PMATH352W18 Cheatsheet by Johnson Ng, page 1 of 1

Injectivity Let $f : X \to Y$ be a function. We say that f is injective (or one-to-one) if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Surjectivity Let $f : X \to Y$ be a function. We say that f is surjective (or onto) if $\forall y \in Y \ \exists x \in X \ f(x) = y$.

Bijectivity Let $f : X \to Y$ be a function. We say that f is bijective if it is both injective and surjective.

Permutations Given a non-empty set L, a permutation of L is a bijection from L to L. The set of all permutations of L is denoted by S_L .

Order The order of a set A, denoted by |A|, is the cardinality of the set.

Groups Let G be a set and * an operation on $G \times G$. We say that G = (G, *)is a group if it satisfies

1. Closure: $\forall a, b \in G \quad a * b \in G$ 2. Associativity: $\forall a, b, c \in G \quad a *$ (b * c) = (a * b) * c3. Identity: $\exists e \in G \quad \forall a \in G \quad a *$ e = a = e * a4. Inverse: $\forall a \in G \quad \exists b \in G \quad a *$

b = e = b * a**Abelian Group** A group G is said

to be abelian if $\forall a, b \in G$, we have a * b = b * a.

General Linear Group The general linear group of degree n over \mathbb{R} is defined as

 $GL_n(\mathbb{R}) := \{ M \in M_n(\mathbb{R}) : \det M \neq 0 \}$

Cayley Table Let G be a group. Given $x, y \in G$, let the product xy be an entry of a table in the row corresponding to x and column corresponding to y. Such a table is called a Cayley Table.

Subgroup Let G be a group and $H \subseteq G$. If H itself is a group, then we say that H is a subgroup of G

Special Linear Group The special linear group of order n of \mathbb{R} is defined as

 $SL_n(\mathbb{R}) = (SL_n(\mathbb{R}), \cdot)$ $= \{A \in M_n(\mathbb{R}) : \det A = 1\}$

Center of a Group Given a group G, the the center of a group G is defined

$$Z(G) = \{ z \in G : \forall g \in G \ zg = gz \}$$

Transposition A transposition $\sigma \in S_n$ is a cycle of length 2, i.e. $\sigma = (a \ b)$, where $a, b \in \{1, ..., n\}$ and $a \neq b$.

Odd and Even Permutations A permutation σ is even (or odd) if it can be written as a product of an even (or odd) number of transpositions. By the Parity Theorem, a permutation must either be even or odd, but not both.

Cyclic Groups Let G be a group and $g \in G$. Then we call $\langle g \rangle$ the cyclic subgroup of G generated by g. If $G = \langle g \rangle$ for some $g \in G$, then we say that G is a cyclic group, and g is a generator of G.

Order of an Element Let G be a group and $g \in G$. If n is the smallest positive integer such that $g^n = 1$, we say that the order of g is n, denoted by o(g) = n. If no such n exists, then we say that g

has infinite order and write $o(g) = \infty$.

Dihedral Group Recall from Assignment 1 that the dihedral group is a set of rigid motions for transforming a regular polygon back to its original position while changing the index of its vertices. For $n \ge 2$, the dihedral group of order 2n is

$$D_{2n} = \{1, a, \dots, a^{n-1}, b, ba, \dots, b^{n-1}\}$$

where $a^n = 1 = b^2$ and aba = b. Note that a represents a rotation of $\frac{2\pi}{n}$ radians, and b represents a reflection through the x-axis

Group Homomorphism Let G, H be groups. A mapping

$$\alpha: G \to H$$

is called a group homomorphism if $\forall a, b \in G$, Note that ab uses the operation of G while $\alpha(a)\alpha(b)$ uses the operation of H.

$$\alpha(ab) = \alpha(a)\alpha(b).$$

$$\alpha: G \to H$$

We say that α is an isomorphism if it is a homomorphism and bijective. If α is an isomorphism, we say that G is isomorphic to H, or that G and H are isomorphic, and denote that by $G \cong H$.

