n}\right\}=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$. Let

$$
U_{n}=A \backslash\left\{x_{j} \mid j \geq n\right\}
$$

Then it is clear that

$$
\bigcup_{n=1}^{\infty} U_{n}=A
$$

i.e. $\left\{U_{n}\right\}$ is a cover of A. Since A is compact, $\left\{U_{n}\right\}$ has a finite subcover, say $\left\{U_{n_{1}}, U_{n_{2}}, \ldots, U_{n_{k}}\right\}$. WMA $n_{1}<n_{2}<\ldots<n_{k}$. Then

$$
A=\bigcup_{m=1}^{k} U_{n_{m}}=A \backslash\left\{x_{j} \mid j \geq n_{k}\right\}
$$

But that is impossible since $x_{n_{k}+1} \notin \bigcup_{m=1}^{k} U_{n_{k}}$. Thus A must be
sequentially compact.
(\Longleftarrow) Suppose A is sequentially compact. Then

$$
\forall\left\{x_{n}\right\} \subset A \exists\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\} \exists x_{0} \in A x_{n_{k}} \rightarrow x_{0} .
$$

Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be a cover of A. Yet to figure out where to go from
here. Tried looking into trying to construct a finite subcover using the convergent subsequence, but that actually leads to nowhere.

- Theorem 73 (Sequential Compactness is Equivalent to BWP)

Let (X, d) be a metric space. TFAE:

1. (X, d) is sequentially compact.
2. (X, d) has the BWP.

- Proof

(\Longrightarrow) Let (X, d) be sequentially compact. Let $A \subset(X, d)$ be infinite. By sequential compactness, every sequence $\left\{x_{n}\right\} \subset A$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$, such that $x_{n_{k}} \rightarrow x_{0} \in A$. \dashv
(\Longleftarrow) Suppose (X, d) has the BWP. Let $\left\{x_{n}\right\}$ be a sequence in X. If $\left\{x_{n}\right\}$ is not infinite (as a set), then it has a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k_{1}}}=x_{n_{k_{2}}}$ for all k_{1}, k_{2}, which is convergent. WMA $\left\{x_{n}\right\}$ is infinite (as a set). By the BWP, $\left\{x_{n}\right\}$ (as a set) has a limit point $x_{0} \in\left\{x_{n}\right\}$. Then for $k \in \mathbb{N} \backslash\{0\}$, let

$$
x_{n_{k}} \in B\left(x_{0}, \frac{1}{k}\right) .
$$

Clearly then $x_{n_{k}} \rightarrow x_{0}$, and $\left\{x_{n_{k}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$.Definition 74 (Finite Intersection Property (FIP))
}

A collection $\left\{A_{\alpha}\right\}_{\alpha \in I}$ of subsets of X is said to have the finite intersec-
tion property (FIP) if

$$
\bigcap_{i=1}^{n} A_{n} \neq \varnothing
$$

for all finite subcollections $\left\{A_{1}, \ldots, A_{n}\right\}$.

Example 28.1.1

Let $F_{n}=[n, \infty)$. Then $\left\{F_{n}\right\}_{n=1}^{\infty}$ has the FIP, but $\bigcap_{n=1}^{\infty} F_{n}=\varnothing$.

The following theorem can be seen as an upgrade to Cantor's Intersection Principle for compact metric spaces: instead of allowing only a countably infinite intersection, we can now take an arbitrary number of intersections.

Theorem 74 (FIP and Compactness)

Let (X, d) be a metric space. TFAE:

1. (X, d) is compact.
2. If $\left\{F_{\alpha}\right\}_{\alpha \in I}$ is a non-empty collection of closed sets with the FIP, then

$$
\bigcap_{\alpha \in I} F_{\alpha} \neq \varnothing .
$$

Remark 28.1.1

As compared to Cantor's Intersection Principle, we do not need the notion of a diameter of a set to achieve this result in a compact set.

Proof

$(1) \Longrightarrow(2)$ Suppose to the contrary that for a non-empty collection $\left\{F_{\alpha}\right\}_{\alpha \in I}$ of closed sets with the FIP, we have

$$
\bigcap_{\alpha \in I} F_{\alpha}=\varnothing .
$$

Let $U_{\alpha}=F_{\alpha}^{C}$. Then by De Morgan's Laws, we have $X=\bigcup_{\alpha \in I} U_{\alpha}$. Since (X, d) is compact, $\exists\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}\right\}$ such that

$$
\bigcup_{i=1}^{n} U_{\alpha_{i}}=X
$$

But that implies that

$$
\varnothing=X^{C}=\left(\bigcup_{i=1}^{n} U_{\alpha_{i}}\right)^{C}=\bigcap_{i=1}^{n} F_{\alpha_{i}}
$$

contradicting FIP.
$(2) \Longrightarrow$ (1) Suppose to the contrary that $\left\{U_{\alpha}\right\}_{\alpha \in I}$, a cover of X, has no finite subcover. Then $\forall\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}\right\}$, we must have

$$
X \backslash \bigcup_{i=1}^{n} U_{\alpha_{i}} \neq \varnothing
$$

i.e., by De Morgan's Laws, $\bigcap_{i=1}^{n} U_{\alpha_{i}}^{C} \neq \varnothing$. Then $\left\{F_{\alpha}\right\}_{\alpha \in I}$, where $F_{\alpha}=U_{\alpha}^{C}$, is a non-empty collection of closed sets with the FIP (by our argument), but via De Morgan's Laws, we have

$$
\bigcap_{\alpha \in I} F_{\alpha}=\varnothing
$$

contradicting our assumption.

Corollary 75 (Generalized Nested Interval Theorem for Compact Metric Spaces)

Let (X, d) be compact and $\left\{F_{N}\right\}_{n=1}^{\infty}$ be a sequence of non-empty closed sets such that $F_{n+1} \subset F_{n}$. Then

$$
\bigcap_{n=1}^{\infty} F_{n} \neq \varnothing
$$

Corollary 76 (Compact Metric Spaces are Complete)
If (X, d) is compact, then (X, d) is complete.

```
G6 Note 28.1.1
```

Recall the definition for compactness, in which we may then have the following notion: for a compact set (X, d), for $\varepsilon>0$, since $\{B(x, \varepsilon)\}_{x \in X}$ is an open cover of X, we know that there exists $x_{1}, \ldots, x_{n} \in X$ such that they form a finite subcover on X.

$$
X=\bigcup_{i=1}^{n} B\left(x_{i}, \varepsilon\right)
$$

We use the same idea and make the following definition:Definition 75 (ε-net)

Given $A \subset(X, d)$ and $\varepsilon>0$. An ε-net for A is a set $\left\{x_{\alpha}\right\}_{\alpha \in I} \subset X$ such that

$$
A \subset \bigcup_{\alpha \in I} B\left(x_{i}, \varepsilon\right)
$$

Definition 76 (Totally Bounded)
We say that a subset $A \subset(X, d)$ is totally bounded if A has a finite ε-net for every $\varepsilon>0$.

Theorem 77 (Compact Sets are Totally Bounded)

If (X, d) is compact, then (X, d) is totally compact.

Proof

The proof immediately follows from the definition of compactness, as discussed in Note 28.1.1.

Note that bounded and totally bounded are not equivalent.

Example 28.1.2

Let

$$
S=\left\{\left\{x_{n}\right\} \in \ell_{\infty} \mid\left\|\left\{x_{n}\right\}\right\|_{\infty} \leq 1\right\} .
$$

We have that S is bounded, but it does not have a $\frac{1}{2}$-net.

Proposition 78 (A Set is Totally Bounded iff Its Closure is Totally Bounded)
$A \subset(X, d)$ is totally bounded iff \bar{A} is totally bounded.
\qquad
θ Proof
The (\Longleftarrow) direction is immediate, since $A \subset \bar{A}$. It suffices to show for (\Longrightarrow). Suppose A is totally bounded. If A is closed, then we are done, so WMA A is open. Then $\operatorname{Lim}(A) \nsubseteq A$. Let $x_{0} \in \operatorname{Lim}(A) \backslash A$. Since x_{0} is a limit point, for any $\varepsilon>0, B\left(x_{0}, \varepsilon\right) \cap$ $A \neq \varnothing$. Need to verify definition of an ε-net.

29
 - Lecture 29 Nov 19th

29.1

Compactness (Continued 2)

Theorem 79 (Compact Sets have BWP)
If (X, d) is compact, then (X, d) has the BWP.

Proof

Suppose $S \subset X$ is infinite. Then we can obtain a sequence $\left\{x_{n}\right\} \subset S$ such that for $n \neq m, x_{n} \neq x_{m}$. Then, consider

$$
F_{n}=\left\{x_{n}, x_{n+1}, \ldots\right\}
$$

We have that $F_{n+1} \subseteq F_{n}$ and we observe that $\left\{F_{n}\right\}$ has the FIP, i.e.

$$
\exists x_{0} \in \bigcap_{n=1}^{\infty} F_{n} .
$$

Then for any $\varepsilon>0$, for any $n \in \mathbb{N}$, we have that

$$
B\left(x_{0}, \varepsilon\right) \subset F_{n}
$$

In fact, $B\left(x_{0}, \varepsilon\right) \cap\left\{x_{n}\right\} \neq \varnothing$ is also infinite. Thus $x_{0} \in \operatorname{Lim}(S)$.

$$
\text { Proposition 8o (Sequential Compactness } \Longrightarrow \text { Completeness }
$$

and Total Boundedness)

If (X, d) is sequentially compact, then (X, d) is both complete and totally bounded.

Proof

Completeness Let $\left\{x_{n}\right\} \subset X$ be Cauchy. Then by the assumption that X is sequentially compact, $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x_{0} \in X$. Then by DTheorem 47, $x_{n} \rightarrow x_{0} . \dashv$

Totally Bounded Suppose to the contrary that X is not totally bounded, i.e. $\exists \varepsilon_{0}>0$ such that X has no finite ε_{0}-net. Then we can find $x_{1} \in X$ such that $B\left(x_{1}, \varepsilon_{0}\right) \neq X$, an $x_{2} \in X \backslash B\left(x_{1}, \varepsilon_{0}\right)$, $x_{3} \in X \backslash\left(B\left(x_{1}, \varepsilon_{0}\right) \cup B\left(x_{2}, \varepsilon_{2}\right)\right)$, and so on. In other words, we can construct a sequence $\left\{x_{n}\right\} \subset X$ such that $d\left(x_{n}, x_{m}\right)>\varepsilon$ for all $n \neq$ m. Then by construction, $\left\{x_{n}\right\}$ has no convergent subsequences, i.e. X is not sequentially compact.

Theorem 81 (Continuity Preserves Sequential Compactness)

If (X, d) is sequentially compact and if $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is continuous, then $f(X)$ is sequentially compact.

Proof

Let $\left\{y_{n}\right\} \subset f(X)$. Consider $\left\{x_{n}\right\}$ such that $f\left(x_{n}\right)=y_{n}$. Since X is sequentially compact, $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$ with $x_{n_{k}} \rightarrow x_{0}$. Then by continuity,

$$
y_{n_{k}}=f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)=y_{0} .
$$

Corollary 82 (Extreme Value Theorem)

If (X, d) is sequentially compact and $f: X \rightarrow \mathbb{R}$ is continuous, then
$\exists c, d \in X$ such that

$$
f(c) \leq f(x) \leq f(d)
$$

for all $x \in X$.

Proof

By Theorem 81, $f(X)$ is sequentially compact in \mathbb{R}, and by
Proposition 80, $f(X)$ is complete, and so by Heine-Borel, $f(X)$
is closed and bounded. Thus

$$
\sup (f(X)), \inf (f(X)) \in f(X)
$$

Theorem 83 (Lesbesgue)

Let (X, d) be sequentially compact. Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open cover of X.
Then $\exists \varepsilon>0$ such that for every $0<\delta<\varepsilon$, and every $x \in X$ such that for some $\alpha_{0} \in I$

$$
B\left(x_{0}, \delta\right) \subset U_{\alpha_{0}} .
$$

Proof

If $U_{\alpha_{0}}=X$, then any $\varepsilon>0$ will work. WMA $U_{\alpha} \neq X$ for any $\alpha \in I$. Let $\varphi: X \rightarrow \mathbb{R}$ be defined by

$$
\varphi(x)=\sup \left\{\delta>0: B(x, \delta) \subseteq U_{\alpha_{0}}, \alpha_{0} \in I\right\} .
$$

Since $\left\{U_{\alpha}\right\}_{\alpha \in I}$ is an open cover of X, every x must be in one of the U_{α} 's, and so the set

$$
\left\{\delta>0: B(x, \delta) \subseteq U_{\alpha_{0}}, \alpha_{0} \in I\right\}
$$

is non-empty and $\varphi(x)>0$. Also, $\varphi(x)<\infty$, since X is bounded
(as X is sequentially compact) and $U_{\alpha} \neq X$ for any $\alpha \in I$.

Now for any $x, y \in X,{ }^{1}$ we have that

$$
\varphi(x) \leq \varphi(y)+d(x, y)
$$

by the Triangle Inequality. Thus

$$
\varphi(x)-\varphi(y) \leq d(x, y)
$$

and by symmetry we have

$$
|\varphi(x)-\varphi(y)| \leq d(x, y)
$$

Thus φ is Lipschitz, and so φ is uniformly continuous ${ }^{2}$. Then by the Extreme Value Theorem, $\exists \varepsilon>0$ such that $\exists \varepsilon>0$ such that $\varphi(x) \geq \varepsilon$ for all $x \in X$.

ff Note 29.1.1

The ε in Lesbesgue's Theorem is also called a Lesbesgue Number.

Theorem 84 (Lesbesgue-Borel)

Let (X, d) be a metric space. TFAE:

1. (X, d) is compact.
2. (X, d) has BWP.
3. (X, d) is seqentially compact.
\qquad
Proof

We already have $(1) \Longrightarrow(2)$ and $(2) \Longleftrightarrow(3)$. It suffices to prove $(3) \Longrightarrow(1)$. Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be a cover of X. By Lesbesgue's Theorem, let $\varepsilon_{0}>0$, and fix $0<\delta<\varepsilon_{0}$. Since (X, d) is totally
The ${ }^{2}$
\qquad
${ }^{1}$ I should check in with the professor on how to show this
${ }^{2}$ see note on definition of Lipschitz.
bounded (as it sequentially compact), there exists $\left\{x_{1}, \ldots, x_{n}\right\}$ with

$$
X=\bigcup_{i=1}^{n} B\left(x_{i}, \delta\right) .
$$

Then for each i, we have that $B\left(x_{i}, \delta\right) \subset U_{\alpha_{i}}$ for some $\alpha_{i} \in I$. Then

$$
X=\bigcup_{i=1}^{n} U_{\alpha_{i}}
$$

is a finite subcover of the cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$.

PTheorem 85 (Compactness \Longleftrightarrow Completeness + Totally
Bounded)

Let (X, d) be a metric space. TFAE:

1. (X, d) is compact.
2. (X, d) is complete and totally bounded.

Proof

By Theorem 84 and Proposition 80, we have $(1) \Longrightarrow(2)$.
Thus it suffices to show for $(2) \Longrightarrow(1)$. Notice that we only need to show that (X, d) is sequentially compact. Let $\left\{x_{n}\right\} \subset$ (X, d).

Since (X, d) is totally bounded, X can be covered by finitely many open balls of radius 1 . Thus one such ball $S_{1}=B\left(y_{1}, 1\right)$, for some $y_{1} \in X$, contains infinitely many terms in $\left\{x_{n}\right\}^{3}$.

Similarly, X can be covered by finitely many open balls of radius $\frac{1}{2}$, and we can pick one of these open balls $S_{2}=B\left(y_{2}, \frac{1}{2}\right)$ which contains infinitely many terms in $\left\{x_{n}\right\} \cap S_{1}$.

Recursively, we may construct a sequence of open balls

$$
\left\{S_{k}=B\left(y_{k}, \frac{1}{k}\right)\right\}
$$

${ }^{3}$ Note that sequences are infinitary by nature in our context.
with the property that each S_{k+1} contains infinitely many terms in

$$
\left\{x_{n}\right\} \cap\left(\bigcap_{i=1}^{k} S_{i}\right) .
$$

Note that

$$
\operatorname{diam}\left(S_{k}\right)=\frac{2}{k} \rightarrow 0
$$

as $k \rightarrow \infty$, and since can pick

$$
n_{1}<n_{2}<\ldots<n_{k}<\ldots
$$

such that

$$
x_{n_{k}} \in \bigcap_{i=1}^{k} S_{i}
$$

WMA for some $N \in \mathbb{N}$, for any $k, m \geq N$, we have that $x_{n_{k}}, x_{n_{m}} \in$ S_{N}, i.e.

$$
d\left(x_{n_{k}}, x_{n_{m}}\right) \leq \operatorname{diam}\left(S_{N}\right)
$$

Thus $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ is Cauchy. Since (X, d) is complete, $x_{n_{k}} \rightarrow x_{0}$, and therefore X is sequentially compact by definition.

The proof of the following theorem was left as an exercise:

Theorem 86 (Continuity Preserves Compactness)

If $\left(X, d_{X}\right)$ is compact and $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is continuous, then $f(X)$ is compact in Y.

```
Proof
```

The proof easily follows from - Theorem 84 and Theorem 81.

Finite Dimensional Normed Linear SpacesDefinition 77 (Bounded Linear Map)
A linear map $T:\left(V,\|\cdot\|_{V}\right) \rightarrow\left(W,\|\cdot\|_{W}\right)$ is said to be bounded if

$$
\|T\|_{T}=\sup \left\{\|T(v)\|_{W} \mid\|v\|_{V} \leq 1\right\}<\infty
$$

In assignment 3, we proved the following important result about
linear maps in finite dimensional normed linear spaces.

PTheorem 87 (Boundedness is Equivalent to Continuity in Finite Dimensional Normed Linear Spaces)

Let $T:\left(V,\|\cdot\|_{V}\right) \rightarrow\left(W,\|\cdot\|_{W}\right)$ be a linear map. TFAE:

1. T is bounded.
2. T is continuous.
3. T is continuous at 0 .

Lemma 88 (Continuity of the Norm)
The function $f:(V,\|\cdot\|) \rightarrow \mathbb{R}$ given by $f(x)=\|x\|$ is continuous.

Proposition 89 (Linear Map Between Spaces of Different
Dimensions is Bounded)
Let $T:\left(\mathbb{R}^{n},\|\cdot\|_{2}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ be linear. Then T is bounded.

Proof

Since T is a linear map, we may represent T using a matrix A such that

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]=\left[\begin{array}{c}
\vec{a}_{1} \\
\vec{a}_{2} \\
\vdots \\
\vec{a}_{m}
\end{array}\right] .
$$

If $\|x\| \leq 1$, then

$$
\|T(x)\|_{2}=\left\|\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
\vec{a}_{1} \cdot \vec{x} \\
\vec{a}_{2} \cdot \vec{x} \\
\vdots \\
\vec{a}_{m} \cdot \vec{x}
\end{array}\right]\right\|
$$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{m}\left(\vec{a}_{i} \cdot \vec{x}\right)^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{i=1}^{m}\left\|\vec{a}_{i}\right\|^{2}\|\vec{x}\|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{i=1}^{m}\left\|\vec{a}_{i}\right\|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

This completes the proof.

Theorem 90 (Boundedness of Functions between n-dimensional
Vector Spaces and n-dimensional Normed Linear Spaces)
Let $\left(V,\|\cdot\|_{V}\right)$ be an n-dimensional normed linear space with basis
$\left\{v_{1}, \ldots, v_{n}\right\}$. Let $\Gamma_{n}: \mathbb{R}^{n} \rightarrow V$ be given by

$$
\Gamma_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n} .
$$

Then Γ_{n} and Γ_{n}^{-1} are both bounded. Furthermore, they are both continuous by - Theorem 87.

Proof
Γ_{n} is bounded Suppose $\left\|\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\|_{2} \leq 1$. Then

$$
\begin{aligned}
\left\|\Gamma_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\|_{V} & =\left\|\alpha_{1} v_{1}+\ldots \alpha_{n} v_{n}\right\|_{V} \\
& \leq\left|\alpha_{1}\right|\left\|v_{1}\right\|_{V}+\ldots\left|\alpha_{n}\right|\left\|v_{n}\right\|_{V} \\
& \leq \sum_{i=1}^{n}\left\|v_{i}\right\|_{V} .
\end{aligned}
$$

Γ_{n}^{-1} is bounded Note that since Γ_{n} is bounded, it is continuous.
Consider

$$
S=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n} \mid\left\|\left(\alpha_{1}, \ldots, \alpha_{n}\right)=1\right\|_{2}=1\right\} .
$$

Since S is closed and bounded, and is a subset of \mathbb{R}^{n}, S is compact by the Heine-Borel Theorem, and so $\Gamma(S)$ is compact in V by -Theorem 86. Since the mapping $v \rightarrow\|v\|_{V}$ is continuous, by the

Extreme Value Theorem,

$$
\min \left\{\left\|\Gamma_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\|_{V} \mid\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in S\right\}=\alpha>0
$$

It follows y continuity that if $\|v\|_{V} \leq \alpha$, then $\left\|\Gamma_{n}^{-1}(v)\right\|_{2} \leq 1$.
Therefore, we have that $\left\|\Gamma_{n}^{-1}\right\| \leq \frac{1}{\alpha}$.

6 © Note 30.2.1

1. Γ_{n} is a homeomorphism.
2. As a consequence of Γ being continuous, we have that $\left\{x_{n}\right\}$ is Cauchy in \mathbb{R}^{n} iff $\left\{\Gamma\left(x_{n}\right)\right\}$ is Cauchy in $\left(V,\|\cdot\|_{V}\right)$.
3. As a result, $\left(V,\|\cdot\|_{V}\right)$ is complete by the Heine-Borel Theorem. Since V is arbitrary, we have that all finite dimensional normed linear spaces are complete.

Theorem 91 (The Basis of a Infinite Dimensional Banach Spaces is Uncountable)

Suppose $(W,\|\cdot\|)$ is a infinite dimensional Banach Space. If $\left\{w_{\alpha}\right\}_{\alpha \in I}$ is a basis of W, then I is uncountable.

Exercise 30.2.1

Prove - Theorem 91 (see also in A_{3}).

Theorem 92 (All Linear Maps Between Finite Dimensional
Normed Linear Spaces are Bounded)
If $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ are finite dimensional normed linear spaces, and $T: V \rightarrow W$ is linear, then T is bounded.

Proof

Consider the following diagram that illustrates the relationship between each of the spaces: Then, we define $S:\left(\mathbb{R}^{n},\|\cdot\|_{2}\right) \rightarrow$

Figure 30.1: Relationship between the finite dimensional normed linear spaces.
$\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ such that $S=\Gamma_{m} \circ T \circ \Gamma_{n}^{-1}$. By Proposition $89, S$ is continuous. Consequently, we have that $T=\Gamma_{m}-1 \circ S \circ \Gamma_{n}$, which is a composition of continuous functions. Thus T is continuous, and hence bounded.

Corollary 93 (All Linear Maps from A Finite Dimensional Normed Linear Space to Any Normed Linear Space is Bounded)

If $\left(V,\|\cdot\|_{V}\right)$ is a finite dimensional normed linear space, and $T:\left(V,\|\cdot\|_{V}\right) \rightarrow$ $\left(W,\|\cdot\|_{W}\right)$ is linear, then T is bounded.

In the last lecture, we discovered that if $\left(V,\|\cdot\|_{V}\right)$ is an n-dimensional normed linear space, then

$$
\left(V,\|\cdot\|_{V}\right) \simeq\left(\mathbb{R}^{n},\|\cdot\|_{2}\right) .
$$

Notice that if $v \in V$, then $v=\Gamma_{n}\left(\Gamma_{n}^{-1}(v)\right)$, and so

$$
\|v\|=\left\|\Gamma_{n}\left(\Gamma_{n}^{-1}(v)\right)\right\| \leq\left\|\Gamma_{n}\right\|\left\|\Gamma_{n}^{-1}(v)\right\|_{2} .
$$

By applying Γ_{n}^{-1} once more, we have

$$
\left\|\Gamma_{n}^{-1}(v)\right\|_{2} \leq\left\|\Gamma_{n}^{-1}\right\|\|v\|_{V} .
$$

It follows that if we let $\alpha=\frac{1}{\left\|\Gamma_{n}^{-1}\right\|}$ and $\beta=\left\|\Gamma_{n}\right\|$, then

$$
\alpha\left\|\Gamma_{n}^{-1}(v)\right\|_{2} \leq\|v\|_{V} \leq \beta\left\|\Gamma_{n}^{-1}(v)\right\|_{2}
$$

for every $v \in V$.
We can deduce the following from the above:

1. A set $A \subset V$ is open/closed/compact if V iff $\Gamma_{n}^{-1}(A)$ is open/closed/compact in \mathbb{R}^{n}.
2. $A \subset(V,\|\cdot\|)$ is compact iff A is closed and bounded ${ }^{1}$.
${ }^{1}$ This is also known as the Heine-Borel Property.
3. A sequence $\left\{v_{n}\right\}$ is Cauchy/converges to v_{0} in $\left(V,\|\cdot\|_{V}\right)$ iff $\left\{\Gamma_{n}\left(v_{n}\right)\right\}$
is Cauchy/converges to $\Gamma_{n}\left(v_{0}\right)$ in $\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$.

The following result follows from our observations above:

[^8]Let $\left(V,\|\cdot\|_{V}\right)$ be a finite dimensional normed linear space. Then $\left(V,\|\cdot\|_{V}\right)$ is complete. In particular, if $\left(W,\|\cdot\|_{W}\right)$ is any normed linear space, and V is a finite dimensional subspace of W, then V is closed in W.

Example 31.1.1 (Unbounded Linear Function)

Let $\left(W,\|\cdot\|_{W}\right)$ be infinite dimensional, with basis $\left\{v_{\alpha}\right\}_{\alpha \in I}$. WMA that $\left\{v_{\alpha}\right\}_{W}=1$. Choose a countable collection $\left\{v_{1}, v_{2}, \ldots\right\} \subset\left\{v_{\alpha}\right\}_{\alpha \in I}$, and define

$$
\varphi\left(v_{\alpha}\right)= \begin{cases}n & v_{\alpha}=v_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Then if $w=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}$, we have

$$
\varphi(w)=\sum_{i=1}^{n} \alpha_{i} \varphi\left(v_{\alpha_{i}}\right)
$$

Then $\varphi: W \rightarrow \mathbb{R}$ is linear.

Question: Is φ bounded? No.

31.2 Uniform Continuity

We will finish on compactness with a few more results about uniform continuity.

PTheorem 95 (Sequential Characterization of Uniform Continuity)

Let $f:\left(X, d_{X}\right) \rightarrow\left(Z, d_{Z}\right)$.TFAE:

1. f is uniformly continuous.
2. if $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset X$ with $d\left(x_{n}, y_{n}\right) \rightarrow 0$, then $d\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \rightarrow 0$.

Proof

$(1) \Longrightarrow(2) f$ is uniformly continuous
$\Longrightarrow \forall \varepsilon>0 \exists \delta>0 \forall x, y \in X d_{X}(x, y)<\delta \Longrightarrow$
$d_{Z}(f(x), f(y))<\varepsilon$
$\Longrightarrow \exists N_{0} \in \mathbb{N} \forall n \geq N_{0} d_{X}\left(x_{n}, y_{n}\right)<\delta \Longrightarrow d_{Z}\left(f\left(x_{n}\right), f\left(y_{n}\right)\right)<$
$\varepsilon \dashv$
$(2) \Longrightarrow(1) f$ is not uniformly continuous

$$
\begin{aligned}
& \Longrightarrow \exists \varepsilon_{0}>0 \forall \delta>0 \exists x_{0}, y_{0} \in X \\
& d_{X}\left(x_{0}, y_{0}\right)<\delta \wedge d_{Z}\left(f\left(x_{0}\right), f\left(y_{0}\right)\right)>\varepsilon_{0} \\
& \Longrightarrow \forall N \in \mathbb{N} \exists n_{0} \geq N \\
& d_{X}\left(x_{n}, y_{n}\right)<\frac{1}{n} \wedge d_{Z}\left(f\left(x_{n}\right), f\left(y_{n}\right)\right)>\varepsilon_{0} \dashv
\end{aligned}
$$

DTheorem 96 (Continuous Functions from a Compact Set Is

Uniformly Continuous)
If $\left(X, d_{X}\right)$ is compact and if $f:\left(X, d_{X}\right) \rightarrow\left(Z, d_{Z}\right)$ is continuous, then f is uniformly continuous.

Proof

Suppose to the contrary that f is not uniformly continuous

$$
\begin{aligned}
& \Longrightarrow\left(\because \text { - Theorem 95) } \forall\left\{x_{n}\right\},\left\{y_{n}\right\} \subset X\right. \\
& d_{X}\left(x_{n}, y_{n}\right) \rightarrow 0 \wedge d_{Z}\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \varepsilon_{0}>0
\end{aligned}
$$

But compactness $\Longrightarrow \exists\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\},\left\{y_{n_{k}}\right\} \subset\left\{y_{n}\right\}$ such that

$$
\begin{aligned}
& x_{n_{k}} \rightarrow x_{0} \in X \wedge y_{n_{k}} \rightarrow y_{0} \in X \\
& \Longrightarrow(\because \text { continuity }) f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right) \wedge f\left(y_{n_{k}}\right) \rightarrow f\left(y_{0}\right) \\
& \Longrightarrow d_{Z}\left(f\left(x_{n_{k}}\right), f\left(y_{n_{k}}\right)\right) \rightarrow 0
\end{aligned}
$$

Assume $\left(X, d_{X}\right)$ is compact and that $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is continuous and bijective. Then $f^{-1}: Y \rightarrow X$ is continuous. In particular, f is a homeomorphism.

[^9]Notice that $\left(f^{-1}\right)^{-1}=f$. Thus it suffices to show that if $U \subset X$ is open, then $f(U)$ is open in Y. Also, note that $Y=f(X)$ is compact as X is compact.
$U \subset X$ is open $\Longrightarrow F=U^{C}$ is closed
$\Longrightarrow F$ is compact ($\because f$ is continuous)
$\Longrightarrow f(F)$ is compact in Y
$\Longrightarrow f(F)$ is closed
$\Longrightarrow f(U)=(f(F))^{C}$ is open $(\because f$ is bijective $)$

31.3
 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$

31.3 .1

Weierstrass Approximation Theorem

Example 31.3.1

Note that by Taylor's Expansion, we have that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\ldots
$$

Consider the partial sum

$$
S_{k}(x)=\sum_{n=0}^{k} \frac{x^{n}}{n!}
$$

Then we have that $S_{k}(x) \rightarrow e^{x}$ pointwise on \mathbb{R}. In fact, $S_{k}(x) \rightarrow e^{x}$ uniformly on $[-M, M]$.

Question: Given a function $f \in C[a, b]$, can f be uniformly approximated by polynomials?

Before going further, notice that if, e.g. we let

$$
\varphi(x)=\frac{x-a}{b-a}
$$

then $\varphi:[a, b] \rightarrow[0,1]$ bijectively so. Also, φ is continuous. Its inverse,

$$
\varphi^{-1}(x)=x(b-a)+a
$$

is also continuous. We can then define $\Gamma: C[0,1] \rightarrow C[a, b]$ by

$$
\Gamma(f)(x)=f \circ \varphi^{-1}(x)
$$

whose inverse is

$$
\Gamma^{-1}: C[a, b] \rightarrow C[0,1] \text { given by } \Gamma^{-1}(f)(x)=f \circ \varphi(x)
$$

Notice that Γ is an isometry: we have

$$
\|\Gamma(f)-\Gamma(g)\|_{\infty}=\|f-g\|_{\infty}
$$

for any $f, g \in C[0,1]$. Moreover, $\Gamma(p)$ is a polynomial iff p is a polynomial. ${ }^{2}$

Thus every continuous function in $C[a, b]$ can be uniformly approximated by polynomials iff the same is true in $C[0,1]$, i.e. we only need to consider continuous functions on $[0,1]$ for approximations.

Next, observe that if $f \in C[0,1]$, and if we can approximate

$$
g(x)=f(x)-([f(1)-f(0)] x+f(0)])
$$

uniformly to within $\varepsilon>0$ 3, i.e.

$$
\|g-p\|_{\infty}<\varepsilon
$$

we may do the same for $f(x)$ with polynomials

$$
\|g-p\|_{\infty}<\varepsilon \Longleftrightarrow\|f-[p-q]\|<\varepsilon
$$

where $q(x)=f(1)-f(0)$. Notice that here, we have

$$
g(0)=0=g(1)
$$

${ }^{2}$ Basically, this part shows us that we can use φ, which is also a continuous function, to scale the domain of f so as to shrink it down to only at $[0,1]$ instead of $[a, b]$.
${ }^{3}$ Notice that if we rearrange the equation, we have

$$
f(x)=g(x)+f(0)+x(f(1)-f(0))
$$

which tells us that if we can approximate g by a polynomial, then we can do so for f cause the later term is also a polynomial.

Lecture 32 Nov 26th
32.1 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ (Continued)

32.1.1
 Weierstrass Approximation Theorem (Continued)

Before proving Weierstrass' Approximation Theorem, we require the following lemma:

Lemma 98 (Lemma for Weierstrass Approximation)
Let $x \in[0,1]$, then if $n \in \mathbb{N}$, we have

$$
\left(1-x^{2}\right)^{n} \geq 1-n x^{2} .
$$

Proof

Let $f(x)=\left(1-x^{2}\right)^{n}-\left[1-n x^{2}\right]$. Notice that $f(0)=0$. Then

$$
f^{\prime}(x)=2 n x\left(1-\left(1-x^{2}\right)^{n-1}\right) \geq 0 .
$$

Thus f is increasing from $x=0$. It follows that

$$
\left(1-x^{2}\right)^{n} \geq 1-n x^{2},
$$

as required.

[^10]

Figure 32.1: Graph of $\left(1-x^{2}\right)^{n}$ for large n, where $x \in[0,1]$.

If $f \in C[a, b]$, then for each $\varepsilon>0$, there exists a polynomial $p(x)$ such
that

$$
\|f-p\|_{\infty}<\varepsilon
$$

Proof

By our discussion by the end of Section 31.3.1, we may assume that $[a, b]=[0,1]$, and that $f(0)=0=f(1)$. Consequently, we may extend f to a uniformly continuous function on \mathbb{R} by defining $f(x)=0$ if $x \in(-\infty, 0] \cup[1, \infty)$.

Now, let $Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}$, where x_{n} is closed such that

$$
\int_{-1}^{1} Q_{n}(t) d t=1
$$

Notice that

$$
\begin{aligned}
\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x & =2 \int_{0}^{1}\left(1-x^{2}\right)^{n} d x \geq 2 \int_{0}^{\frac{1}{\sqrt{n}}}\left(1-n x^{2}\right) d x^{1} \\
& =\frac{4}{3 \sqrt{n}}>\frac{1}{\sqrt{n}}
\end{aligned}
$$

and so we have

$$
c_{n}<\sqrt{n}
$$

For each n, define

$$
\begin{aligned}
p_{n}(x) & =\int_{-1}^{1} f(x+t) Q_{n}(t) d t=\int_{-x}^{1-x} f(x+t) Q_{n}(t) d t^{2} \\
& =\int_{0}^{1} f(u) Q_{n}(u-x) d u .
\end{aligned}
$$

Notice that by Leibniz's Integral Rule, we have

$$
\frac{d^{2 n+1}}{d x^{2 n+1}} p_{n}(x)=\int_{0}^{1} f(u) \frac{\partial^{2 n+1}}{\partial x^{2 n+1}} Q_{n}(u-x) d u=0
$$

by the construction of $Q_{n}(t)$. Thus p_{n} is a polynomial of degree at most $2 n$.

Now, note that since $\int_{-1}^{1} Q_{n}(t) d t=1$, we have that

$$
f(x)=\int_{-1}^{1} f(x) Q_{n}(t) d t
$$

${ }^{1}$ How did we arrive at this new limit of $\frac{1}{\sqrt{n}}$? There is no deep meaning behind the choice of $\frac{1}{\sqrt{n}}$. It's simply because it works.
${ }^{2}$ Here, we can strink the limits of integration, for anything below $-x$ or above $1-x$ are 0 as per our assumption that f is zero at $(-\infty, 0] \cup[1, \infty)$.
Also, in the first integral, we used $Q_{n}(t)$ to average over the transformation $f(x+t)$, and in the last integral, we see that we can "massage" the first integral into one where we have, instead, f as an averaging function over $Q_{n}(u-x)$.

Let $\varepsilon>0$. By continuity of f, we may find $0<\delta<1$ such that

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\frac{\varepsilon}{2}
$$

Then for $x \in[0,1]$, we have

$$
\begin{aligned}
\left|p_{n}(x)-f(x)\right|= & \left|\int_{-1}^{1}(f(x+t)-f(x)) Q_{n}(t) d t\right| \\
\leq & \int_{-1}^{1}|f(x+t)-f(x)| Q_{n}(t) d t \\
= & \int_{-1}^{-\delta}|f(x+t)-f(x)| Q_{n}(t) d t \\
& \quad+\int_{-\delta}^{\delta}|f(x+t)-f(x)| Q_{n}(t) d t \\
& +\int_{\delta}^{1}|f(x+t)-f(x)| Q_{n}(t) d t \\
\leq & 2\|f\|_{\infty} \sqrt{n}\left(1-\delta^{2}\right)^{n}+\frac{\varepsilon}{2}+2\|f\|_{\infty} \sqrt{n}\left(1-\delta^{2}\right)^{n}
\end{aligned}
$$

$$
\begin{equation*}
=4\|f\|_{\infty} \sqrt{n}\left(1-\delta^{2}\right)^{n}+\frac{\varepsilon}{2} \tag{32.1}
\end{equation*}
$$

where Equation (32.1) follows by $\int_{-1}^{1} Q_{n}(t) d t=1$ and $Q_{n}(t) \geq 0$ for $x \in[0,1]$. Then since $0<\delta<1$, it follows that for sufficiently large N, we have

$$
4\|f\|_{\infty} \sqrt{N}\left(1-\delta^{2}\right)^{N} \leq \frac{\varepsilon}{2}
$$

as the $\left(1-\delta^{2}\right)^{N}$ term will "decay" much faster than \sqrt{N}.

Proposition 100 (Moments)

Assume that $f \in C[0,1]$, that

$$
\int_{0}^{1} f(t) d t=0
$$

and

$$
\int_{0}^{1} f(t) t^{n} d t=0
$$

for every $n \in \mathbb{N}$. Then $f(x)=0$ for $x \in[0,1]$.

Figure 32.2: Dirac Sequence

Figure 32.3: One of the Dirac Functions with δ as an inflection point

Exercise 32.1.1

Prove 1 Proposition 100.
Since $f \in C[0,1]$, by the Weierstrass Approximation Theorem, for $\varepsilon>0$, let $p_{n}(x)$ be a polynomial such that $\left\|f-p_{n}\right\|_{\infty}<\varepsilon$. Then by the linearity of integration, and our assumption, we have

$$
\int_{0}^{1} f(t) p_{n}(t) d t=0
$$

Consequently, we have

$$
\int_{0}^{1} f^{2}(t) d t=0
$$

and thus $f(x)=0$ at $[0,1]$.

PTheorem 101 (Banach-Mazurkiewickz Theorem)

Let

$$
\mathrm{ND}([0,1])=\{f \in C[0,1]: f \text { is nowhere differentiable }\} .
$$

Then $\operatorname{ND}([0,1])$ is residual3 in $\left(C[0,1],\|\cdot\|_{\infty}\right)$.

Proof

For each n, define

$$
\begin{aligned}
& \mathcal{F}_{n}=\{f \in C[0,1] \mid \\
& \left.\quad \exists x_{0} \in\left[0,1-\frac{1}{n}\right] \forall 0<h<1-x_{0} \quad\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right| \leq n h\right\} .
\end{aligned}
$$

We notice that each of the \mathcal{F}_{n} 's is closed. incomplete proof, re-

Remark 32.1.1

There is nothing special about $[0,1]$ in the above theorem. In particular, it

[^11]${ }^{3}$ For quick reference, a set is residual if its complement is of first category.
works for any closed interval $[a, b]$.

Corollary 102 (Separability of $\left(C[a, b],\|\cdot\|_{\infty}\right)$)
$\left(C[a, b],\|\cdot\|_{\infty}\right)$ is separable.

[^12]Let

$$
\begin{aligned}
& P_{n}=\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{n}: a_{i} \in \mathbb{R}\right\} \\
& Q_{n}=\left\{r_{0}+r_{1} x+\ldots+r_{n} x^{n}: r_{i} \in \mathbb{Q}\right\} .
\end{aligned}
$$

Then $\bar{Q}_{n}=P_{n}$. Then by the Weierstrass Approximation Theorem, $\bigcup_{n=1}^{\infty} P_{n}$ is dense, and so is the countable set $\bigcup_{n=1}^{\infty} Q_{n}$.

Question: Given a compact metric space (X, d), and a subspace $\Phi \subset C(X)$, how can we tell that Φ is dense?

From here, we shall always assume that (X, d) is a compact metric
space.

Definition 78 (Point-Separating)

We say that $\Phi \subset C(X)$ is point-separating $i f^{1}$

$$
\forall x, y \in X(x \neq y \Longrightarrow \exists f \in \Phi(f(x) \neq f(y)))
$$

Proposition $103(C(X)$ is Point-Separating)
$C(X)$ is point-separating.
\qquad

G6 Note 33.1.1

Suppose that $\Phi \subset C(X)$, and $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$, such that for any $f \in \Phi, f\left(x_{1}\right)=f\left(x_{2}\right)$. Then if $g \in \bar{\Phi}$, we must have $g\left(x_{1}\right)=g\left(x_{2}\right)^{2}$. This shows that if Φ is dense in $C(X)$, then it must separate points.
${ }^{1}$ Note that this definition does mean that every $f \in \Phi$ is injective, as the function may depend on either one or both x and y. Of course, if every $f \in \Phi$ is injective, then Φ is, trivially, point-separating.
${ }^{2}$ For otherwise g would not be continuous
${ }^{3}$ In words, a lattice is a set of functions closed under maxima and minima.

66 Note 33.1.2

1. Notice that

$$
(f \vee g)(x)=\frac{(f(x)+g(x))+|f(x)-g(x)|}{2} \in C(X)
$$

for any $f, g \in C(X)$.
2. For minima, we have

$$
(f \wedge g)(x)=-(-f \vee-g)=\frac{(f(x)+g(x))-|f(x)-g(x)|}{2} \in C(X) .
$$

It follows that since both $f \vee g$ and $f \wedge g$ are in $C(X)$ that $C(X)$ is a lattice. Moreover, if $\Phi \subset C(X)$ is a linear subspace, then Φ is a lattice if $f \vee g \in \Phi$ for every $f, g \in \Phi$.

Example 33.1.1

A function $f \in C[a, b]$ is said to be a piecewise linear if there exists

$$
P=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\},
$$

i.e. a partition of $[a, b]$, such that

$$
f\left[_{\left[t_{i-1}, t_{i}\right]}(x)=m_{i} x+b_{i} .\right.
$$

The function is piecewise polynomial if

$$
f \upharpoonright_{\left[t_{i-1}, t_{i}\right]}=c_{0, i}+c_{1, i} x+\ldots+c_{n, i} x^{n},
$$

where $c_{j, i} \in \mathbb{R}$. Let

$$
\Phi_{1}=\{f \in C[a, b] \mid f \text { is piecewise linear }\}
$$

and

$$
\Phi_{2}=\{f \in C[a, b] \mid f \text { is piecewise polynomial }\} .
$$

It is clear that both Φ_{1} and Φ_{2} are lattices.

Theorem 104 (Stone-Weierstrass Theorem — Lattice Version)

Let (X, d) be a compact metric space. Let Φ be a linear subspace of $C(X)$ such that

1. the constant function $1 \in \Phi$;
2. Φ is point-separating; and
3. $f \vee g \in \Phi$ for any $f, g \in \Phi 5$

Then $\bar{\Phi}$ is dense in $C(X)$.
${ }^{4}$ It is okay that we simultaneously have $1 \in \Phi$ and Φ separating points, for all we need to know that Φ separate points is that for any $x, y \in X$ with $x \neq y$, there exists some $f \in \Phi$ such that $f(x) \neq f(y)$.
${ }^{5}$ This implies that Φ is a lattice by note on page 195 .

Proof

Note that given $\alpha, \beta \in \mathbb{R}$ with $a \neq b \in X$, since Φ is pointseparating (2), we can find $\varphi \in \Phi$ such that $\varphi(a) \neq \varphi(b)$. Then, let

$$
g(t)=\alpha \cdot 1(t)+(\beta-\alpha) \frac{\varphi(t)-\varphi(a)}{\varphi(b)-\varphi(a)^{\prime}}
$$

where $1(t)$ is the constant function $1 \in \Phi$. We have that $g \in \Phi$ since it uses operations of which Φ is closed under. Notice that

I need to get a better pic-
 ture of the motivation of the
 proof.

This is likely not a proof that one can come up in one sitting, especially when it is a theory that covers over 2 centuries of mathematical work. As it is, it is very difficult to understand how this proof came by, and many of the steps are purely constructive.

$$
g(a)=\alpha \text { and } g(b)=\beta .
$$

Let $f \in C(X)$ and $\varepsilon>0$. Now for any pair $x, y \in X$, we can find $\varphi_{x, y} \in \Phi$ such that $\varphi_{x, y}(x)=f(x)$ and $\varphi_{x, y}(y)=f(y){ }^{6}$. Let $x \in X$. Since $\varphi_{x, y}(y)-f(y)=0$, and both $\varphi_{x, y}$ and f are continuous, we can find, for each $y \in X, \mathrm{a} \delta_{y}>0$ such that if $t \in B\left(y, \delta_{y}\right)$, then

$$
-\varepsilon<\varphi_{x, y}(t)-f(t)<\varepsilon
$$

What else can we understand
from $\varphi_{x, y}$?
${ }^{6}$ I feel somewhat on edge not having the faintest idea how $\varphi_{x, y}$ works, except that it separates x and y.

Now since (X, d) is compact, we can find a finite collection $\left\{y_{1}, \ldots, y_{n}\right\} \subset$ X such that

$$
X=\bigcup_{i=1}^{n} B\left(y_{i}, \delta_{y_{i}}\right),
$$

and within each of the $B\left(y_{i}, \delta_{y_{i}}\right)$, we have

$$
-\varepsilon<\varphi_{x, y_{i}}(t)-f(t)<\varepsilon
$$

for $t \in B\left(y_{i}, \delta_{y_{i}}\right)$. Then, let

$$
\varphi_{x}=\varphi_{x, y_{1}} \vee \ldots \vee \varphi_{x, y_{n}}
$$

If $z \in X$, then $z \in B\left(y_{i_{0}}, \delta_{i_{0}}\right)$ for some $i_{0} \in\{1, \ldots, n\}$, and so

$$
f(z)-\varepsilon \leq \varphi_{x, y_{i_{0}}}(z) \leq \varphi_{x}(z)
$$

On the other hand, since $\varphi_{x}(x)-f(x)=0$, and both φ_{x} and f are continuous, for each $x \in X$, we can find a $\delta_{x}>0$ such that if $t \in B\left(x, \delta_{x}\right)$, then

$$
\begin{equation*}
-\varepsilon<\varphi_{x}(t)-f(t)<\varepsilon \tag{33.1}
\end{equation*}
$$

As before, by the compactness of (X, d), we can find $\left\{x_{1}, \ldots, x_{m}\right\} \subset$ X such that

$$
X=\bigcup_{i=1}^{m} B\left(x_{i}, \delta_{x_{i}}\right)
$$

Then, using a similar argument as in the previous case, by Equation (33.1), we have that

$$
\varphi_{x}(t)<f(t)+\varepsilon
$$

Thus, if $z \in B\left(x_{i_{1}}, \delta x_{i_{1}}\right)$ for some $i_{1} \in\{1, \ldots, m\}$, we have

$$
\varphi(z):=\varphi_{x_{1}}(z) \wedge \ldots \varphi_{x_{m}}(z) \leq \varphi_{x_{i_{1}}}(z)<f(z)+\varepsilon .
$$

Consequently, for any $z \in X$, we have that

$$
f(z)-\varepsilon<\varphi(z)<f(z)+\varepsilon
$$

This gives us that for any $W \subset C(X)$, since we can construct such a φ that is within ε-distance of $f, W \cap \bar{\Phi} \neq \varnothing$, thus implying that $\bar{\Phi}$ is dense in $C(X)$.

A subspace $\Phi \subset C(X)$ is a subalgebra if $f \cdot g(x)=f(x) g(x) \in \Phi$ for any $f, g \in \Phi$.

Example 33.1.2

Let

$$
P_{n}=\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right\} .
$$

Then

$$
P=\bigcup_{n=1}^{\infty} P_{n}
$$

is a subalgebra of $C[a, b] .7$
${ }^{7}$ See a quick work in notes on PMATH 347.

Lemma 105 (Closure of a Subalgebra is a Subalgebra)
If $\Phi \subset C(X)$ is a subalgebra, then so is $\bar{\Phi}$.

Proof

Suppose $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$, where $\left\{f_{n}\right\},\left\{g_{n}\right\} \subset \Phi$. Then, we have

$$
\alpha f_{n} \rightarrow \alpha f
$$

for $\alpha \in \mathbb{R}$, and

$$
f_{n}+g_{n} \rightarrow f+g
$$

Note that $\left\{g_{n}\right\}$ is bounded if $g_{n} \rightarrow g$. Then,

$$
\left\|f_{n} g_{n}-f g\right\|_{\infty} \leq\left\|g_{n}\right\|_{\infty}\left\|f_{n}-f\right\|_{\infty}+\|f\|_{\infty}\left\|g_{n}-g\right\|_{\infty}
$$

would imply that $f_{n} g_{n} \rightarrow f g$, and so $f g \in \Phi$.

We are ready for the subalgebra version of Stone-Weierstrass, which we shall prove in the next lecture.

If $\Phi \subset C(X)$ is a linear subspace such that

1. $1 \in \Phi$;
2. Φ is point-separating; and
3. $f \cdot g \in \Phi$ for all $f, g \in \Phi$ (which implies that Φ is a subalgebra).

Then $\bar{\Phi}$ is dense in $C(X)$.

34
 * Lecture 34 Nov 30th

34.1 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ (Continued 3)
34.1.1 Stone-Weierstrass Theorem (Continued)

Subalgebra Version (Continued)

TㅡTheorem 106 (Stone-Weierstrass Theorem — Subalgebra Version)

If $\Phi \subset C(X)$ is a linear subspace such that

1. $1 \in \Phi$;
2. Φ is point-separating; and
3. $f \cdot g \in \Phi$ for all $f, g \in \Phi$ (which implies Φ is a subalgebra).

Then $\bar{\Phi}$ is dense in $C(X)$.

```
| Proof(t t t)
```

By Lemma 105, we may assume that Φ is closed.
Let $f \in \Phi$ and $\varepsilon>0$. Also, let $M=\|f\|_{\infty}$. From the Weierstrass Approximation Theorem, we may find some polynomial

$$
p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

such that for an $\mathrm{y} t \in[-M, M]$, we get

$$
||t|-p(t)|<\varepsilon
$$

Now consider the composition

$$
p \circ f=a_{0} \cdot 1+a_{1} \cdot f+\ldots+a_{n} \cdot f^{n}
$$

which is in Φ. Thus for $x \in X$, we have

$$
||f(t)|-p \circ f(x)|<\varepsilon
$$

This implies that

$$
\||f|-p \circ f\|_{\infty}<\varepsilon
$$

Thus by the closure of Φ, we have that $|f| \in \bar{\Phi}=\Phi$.

Now notice that for $f, g \in \Phi$, since

$$
f \vee g=\frac{f+g+|f-g|}{2}
$$

we have $f \vee g \in \Phi$. Thus by - Theorem 104, $\bar{\Phi}$ is dense in $C(X)$.

Example 34.1.1

Let

$$
\mathcal{P}=\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{n}: n \in \mathbb{N}, a_{i} \in \mathbb{R}\right\} .
$$

Let

$$
\Phi=\operatorname{span}\left\{1, x^{2}, x^{4}, \ldots\right\} \subseteq C[-1,1] .
$$

It is clear that Φ is an algebra. However, it does not separate points, since

$$
(-1)^{2}=1=(1)^{2}
$$

So in this case Φ is not dense.

But what about $C[0,1]$? Notice that x^{2} separates points on $[0,1]$, and all other conditions are still met. Thus Φ is dense in $C[0,1]$.

Figure 34.1: Visualization of the proof for PTheorem 106.

Question: Then what about

$$
\Phi^{\prime}=\operatorname{span}\left\{x^{2}, x^{4}, \ldots\right\} ?
$$

Is Φ^{\prime} dense in $C[0,1]$? No. ${ }^{1}$ If $f \in \Phi^{\prime}$, then $f(0)=0$.

But what about the closure

$$
\overline{\operatorname{span}\left\{x^{2}, x^{4}, \ldots\right\}} \subset C[0,1] ?
$$

> I should find out about this.
> ${ }^{1}$ This was given as a reason but I don't
> know what exactly does it entail. That said, it is clear that Φ^{\prime} separates points, and still a subalgebra, but 1 can we still create the constant function 1 in Φ using only the other generators?

Consider the set

$$
S:=\{f \in C[0,1] \mid f(0)=0\}
$$

which is a closed ideal in $C[0,1]$. Then, in particular, we have that for any $g \in C[0,1]$, we have that $g f, f g \in S$ for any $f \in S$. It can be shown ${ }^{2}$ that

$$
S=\overline{\operatorname{span}\left\{x^{2}, x^{4}, \ldots\right\}}
$$

Consequently, we see that if $f \in S$, we have that
how?
${ }^{2}$ I should probably work this out on my own.

$$
f \in \overline{\operatorname{span}\left\{1, x^{2}, x^{4}, \ldots\right\}}=C[0,1]
$$

Example 34.1.2

Let $X=[0,2 \pi)$ and

$$
A=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}
$$

Consider the function $\varphi: X \rightarrow A$ given by

$$
\varphi(\theta)=e^{i \theta}
$$

It is clear that φ is bijective. We may then define $d: X \rightarrow \mathbb{R}$ by

$$
d\left(\theta_{1}, \theta_{2}\right)=\text { shortest arclength between } e^{i \theta_{1}} \text { and } e^{i \theta_{2}}
$$

Then we have

$$
([0,2 \pi), d) \simeq A
$$

and the space $([0,2 \pi))$ is compact. Then in particular, we have

$$
\{f \in C[0,2 \pi] \mid f(0)=f(2 \pi)\}=C[0,2 \pi) \simeq C(A)
$$

Example 34.1. 3

The set

$$
\operatorname{Trig}([0,2 \pi)):=\operatorname{span}\{1, \cos (n x), \sin (m x) \mid n, m \in \mathbb{Z}\}
$$

is a subalgebra of $C[0,2 \pi)$ that is point separating, and has 1 in it (and closed). By Theorem 106, $\operatorname{Trig}([0,2 \pi))$ is dense in $C[0,2 \pi)$.

66 Note 34.1.1

Consider the set

$$
C(X, \mathbb{C})=\{f: X \rightarrow \mathbb{C} \mid f \text { continuous and bounded }\}
$$

with norm

$$
\|f\|_{\infty}=\sup \{|f(x)| \mid x \in X\}
$$

We say that $\Phi \subset C(X, \mathbb{C})$ is self-adjoint if

$$
f \in \Phi \Longrightarrow \bar{f} \in \Phi
$$

With this, we have the complex version of the Stone-Weierstrass Theorem.

[^13] sion)

If (X, d) is compact and Φ is a linear subspace of $C(X, \mathbb{C})$ that is selfadjoint, with

1. $1 \in \Phi$;
2. Φ separates points; and
3. $f \cdot g \in \Phi$ for any $f, g \in \Phi$.

Then $\bar{\Phi}$ is dense in $C(X, \mathbb{C})$.

Example 34.1.4

Reusing our last example, now

$$
\operatorname{Trig}([0,2 \pi))=\operatorname{span}\left\{e^{i n \theta} \mid n \in \mathbb{Z}\right\}
$$

is dense in $C([0,2 \pi), \mathbb{C})$.

35
 \Rightarrow Lecture 35 Dec 03rd

35.1 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ (Continued 4)

Question: If (X, d) is compact nad $\mathcal{F} \subset C(X)$, when is \mathcal{F} compact?
We require the following notion:

Definition 81 (Equicontinuity)

Let (X, d) be a metric space with $\mathcal{F} \subset C_{b}(X)$. We say that \mathcal{F} is (pointwise) equicontinuous at $x_{0} \in X$ if

$$
\begin{gathered}
\forall \varepsilon>0 \exists \delta_{x_{0}}>0 \forall f \in \mathcal{F} \forall x \in X \\
d\left(x, x_{0}\right)<\delta_{x_{0}} \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon .
\end{gathered}
$$

We say that \mathcal{F} is equicontinuous if it is (pointwise) equicontinous at each $x_{0} \in X$.

We say that \mathcal{F} is uniformly equicontinuous if

$$
\begin{gathered}
\forall \varepsilon>0 \exists \delta>0 \forall f \in \mathcal{F} \forall x, y \in X \\
d(x, y)<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon .
\end{gathered}
$$

[^14]Notice that in the definition above, as compared to regular continuity we have

1. for continuity, δ may depend on ε, f and x_{0};
2. for uniform continuity, δ may depend on ε and f;
3. for equicontinuity, δ may depend on ε and x_{0}; while
4. for uniform equicontinuity, δ may solely depend on ε.

This was outlined on Wikipedia ${ }^{1}$.
${ }^{1}$ So take it with a grain of salt?

Example 35.1.1

A finite collection $\left\{f_{1}, \ldots, f_{n}\right\} \subset C_{b}(X)$ is equicontinuous. This is a clear result since we may check for each of the functions.
(Proposition 108 (Equicontinuity in a Compact Set is Uniform)
If (X, d) is compact and if $\mathcal{F} \subset C(X)$ is equicontinuous, then \mathcal{F} is uniformly equicontinuous.

Proof

Let $\varepsilon>0$. Since \mathcal{F} is equicontinuous, for each $x_{0} \in X$, we can find
$\delta_{x_{0}}>0$ if $x \in B\left(x_{0}, \delta_{x_{0}}\right)$, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2}$ for any $f \in \mathcal{F}$.
Since (X, d) is compact, the cover $\left\{B\left(x_{0}, \delta_{x_{0}}\right)\right\}_{x_{0} \in X}$ has a Lesbesgue
Number $\delta_{0}>0$. Then, let $0<\delta<\delta_{0}$. If for $w, z \in X$ we have $d(w, z)<\delta$, then $z \in B(w, \delta) \subset B\left(x_{0}^{\prime}, \delta_{x_{0}^{\prime}}\right)$ for some $x_{0}^{\prime} \in X$. Then

$$
|f(z)-f(w)| \leq\left|f(z)-f\left(x_{0}\right)\right|+\left|f\left(x_{0}\right)-f(w)\right|<\varepsilon
$$

[^15]A family of functions $\mathcal{F} \subset C_{b}(X)$ is pointwise bounded if for each $x_{0} \in X, \exists M_{x_{0}}>0$ such that $\left|f\left(x_{0}\right)\right|<M_{x_{0}}$ for every $f \in \mathcal{F}$. We say that \mathcal{F} is uniformly bounded if $\exists M>0$ such that $\|f\|_{\infty} \leq M$ for every $f \in \mathcal{F}$.

Proposition 109 (Pointwise Bounded Equicontinuous Functions in a Compact Set are Uniformly Bounded)

Assume that (X, d) is compact and that $\mathcal{F} \subseteq C(X)$ is equicontinuous and pointwise bounded. Then \mathcal{F} is uniformly bounded.

θ Proof

By Proposition $108, \mathcal{F}$ is uniformly equicontinuous. So let $\varepsilon=1$.
Then $\exists \delta>0$ such that for any $x, y \in X$, if $y \in B(x, \delta)$, then $|f(x)-f(y)|<1$ for any $f \in \mathcal{F}$. By compactness of (X, d) there exists a finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ such that

$$
X=\bigcup_{i=1}^{n} B\left(x_{i}, \delta\right)
$$

By assumption, we also know that for each of these $x_{i}{ }^{\prime}$ s, there exists $M_{1}, \ldots, M_{n}>0$ such that for any $f \in \mathcal{F},\left|f\left(x_{i}\right)\right| \leq M_{i}$. Then let

$$
M_{0}=\max \left\{M_{1}, \ldots, M_{n}\right\}
$$

Then for any $z \in X$, we have that $z \in B\left(x_{i_{0}}, \delta\right)$ for some i_{0}. Therefore, we have that

$$
|f(z)| \leq\left|f(z)-f\left(x_{i_{0}}\right)\right|+\left|f\left(x_{i_{0}}\right)\right|<1+M_{0}
$$

E Definition 83 (Relatively Compact Sets)

Let $A \subset(X, d)$. We say that A is relatively compact if \bar{A} is compact.

6f Note 35-1.2
If (X, d) is complete, then we have that A is relatively compact iff A is totally bounded.

Theorem 110 (Arzelà-Ascoli)

Let (X, d) be a compact metric space, and $\mathcal{F} \subset C(X)$. TFAE:

1. \mathcal{F} is relatively compact.
2. \mathcal{F} is equicontinous and pointwise-bounded.

Proof

$(1) \Longrightarrow(2)$ Since (X, d) is compact, it is complete, and so \mathcal{F} being relatively compact implies that \mathcal{F} is totally bounded. Thus \mathcal{F} has a finite $\frac{\varepsilon}{3}$-net $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\} \subset \mathcal{F}$. By an earlier example, we have that $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is equicontinuous, and hence uniformly equicontinuous by Proposition 108. By that, we can find a $\delta>0$ such that $\forall x, y \in X$, if $d(x, y)<\delta$, we have

$$
\left|f_{i}(x)-f_{i}(y)\right|<\frac{\varepsilon}{3}
$$

for all $i=1,2, \ldots, n$.
Now let $f \in \mathcal{F}$ be arbitrary, and let $w, z \in X$ such that $d(w, z)<$ δ. Since \mathcal{F} has a finite $\frac{\varepsilon}{3}$-net, there exists $i_{0}=1,2, \ldots, n$ such that $\left\|f-f_{i_{0}}\right\|_{\infty}<\frac{\varepsilon}{3}$. Thus

$$
\begin{aligned}
|f(w)-f(z)| & \leq\left|f(w)-f_{i_{0}}(w)\right|+\left|f_{i_{0}}(w)-f_{i_{0}}(z)\right|+\left|f_{i_{0}}(z)-f(z)\right| \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}<\varepsilon .
\end{aligned}
$$

Therefore, \mathcal{F} is uniformly continuous and uniformly bounded ${ }^{2}$.
${ }^{2}$ We proved for the stronger version.

$(2) \Longrightarrow(1)$ By Proposition 108 and Proposition 109, we

 have that \mathcal{F} is uniformly continuous and uniformly bounded. Let$\varepsilon>0$. By uniform boundedness, let $M>0$ be such that $|f(x)|<M$ for every $x \in X$ and every $f \in \mathcal{F}$. Consider the partition

$$
P=\left\{-M=y_{0}<y_{1}<y_{2}<\ldots<y_{m}=M\right\},
$$

where $y_{j}-y_{j-1}<\frac{\varepsilon}{3}$ for each $j=0,1, \ldots, m$.

We may also find, by uniform equicontinuity, a $\delta>0$ such that $d(w, z)<\delta$ implies that $|f(z)-f(w)|<\frac{\varepsilon}{3}$. Since (X, d) is totally bounded (as it is compact), we may find, in particular, a finite δ-net $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ such that

$$
X=\bigcup_{i=1}^{n} B\left(x_{i}, \delta\right)
$$

Now consider the set functions

$$
\Phi=\{\varphi \mid \varphi:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}\} .
$$

It is clear that Φ is finite, and so we may write

$$
\Phi=\left\{\varphi-1, \ldots, \varphi_{l}\right\}
$$

where $l=m^{n}$.

Next, for each $k=1, \ldots, l$, let

$$
\mathcal{F}_{k}=\left\{f \in \mathcal{F} \mid f\left(x_{i}\right) \in\left[y_{\varphi_{k}(i)-1}, y_{\varphi_{k}(i)}\right]\right\}
$$

Clearly so, by construction, while some of the \mathcal{F}_{k} 's may be empty, we have that $\left\{\mathcal{F}_{k}\right\}$ partitions \mathcal{F}, i.e.

$$
\mathcal{F}=\bigcup_{k=1}^{l} \mathcal{F}_{k}
$$

Then for each of the non-empty sets \mathcal{F}_{k}, pick a $f_{k} \in \mathcal{F}_{k}$. From here, since we want to show that \mathcal{F} is relatively compact and (X, d) is compact and hence complete itself, it suffices for us to show that \mathcal{F} is totally bounded. In other words, it suffices for us to show that \mathcal{F} has some finite ε-net.

Let $f \in \mathcal{F}$. Then $f \in \mathcal{F}_{k}$ for some $k=1,2, \ldots, l$. Then for

Figure 35.1: Basic Visual Sketch of the Proof of the Arzelà-Ascoli Theorem

212 Lecture 35 Dec 03rd The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ (Continued 4)
$z \in B\left(x_{i_{0}}, \delta\right)$, we have

$$
\begin{aligned}
\left|f(z)-f_{k}(z)\right| & \leq\left|f(z)-f\left(x_{i_{0}}\right)\right|+\left|f\left(x_{i_{0}}\right)-f_{k}\left(x_{i_{0}}\right)\right|+\left|f_{k}\left(x_{i_{0}}\right)-f_{k}(z)\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

This completes the proof.

A \approx Useful Theorems from Earlier Calculus

Theorem A. 1 (Monotone Convergence Theorem)
Let $\left\{x_{k}\right\}$ be a sequence in \mathbb{R}.

1. Suppose $\left\{x_{k}\right\}$ is increasing.

- If $\left\{x_{k}\right\}$ is bounded above, then $x_{k} \rightarrow \sup \left\{x_{k}\right\}$ as $k \rightarrow \infty$.
- If $\left\{x_{k}\right\}$ is not bounded above, then $x_{k} \rightarrow \infty$ as $k \rightarrow \infty$.

2. Suppose $\left\{x_{k}\right\}$ is decreasing.

- If $\left\{x_{k}\right\}$ is bounded below, then $x_{k} \rightarrow \inf \left\{x_{k}\right\}$ as $k \rightarrow \infty$.
- If $\left\{x_{k}\right\}$ is not bounded below, then $x_{k} \rightarrow-\infty$.

1. *

(a) How many relations are there on the set $\{1,2,3, \ldots, n\}$?
(i) n (ii) n^{2} (iii) 2^{n} (iv) $2^{n^{2}}$
(b) Determine the number of equivalence relations on the set $X=$ \{1,2,3\}.
(i) 4 (ii) 5 (iii) 6 (iv) None of the above
(c) Recall that we would say that $A \sim B$ and that A and B have the same cardinality, if there is a $1-1$ and onto function from A to B.

If $X=\{1,2,3,4\}$ and \sim is the equivalence relation on $\mathcal{P}(X)$ as above:
i. How many different equivalence classes are there in this equivalence relation:
A. 4 B. 2^{4} C. 5 D. 2^{5}
ii. List all of the elements of $[A]$ if $A=\{1,2,3\}$.
iii. If $X=\{1,2,3, \ldots, n\}$ and \sim is as in Part $1 c$, how many elements are there in $[A]$ where $A=\{1,2,3, \ldots, k\}$?

$$
\text { A. } 2^{k} \text { B. } k!\text { C. } \frac{n!}{k!} \text { D. } \frac{n!}{k!(n-k)!}
$$

2.(a) Let V be a vector space. Let W be a subspace of V. Show that:

$$
v \sim y \Longleftrightarrow v-y \in W,
$$

defines an equivalence relation on V.
(b) Show that $[z]+[v]=[z+v]$ and $\alpha[z]=[\alpha z]$ is well defined. That
is, show that if $z_{1} \sim z_{2}$ and $v_{1} \sim v_{2}$, then $z_{1}+v_{1} \sim z_{2}+v_{2}$ and $\alpha z_{1} \sim \alpha z_{2}$.

Remark The set $V / W=[v] \mid v \in V$ is a vector space under the operations above. It is called the quotient of V by W.
3. *
(a) Use cardinal arithmetic to determine $\left(\aleph_{0}\right)^{\aleph_{0}}$ and $c^{\aleph_{0} \aleph_{0}}$ and $c^{\aleph_{0}}$.
(b) Show that there exists a 1-1 map from the power set of \mathbb{R} onto the set of all real-valued functions on \mathbb{R} by showing that $2^{c}=c^{c}$.
(c) Explain why there is a one to one and onto map $\Gamma: \mathbb{Q}^{\infty} \rightarrow \mathbb{R}^{\infty}$ where

$$
\mathbb{Q}^{\infty}=\left\{\left\{r_{n}\right\} \mid r_{n} \in \mathbb{Q}\right\}
$$

and

$$
\mathbb{R}^{\infty}=\left\{\left\{s_{n}\right\} \mid s_{n} \in \mathbb{R}\right\}
$$

(d) Let $C(\mathbb{R})$ denote the set of all continuous real-valued functions on \mathbb{R}.
i. Explain why if $f, g \in C(\mathbb{R})$ and $f(x)=g(x)$ for every $x \in \mathbb{Q}$, then $f=g$.
ii. Determine $|C(\mathbb{R})|$.
4. A real number $\alpha \in \mathbb{R}$ is called algebraic if there exists a polynomial $p(x)$ with integer coefficients such that $p(\alpha)=0$. Show that the collection Ψ of all algebraic numbers is countable.
5. A collection $\Im \subseteq \mathcal{P}(X)$ is called a topology on X if
(a) $\varnothing, X \in \Im$
(b) $\left\{\bigcup_{\alpha \in I} U_{\alpha}\right\} \in \Im$ whenever $\left\{U_{\alpha}\right\}_{\alpha \in I} \subseteq \Im$
(c) $\bigcap_{i=1}^{n} U_{i} \in \Im$ whenever $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\} \subseteq \Im$

The elements of \Im are called \Im-open sets or simply open sets for short.
(a) Show that if $\left\{\Im_{\alpha}\right\}_{\alpha \in I}$ is a collection of topologies on X, then
$\Im=\bigcap_{\alpha \in I} \Im_{\alpha}$ is also a topology on X. In particular, show that if $\Gamma \subseteq \mathcal{P}(X)$, then there is a smallest topology $\Im(\Gamma)$ on X that contains Γ. $\Im(\Gamma)$ is called the topology generated by Γ.
(b) * We call a subset U of \mathbb{R} open if for every $x \in U$, there exists an $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subseteq U$. Let $\Im_{\mathbb{R}}$ denote the collection of all open subsets of \mathbb{R}.
i. Show that $\Im_{\mathbb{R}}$ is a topology on \mathbb{R}.
ii. Let

$$
\Gamma=\{\varnothing\} \cup\{(a, b) \mid a \in \mathbb{R} \cup\{-\infty\}, b \in \mathbb{R} \cup\{\infty\}, a<b\}
$$

be the collection of open intervals in \mathbb{R}. Show that $\Im_{\mathbb{R}}=$ $\Im(\Gamma)$.
iii. Let $U \subset \mathbb{R}$ be open and nonempty. Define a relation \sim on U by $x \sim y$ if and only if whenever $x<z<y$ or $y<z<x$, we must have $z \in U$.
Show that \sim is an equivalence relation on U and that if $I_{x}=$ $\{y \in U \mid x \sim y\}$, then I_{x} is an open interval. (Recall that a set I is an interval if whenever $x, y \in I$ and $x<z<y$, then we must have $z \in I$.)
Remark: In this case, in fact, $I_{x}=\left(\alpha_{x}, \beta_{x}\right)$, where

$$
\begin{aligned}
\alpha_{x} & =\inf \{y:(x, y) \subset U\} \\
\beta_{x} & =\sup \{y:(y, x) \subset U\}
\end{aligned}
$$

iv. Show that if $U \in \Im_{\mathbb{R}}$, then U is the union of at most countably many pairwise disjoint open intervals.
v. What is $\left|\Im_{\mathbb{R}}\right|$? (Hint: Show that every open set is the countable union of open intervals with rational endpoints.)
(c) ${ }^{*}$ Let X be any set. Let $\Im_{c f}(X)=\{\varnothing\} \cup\left\{A \subseteq X \mid A^{c}\right.$ is finite $\}$. Show that $\Im_{c f}(X)$ is a topology on $X . \Im_{c f}(X)$ is called the cofinite topology on X.
(d) Let X be any set. Let $\Im_{c c}(X)=\{\varnothing\} \cup\left\{A \subseteq X \mid A^{c}\right.$ is countable $\}$. Show that $\Im_{c c}(X)$ is a topology on $X . \Im_{c c}(X)$ is called the co-
countable topology on X.
6. Let X be a given set. A σ-algebra on X is a collection Ψ of subsets of X such that
(i) $X \in \Psi$;
(ii) If $S \in \Psi$, then so is S^{c}.
(iii) If $\left\{S_{n}\right\} \subset \Psi$, then $\bigcup_{n=1}^{\infty} S_{n} \in \Psi$.
(a) Show that if $\left\{\Psi_{\alpha}\right\}_{\alpha \in I}$ is any collection of σ-algebras on X, then $\bigcap_{\alpha \in I} \Psi_{\alpha}$ is also a σ-algebra. In particular, show that if $\mathcal{A} \subseteq \mathcal{P}(X)$, $\alpha \in I$ then there is a unique smallest σ-algebra containing \mathcal{A} which we call the σ-algebra generated by \mathcal{A}, and denote by $\sigma(\mathcal{A})$.
(b) Let \mathcal{O} denote the collection of all open subsets of \mathbb{R}. The σ algebra, $\sigma(\mathcal{O})$ is called the Borel σ-algebra of \mathbb{R}, and is denoted by $\mathcal{B}(\mathbb{R})$.
Give an example of a set $A \subset \mathbb{R}$ that is Borel but neither closed or open.
(c) What is $|\mathcal{B}(\mathbb{R})|$? (Note: This one is not so easy. Do not spend much time on it and only do so after you have completed the remaining questions)
(d) True or false: Every uncountable subset S of \mathbb{R} contains a subset A which is not Borel. (Explain your answer.)
7. *
(a) Show that if X is infinite and countable, you can find two disjoint infinite subsets S and T such that $S \cup T=X$ and

$$
|S|=|T|=|X|
$$

(b) Show that if X is infinite, then you can find two disjoint subsets S and T such that $S \cup T=X$ and $|S|=|T|=|X|$. (Hint: Show that X can be written as the union of a collection of pairwise disjoint countable sets.)
Remark: This is actually a formal proof of the statement for an infinite set $|X|+|X|=|X|$.

1. *We have seen that the positive rationals can be well ordered via the order \preceq given by $\frac{n}{m} \preceq \frac{j}{k}$ if and only if $2^{n} 3^{m} \leq 2^{j} 3^{k}$. With respect to this order find the least element in the set $S=\{r \in \mathbb{Q} \mid$ $\sqrt{2}<r\}$. (Note: In defining S the order we use is the usual order on \mathbb{R}.)
2. *Let d_{1}, d_{2} and d_{∞} be the metrics on \mathbb{R}^{n} given by

$$
\begin{array}{r}
d_{1}(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \\
d_{2}(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \\
d_{\infty}(x, y)=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|
\end{array}
$$

Let τ_{1}, τ_{2} and τ_{∞} be the topologies induced by the above metrics. Show that $\tau_{1}=\tau_{2}=\tau_{\infty}$.
3. *
(a) For each of the following sets determine if it is open, closed or neither. Indicate the set of limit points, boundary points and interior points of each set.
i. $(0,1] \subset \mathbb{R}$.
ii. $\mathbb{Q} \subset \mathbb{R}$.
(b) Let $\mathcal{P}_{1}=\left\{a_{0}+a_{1} x \mid a_{i} \in \mathbb{R}\right\} \subset\left(C[0,1], d_{\infty}\right)$. Show that \mathcal{P}_{1} is closed.
(c) Let $c_{00}=\left\{\left\{a_{n}\right\} \in l_{\infty} \mid a_{n}=0\right.$ for all but finitely many $\left.n\right\} \subset l_{\infty}$. Let $c_{0}=\left\{\left\{a_{n}\right\} \in l_{\infty} \mid \lim _{n \rightarrow \infty} a_{n}=0\right\}$. Show that c_{00} is dense in
c_{0}. That is $\overline{c_{00}}=c_{0}$.

4. Least Upper Bound Property:

We say that α is an upper bound of $S \subset \mathbb{R}$ if $x \leq \alpha$ for all $x \in S$. We say that S is bounded above if it has an upper bound. We call α the least upper bound of S if α is an upper bound of S and if whenever β is an upper bound of S we have $\alpha \leq \beta$. We denote α by lub (S) (We may define lower bounds and the greatest lower bound $(\mathrm{glb}(S))$ in the obvious way). The Least Upper Bound Prperty states that every nonempty subset S of \mathbb{R} that is bounded above has a least upper bound (or equivalently that every nonempty subset S of \mathbb{R} that is bounded below has a greatest lower bound).
(a) Prove the Monotone Convergence Theorem: Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R} with $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$. If $\left\{a_{n}\right\}$ is bounded above, then $\left\{a_{n}\right\}$ converges.
(b) Prove the Nest Interval Theorem: Let $\left\{\left[a_{n}, b_{n}\right]\right\}$ be sequence of closed intervals with $\left[a_{n+1}, b_{n+1}\right] \subseteq\left[a_{n}, b_{n}\right]$ for each $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \neq \varnothing$.
(c) Show that the statement in Part $4 b$ may fail if we use open interavls.
(d) Use the Nest Interval Theorem to show that if $S \subset \mathbb{R}$ is infinite and bounded, then it has a limit point. (This is called the Bolzano-Weierstrass Theorem.)
(e) Given a nonempty set $A \subset(X, d)$ we define the diameter of A to be $\operatorname{diam}(A)=\sup \{d(x, y) \mid x, y \in A\}$. Show that if A_{n} is a sequence of nonempty closed sets in \mathbb{R} with $A_{n+1} \subseteq A_{n}$ and $\operatorname{diam}\left(A_{i}\right)<\infty$, then $\bigcap_{n=1}^{\infty} A_{n} \neq \varnothing$.
5. *Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be a collection of open sets in \mathbb{R} such that $[0,1] \subset$ $\bigcup_{\alpha \in I} U_{\alpha}$.
(a) Show that there exists finitely many sets $U_{\alpha_{1}}, U_{\alpha_{2}}, \ldots, U_{\alpha_{n}}$ such that $[0,1] \subset \bigcup_{i=1}^{n} U_{\alpha_{i}}$.
(Hint: Let

$$
A=\left\{x \in[0,1] \mid[0, x] \text { can be covered by finitely many } U_{\alpha}{ }^{\prime} s\right\}
$$

Show that $1=\operatorname{lub}(A)$ and then that $1 \in A$.)
(b) Show that the statement in Part 5a can fail if we replace $[0,1]$ with $(0,1)$.
6. ${ }^{*} \mathrm{~A} \operatorname{map} \varphi:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is called an isometry if $d_{Y}\left(\varphi\left(x_{i}\right), \varphi\left(x_{2}\right)\right)=$ $d_{X}\left(x_{1}, x_{2}\right)$.
(a) Determine all possible isometries $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and show that each such map is surjective.
(b) Given an example of an isometry $\varphi:\left(X, d_{X}\right) \rightarrow\left(X, d_{X}\right)$ that is not onto.
7. *A topological space (X, τ) is called separable if there exists a countable subset $S \subset X$ such that $\bar{S}=X$.
Show that $\left(\ell_{1}, d_{1}\right)$ is separable but $\left(\ell_{\infty}, d_{\infty}\right)$ is not.
8. ${ }^{*}$ Let $\vec{x}_{n}=\left\{x_{n, 1}, x_{n, 2}, x_{n, 3}, \ldots\right\} \in l_{\infty}$. Show that if $\vec{x}_{n} \rightarrow \vec{x}_{0}$ in l_{∞} where $\vec{x}_{0}=\left\{x_{0,1}, x_{0,2}, x_{0,3}, \ldots\right\}$, then for each $k \in \mathbb{N}, \lim _{n \rightarrow \infty} x_{n, k}=$ $x_{0, k}$ but that the converse can fail.
9. Let $P_{0}=[0,1]$. Let P_{1} be obtained from P_{0} by removing the open interval of length $\frac{1}{3}$ from the middle of P_{0}. Then construct P_{2} from P_{1} by removing open intervals of length $\frac{1}{3^{2}}$ from the two closed subintervals of P_{1}. In general, P_{n+1} is obtained from P_{n} by removing the open interval of length $\frac{1}{3^{n+1}}$ from the middle of each of the 2^{n} closed subintervals of P_{n}. Let

$$
P=\bigcap_{n=0}^{\infty} P_{n} .
$$

P is called the Cantor set.
(a) A subset A of a metric space is nowhere dense if $\bar{A}^{\circ}=\varnothing$. Show that P is closed and nowhere dense.
(b) Show that P is uncountable. (Hint: You may use the fact that $x \in P$ if and only if we can express $x=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$ where $a_{n}=0,2$.)
(c) A subset A of \mathbb{R} is said to be perfect if $A=\operatorname{Lim}(A)$. Show that the Cantor set P is perfect. (Again, you can use the fact that $x \in P$ if and only if we can express $x=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$ where $a_{m}=0,2$.)

2) Assignment 3

1.(a) Let (X, d) be a metric space. Let $x_{0} \in X$ be fixed. Define $F_{x_{0}}$: $X \rightarrow \mathbb{R}$ by

$$
F_{x_{0}}(x)=d\left(x_{0}, x\right)
$$

Show that $F_{x_{0}}$ is continuous.
(b) * Let $(X,\|\cdot\|)$ be a normed linear space. Define $F: X \rightarrow \mathbb{R}$ by

$$
F(x)=\|x\| .
$$

Show that F is continuous.
2. * Let $f_{n}[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\sin \left(x^{n}\right)
$$

(a) Show that $f_{n}(x)$ does not converge uniformly on $[0,1]$.
(b) Show that $f_{n}(x)$ does converge uniformly on $\left[0, \frac{1}{2}\right]$.

3. Connectedness of \mathbb{R}

Let $A \subseteq(X, d)$. We say that A is disconnected if there exists two open sets U and V such that
i) $U \cap V \cap A=\varnothing$
ii) $U \cap A \neq \varnothing$ and $V \cap A \neq \varnothing$
iii) $A \subseteq U \cup V$.

We say that A is conected if it is not disconnected.
(a) Let (X, d) be a metric space and let $A \subset X$. Show that the
characteristic function

$$
\chi_{A}(x):= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

is continuous on X if and only if A is both open and closed.
(b) * Show that \mathbb{R} is connected.
(c) Let $A \subseteq\left(X, d_{X}\right)$ be connected. Let $f: A \rightarrow\left(Y, d_{Y}\right)$ be continuous. Show that $f(A)$ is connected.
4. A function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is said to be uniformly continuous if for every $\varepsilon>0$ there exists a $\delta>0$ such that if $d_{X}\left(x_{1}, x_{2}\right)<\delta$, then $d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)<\varepsilon$.
(a) Let $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ be uniformly continuous. Show that if $\left\{x_{n}\right\}$ is Cauchy in X, then $\left\{f\left(x_{n}\right)\right\}$ is Cauchy in Y.
(b) Let (X, d) be a metric space and let $A \subset X$. Let $f: A \rightarrow \mathbb{R}$. Show that if f is uniformly continous on A, then there exists $g: \bar{A} \rightarrow \mathbb{R}$ that is continuous on \bar{A} and for which $g \upharpoonright_{A}=f$. That is g extends f to \bar{A}.
5. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed linear spaces. Let $T: X \rightarrow$ Y be linear. We say that T is bounded if

$$
\sup _{\|x\|_{X} \leq 1}\left\{\|T(x)\|_{Y}\right\}<\infty
$$

In this case, we write

$$
\|T\|=\sup _{\|x\|_{X} \leq 1}\left\{\|T(x)\|_{Y}\right\}
$$

Otherwise, we say that T is unbounded.
(a) * Prove that the following are equivalent
i. T is continuous.
ii. T is continuous at 0 .
iii. T is bounded.
(b) Assume that $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear and that L is represented by
the matrix A. We let $\|A\|=\|L\|$.
i. Assume that

$$
D=\left[\begin{array}{lllll}
d_{1} & & & & \\
& d_{2} & & & \\
& & d_{3} & & \\
& & & \ddots & \\
& & & & d_{n}
\end{array}\right]
$$

is a diagonal matrix. Show that $\|D\|=\max _{i=1, \ldots, n}\left\{\left|d_{i}\right|\right\}$.
ii. Show that if

$$
D=\left[\begin{array}{lllll}
d_{1} & & & & \\
& d_{2} & & & \\
& & d_{3} & & \\
& & & \ddots & \\
& & & & d_{n}
\end{array}\right]
$$

is a diagonal matrix, then

$$
\sup _{\|x\| \leq 1}\{|\langle D x, x\rangle|\}=\max _{i=1, \ldots, n}\left\{\left|d_{i}\right|\right\}
$$

iii. Let U be an orthonormal $n \times n$ matrix. Show that if $x \in \mathbb{R}^{n}$, then $\|U x\|=\|x\|$.
iv. * Assume that $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear and that L is represented by the matrix A. Show that $\|L\|=\|A\|=\sqrt{|\alpha|}$ where α is the largest eigenvalue of the matrix $A^{t} A$.
v. * Assume that $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented by the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]
$$

Find $\|A\|$. (You can use Maple or MATLAB if you like.)
6. * Let $x_{0} \in[0,1]$. Define the linear map $T_{x_{0}}: C[0,1] \rightarrow \mathbb{R}$ by

$$
T_{x_{0}}(f)=f\left(x_{0}\right)
$$

(a) Show that as a map from $\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}, T_{x_{0}}$ is bounded
with $\left\|T_{x_{0}}\right\|=1$.
(b) Show that as a map from $\left(C[0,1],\|\cdot\|_{1}\right) \rightarrow \mathbb{R}, T_{0}$ is unbounded.
7. Define the linear map $T: C[0,1] \rightarrow \mathbb{R}$ by

$$
T(f)=\int_{0}^{1} x f(x) d x
$$

(a) Show that if $\|f(x)\|_{\infty} \leq 1$, then $|T(f)| \leq \frac{1}{2}$.
(b) Show that if $T(1)=\frac{1}{2}$ and hence that $\|T\|=\frac{1}{2}$.
8. * Let (X, d) be a metric space and $\left\{f_{n}\right\}$ be a sequence of real valued functions on X which converges pointwise on X to a function $f: X \rightarrow \mathbb{R}$. Let $x_{0} \in X$.
We say that $\left\{f_{n}\right\}$ converges uniformly at x_{0} if for every $\varepsilon>0$, there exists a $\delta>0$ and an $N \in \mathbb{N}$ such that if $n>N$ and $d\left(x, x_{0}\right)<\delta$, then

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

Show that if each function f_{n} is continuous at x_{0} and if $f_{n} \rightarrow$ f uniformly at x_{0} then f is also continouus at x_{0}. (Hint: This is almost exactly the same as the proof for uniform convergence with one minor change.)
9. Let (X, d) be a metric space. Let $f: X \rightarrow \mathbb{R}$. Let

$$
D(f)=\left\{x_{0} \in X \mid f(x) \text { is discontinous at } x_{0}\right\}
$$

For each $n \in \mathbb{N}$, let
$D_{n}(f)=\left\{x_{0} \in X \mid \forall \delta>0, \exists y, z \in B\left(x_{0}, \delta\right)\right.$ for which $\left.|f(y)-f(z)| \geq \frac{1}{n}\right\}$.
(a) * Show that for each $n \in \mathbb{N}, D_{n}(f)$ is closed. (Hint: Let $\left\{x_{k}\right\} \subseteq$ $D_{n}(f)$ be such that $x_{k} \rightarrow x_{0}$. Show that $x_{0} \in D_{n}(f)$.)
(b) * A subset A of a metric space is said to be an F_{σ} set if $A=$ $\bigcup_{n=1}^{\infty} F_{n}$, where each F_{n} is closed. Show that $D(f)$ is an F_{σ} set by showing that

$$
D(f)=\bigcup_{n=1}^{\infty} D_{n}(f)
$$

(c) * A subset A of (X, d) is said to be nowhere dense if $\bar{A}^{\circ}=\varnothing$.

Assume that $F \subset \mathbb{R}$ is closed and nowhere dense. Let

$$
f(x)=\chi_{F}(x)= \begin{cases}1 & \text { if } x \in F \\ 0 & \text { if } x \in F^{C}\end{cases}
$$

Find $D(f)$.
(d) * A subset A of (X, d) is said to be first category if $A=\bigcup_{n=1}^{\infty} A_{n}$ where each A_{n} is nowhere dense. Show that if $A \subset \mathbb{R}$ is F_{σ} and of first category, then there exists a function $f(x)$ on \mathbb{R} with $D(f)=A$.
(e) Bonus Question 5: Show that if $A \subset \mathbb{R}$ is F_{σ} then there exists a function $f(x)$ on \mathbb{R} with $D(f)=A$.
10.(a) * Explain why the integral equation

$$
f(x)=x+\int_{0}^{x} t f(t) d t
$$

has a unique solution $\varphi(x)$ in $C[0,1]$, and then find a power series representation for $\varphi(x)$.
(b) Fredholm Equation: Assume that $K(x, y) \in C([a, b] \times[a, b])$ with $\|K(x, y)\|_{\infty}=M$. Show that if $|\lambda| M(b-a)<1$ and if $\varphi(x) \in C[a, b]$, then the map $\Gamma: C[a, b] \rightarrow C[a, b]$ given by

$$
\Gamma(f)(x)=\varphi(x)+\lambda \int_{a}^{b} K(x, y) f(y) d y
$$

is contractive and hence that the integral equation

$$
\begin{equation*}
f(x)=\varphi(x)+\lambda \int_{a}^{b} K(x, y) f(y) d y \tag{*}
\end{equation*}
$$

has a unique solution in $C[a, b]$.
11. * Dini's Theorem: Let (X, d) be a compact metric space. Let $\left\{f_{n}(x)\right\}$ be a sequence of continous functions on X such that $f_{n}(x) \leq f_{n+1}(x)$ for each $n \in \mathbb{N}$ and $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(a) Show that $f(x)$ is continuous on X if and only if the sequence converges uniformly. (Hint: Let $\varepsilon>0$. Let $U_{n}=\{x \in X \mid$ $\left.f_{n}(x)>f(x)-\varepsilon\right\}$ and show that $\left\{U_{n}\right\}$ is an open cover of X.)
(b) Show that Dini's Theorem fails on $[0, \infty)$ by giving a sequence $\left\{f_{n}(x)\right\}$ of continuous functions on $[0, \infty)$ such that $f_{n}(x) \leq$ $f_{n+1}(x)$ for each $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f_{n}(x)=1$ for each x but for which the convergence is not uniform.
12. Let $A \subset(X, d)$ be non-empty. For each $x \in X$, define the distance from x to A by

$$
\operatorname{dist}(x, A)=\inf \{d(x, y) \mid y \in A\} .
$$

(a) Show that A is closed if and only if the following property holds:

$$
x \in A \Longleftrightarrow \operatorname{dist}(x, A)=0
$$

(b) Let $F \subseteq X$ be closed and non-empty. Show that

$$
F=\bigcap_{n \in \mathbb{N}}\left(\bigcup_{x \in F} B\left(x, \frac{1}{n}\right)\right) .
$$

(Note: This shows that every closed sets is also F_{σ}.)
(c) Show that the function $f(x)=\operatorname{dist}(x, A)$ is continuous.
13. Let $(X,\|\cdot\|)$ be a normed linear space.
(a) * Prove that if $A \subset(X,\|\cdot\|)$ is compact and non-empty, then for each $x_{0} \in X$, there exists a $y_{0} \in A$ such that

$$
\left\|x_{0}-y_{0}\right\|=\inf \left\{\left\|x_{0}-y\right\| \mid y \in A\right\} .
$$

(b) * Assume that X is finite dimensional. Prove that if $A \subset(X,\|\cdot\|)$ is closed and non-empty, then for each $x_{0} \in X$, there exists a $y_{0} \in A$ such that

$$
\left\|x_{0}-y_{0}\right\|=\inf \left\{\left\|x_{0}-y\right\| \mid y \in A\right\} .
$$

(c) A subset A of a vector space is said to be convex if $\alpha x+(1-$ $\alpha) y \in A$ whenever $x, y \in A$ and $0 \leq \alpha \leq 1$.
Let $A \subseteq \mathbb{R}^{2}$ be convex and closed and let $x_{0} \in A^{C}$. Show that if \mathbb{R}^{2} is given the norm $\|\cdot\|_{2}$, then the point y_{0} obtained in part 13 b above is unqiue but that this need not be the case if we use
the norm $\|\cdot\|_{\infty}$.
(d) Given $A, B \subseteq X$ non-empty sets, define $\operatorname{dist}(A, B)=\inf \{d(a, b) \mid$ $a \in A, b \in B\}$. Show that if A is closed, B is compact with $A \cap B=\varnothing$, then $\operatorname{dist}(A, B)>0$.
(e) Show that even in \mathbb{R}, I3d can fail if you only assume that B is closed.
(f) * Let $f(x) \in C[0,1]$. Let

$$
P_{n}=\left\{p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}\right\}
$$

Show that there exists a polynomial $p(x) \in P_{n}$ such that

$$
\|f(x)-p(x)\|_{\infty} \leq\|f(x)-q(x)\|_{\infty}
$$

for any $q(x) \in P_{n}$.
(g) * Show that if $\left\{p_{k}(x)\right\}$ is a sequence of polynomials such that $\left\{p_{k}(x)\right\}$ converges uniformly to $f(x)=e^{x}$ on $[0,1]$, then

$$
\lim _{k \rightarrow \infty} \operatorname{deg}\left(p_{k}(x)\right)=\infty
$$

14. ${ }^{*}$ Let $(V,\|\cdot\|)$ be an infinite dimensional Banach space.
(a) Show that if $\mathcal{B}=\left\{v_{\alpha}\right\}_{\alpha \in I}$ is a basis for V, then I is uncountable. (Hint: Assume that $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}, \ldots\right\}$ was countable. Let $\left.F_{n}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}.\right)$
(b) Show that there exist a linear function $\varphi: V \rightarrow \mathbb{R}$ that is unbounded. (Hint: You can assume that V has a basis consisting of vectors of norm 1. From here you need only define φ on the basis elements and then extend it linearly.)
15. * Let $f(x)$ be continuous on $[0,1]$. Assume that

$$
\int_{0}^{1} f(x) d x=0
$$

and that

$$
\int_{0}^{1} f(x) x^{n} d x=0
$$

for each $n \in \mathbb{N}$. Show that $f(x)=0$ for all $x \in[0,1]$.
16. Let $X=[0,1] \times[0,1] \subset\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$. Let $f(x, y) \in C(X)$. For each $y \in[0,1]$, define $f_{y}(x)=f(x, y)$ for each $x \in[0,1]$.
(a) Show that $\mathcal{F}=\left\{f_{y} \mid y \in[0,1]\right\}$ is equicontinuous.
(b) Show that the map $\Gamma:[0,1] \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ given by

$$
\Gamma(y)=f_{y}
$$

is continuous.
(c) Is \mathcal{F} compact in $C(X)$? Explain your answer.
17. Let

$$
\Psi=\left\{F(x, y) \in C([0,1] \times[0,1]) \mid F(x, y)=\sum_{i=1}^{k} f_{i}(x) g_{i}(y)\right\}
$$

where in the sum above, the functions f_{i} and g_{i} are continous on $[0,1]$. Show that ψ is dense in $C([0,1] \times[0,1])$.
18. Let $g(x)$ be continuous and strictly increasing on $[a, b]$. Let $f(x) \in$ $C[a, b]$. Let $\varepsilon>0$. Then there exists constants $c_{0}, c_{1}, \ldots, c_{n}$ such that

$$
\left|f(x)-\sum_{k=0}^{n} c_{k} g^{k}(x)\right|<\varepsilon
$$

for each $x \in[a, b]$.
19. Let I be a closed ideal of $C[0,1]$. (That is, I is a closed subalgebra of $C[0,1]$ with the property that if $g(x) \in I$ and if $f(x) \in C[0,1]$, then $f(x) g(x) \in I$.)
(a) Let $Z(I)=\{x \in[0,1] \mid \forall f \in I, f(x)=0\}$. Show that $Z(I)$ is a closed subset of $[0,1]$.
(b) Show that if $Z(I)=\varnothing$, then $I=C[0,1]$. (Hint: Show that there exists a function $f(x) \in I$ such that $f(x)>0$ for every $x \in[0,1]$.)
(c) Let $A \subseteq[0,1]$ be closed. Let $I(A)=\{f \in C[0,1] \mid \forall x \in$ $A, f(x)=0\}$. Show that I is a maximal closed ideal in $C[0,1]$ if and only if $I=I\left(\left\{x_{0}\right\}\right)$ for some $x_{0} \in[0,1]$.
(Recall: A closed ideal I is maximal if $I \neq C[0,1]$ and if J is any closed ideal containing I, then either $I=J$ or $J=C[0,1]$.)

\Rightarrow Bibliography

Forrest, B. E. (2018). Pmath351, real analysis.

\approx Index

F_{σ} Sets, 147	Cantor Ternary Set, 89		
G_{δ} Sets, 147	Cantor's Diagonal Argument, 49		
ε-net, 166	Cantor's Intersection Principle,		
$\\|\cdot\\|_{p}$-norm, 67	127		
d-topology, 84	Cantor-Schröder-Bernstein Theo-		
1-norm, 64	rem, 47		
2-metric, 62	Cardinality, 41		
2-norm, 64	Cauchy, 115		
	Cauchy-Schwarz Inequality, 68		
Anti-symmetric, 29	Chains, 32		
Arzelà-Ascoli, 210	Choice Function, 25		
Axiom of Choice, 27	closed, 82		
	closed ball, 82		
Baire Category Theorem I, 149	Closure, 91		
Baire Category Theorem II, 151	cluster points, 97		
Banach Contractive Mapping	Compact, 158		
Theorem, 142	Completeness, 116		
Banach space, 123	Completion, 135		
Banach-Mazurkiewickz Theorem,	Completion Theorem, 137		
190	Continuity, 108, 114		
Bolzano-Weierstrass, 117	Continuity on a Space, 111		
Bolzano-Weierstrass Property, 162	Continuum Hypothesis, 60		
Boundary Point, 92	Contraction, 141		
bounded above, 32	converge pointwise, 120		
Bounded Linear Map, 175	converge uniformly, 121		
Boundedness, 117	Convergence, 101		
	Convergent Sequences are		
Cantor Set, 89	Cauchy, 115		

Countable, 44	Homeomorphism, 113
Cover, 158	
	indiscrete topology, 85
De Morgan's Laws, 22	Induced Metric, 107
Dense, 95	Induced Topology, 107
denumerable, 44	Infinite Sets, 42
Diameter, 125	Interior, 91
Discrete Metric, 62	Intermediate Value Theorem, 84
discrete topology, 85	Intersection, 20
diverges, 101	Isometry, 135
domain, 24	
	Lattice, 194
Empty Set, 21	least upper bound, 32
Equicontinuity, 207	Least Upper Bound Property of
Equivalence Class, 38	$\mathbb{R}, 33$
Equivalence Relation, 38	Lesbesgue, 171
Equivalent Metric Spaces, 113	Lesbesgue Number, 172
Euclidean Metric, 62	Lesbesgue-Borel, 172
Euclidean norm, 64	Limit Points, 97
Exponentiation of Cardinals, 57	Lipschitz, 141
Extreme Value Theorem, 171	
	Maximal Element, 35
Finite Intersection Property, 163	maximum, 32
Finite Sets, 41	Metric, 61
First Category, 148	Metric Space, 61
Fixed Point, 139	metric topology, 84
Formal Sum, 129	Minkowski's Inequality, 69
Function, 24	Minkowski's Inequality v2, 78
	Moments, 189
Generalized Continuum Hypothesis, 60	Monotone Convergence Theorem, 213
	Multiplication of Cardinals, 56
Hölder's Inequality, 68	
Hölder's Inequality v2, 77	Neighbourhood, 91
Hasse diagram, 31	Nested Interval Theorem, 124
Heine-Borel Property, 181	Norm, 63
Heine-Borel Theorem, 158	Normed Linear Space, 63

Nowhere Dense, 148
open, 82
open ball, 82
partial sum, 129
Partially Ordered Sets, 30
Partition, 39
Picard's Theorem, 144
piecewise linear function, 195
piecewise polynomial, 195
Pigeonhole Principle, 41
Point-Separating, 194
Points of Discontinuity, 145
Pointwise Bounded Functions,

209

Poset, 30
Power Set, 21
Product of Sets, 23
range, 24
Reflexive, 29
Relation, 24
Relations, 29
Relatively Compact Sets, 209
Residual, 148
Russell's Paradox, 59

Second Category, 148
self-adjoint, 204
Separable, 94
Sequence Spaces, 72
Sequential Characterization of Continuity, 110
Sequential Compactness, 162
Set Complement, 21
Set Difference, 20

Standard Metric, 61
Stone-Weierstrass Theorem -
Complex Version, 204
Stone-Weierstrass Theorem Lattice Version, 196
Stone-Weierstrass Theorem -
Subalgebra Version, 201
Subalgebra, 197
subcover, 158
Sum of Cardinals, 55
supremum, 32
Symmetric, 29
Symmetric Difference, 20
topological space, 84
Topology, 84
Totally Bounded, 166
Totally Ordered Sets, 32
Transitive, 29
tuples, 23

Uncountable, 49
Uniform Continuity, 136
Uniformly Bounded Functions, 209
uniformly equicontinuous, 207
Union, 20
Universal Set, 19
upper bound, 32

Weierstrass Approximation Theo-
rem, 188
Weierstrass M-test, 129
Well-Ordered, 36
Well-Ordering Principle, 37

Zermelo's Axiom of Choice, 27

Zorn's Lemma, 36

\approx Todo list

I need to get a better picture of the motivation of the proof. 196
What else can we understand from $\varphi_{x, y}$? 196
I should find out about this. 203
how? 203

[^0]: Proof

[^1]: (Proof

[^2]: ${ }^{1}$ Note in this case sup is also max, since we are on a closed interval.

[^3]: ${ }^{2}$ This space is complete.
 ${ }^{3}$ This space is important for us for the purpose of this course.

[^4]: ${ }^{1}$ The flaw here lies in the fact that X is open. Should we have chosen $X=[0,1]$, then the limit point 0 would have been included, allowing the sequence to actually converge.

[^5]: Proof

[^6]: Definition 55 (Formal Sum)

[^7]: ETheorem 57 (Weierstrass M-test)

[^8]: PTheorem 94 (Completeness of Finite Dimensional Normed Linear Spaces)

[^9]: Proof

[^10]: Theorem 99 (t Weierstrass Approximation Theorem)

[^11]: ```
 quire further work
 quire further work
    ```

[^12]:    - Proof

[^13]:    PTheorem 107 (Stone-Weierstrass Theorem - Complex Ver-

[^14]:    〔G Note 35•1.1

[^15]:    Definition 82 (Pointwise Bounded Functions)