Coset Let H be a subgroup of a group G.

$$\forall a \in G \quad Ha = \{ha : h \in H\}$$

is the right coset of \boldsymbol{H} generated by \boldsymbol{a} and

$$\forall a \in G \quad aH = \{ah : h \in H\}$$

is the left coset of H generated by a.

Normal Subgroup Let H be a subgroup of a group G. If $\forall g \in G$, we have Hg = gH, then we say that H is a normal subgroup of G, and write

 $H \lhd G$

Product of Groups

$$HK := \{hk : h \in H, k \in K\}$$

Normalizer Let H be a subgroup of G. The normalizer of H, denoted by $N_G(H)$, is defined to be

$$N_G(H) := \{g \in G : gH = Hg\}$$

Quotient Group Let $K \triangleleft G$. The group GK of all cosets of K in G is called the quotient group of G by K. Also, the mapping

 $\phi: G \to GK$ defined by $a \mapsto Ka$

is called the coset (or quotient) map.

Kernel and Image Let $\alpha : G \to H$ be a group homomorphism. The kernel of α is defined by

$$\ker \alpha := \{g \in G : \alpha(g) = 1_H\} \subseteq G$$

and the image of α is defined by

$$\operatorname{im} \alpha := \alpha(G) = \{ \alpha(g) : g \in G \} \subseteq H.$$

Group Action Let G be a group, X a non-empty set. A group action of G on X is a mapping $G \times X \to X$ denoted as $(a, x) \to ax$ such that
$$\begin{split} \mathbf{1.1} \cdot x &= x, \ x \in X \\ \mathbf{2.a} \cdot (b \cdot x) &= (ab) \cdot x, \ a, b \in G, \ x \in X \end{split}$$

In this case, we say G acts on X.

Orbit & Stabilizer Let G be a group acting on a set X, and $x \in X$. We denote by

$$G \cdot x = \{g \cdot x : \forall g \in G\}$$

 $S(x) = \{q \in G : q \cdot x = x\} \subset G$

the orbit of x and

c oroll of a ana

the stabilizer of x.

p-Group Let p be a prime. A *p*-group is a group in which every element has an order that is a non-negative power of p.

Ring A set R is a ring if $\forall a, b, c \in R$, 1.a + b $\in R$ 2.a + b = b + a 3.a + (b + c) = (a + b) + c 4. $\exists 0 \in R \ a + 0 = a = 0 + a$ 5. $\exists (-a) \in R \ a + (-a) = 0 = (-a) + a$ 6.ab $\in R$ 7.a(bc) = (ab)c 8. $\exists 1 \in R \ 1 \cdot a = a = a \cdot 1$ 9.a(b + c) = ab + ac and (b + c)a = ba + ca We call 1 as the Unity of R, 0 as the

Zero of R, and -a as the negative of a. The ring R is called a Commutative Ring if it also satisfies the following:

ting if it also satisfies the following 10.ab = ba.

Trivial Ring A trivial ring is a ring of only one element. In this case, we have 1 = 0, i.e. the unity is the zero and vice versa.

Characteristic of a Ring If R is a ring, we define the characteristic of R, denoted by ch(R), in terms of the order of 1_R in the additive group (R, +), by

$$\operatorname{ch}(R) = \begin{cases} n & \text{if } o(1_R) = n \in \mathbb{N} \\ 0 & \text{if } o(1_R) = \infty \end{cases}$$

Subring A subset S of a ring R is a subring if S is a ring itself (under the same operations: addition and multiplication).

Ideal An additive subgroup A of a ring R is called an ideal of R if $Ra, aR \subseteq A$, $\forall a \in A$.

Quotient Ring Let A be an ideal of a ring R. Then the ring RA is called the quotient ring of R by A.

Principal Ideal Let R be a commutative ring and A an ideal of R. If $A = aR = \{ar : r \in R\} = Ra$ for some $a \in A$, we say that A is a principal ideal generated by a, and denote $A = \langle a \rangle$.

Ring Homomorphism Let R and S be rings. A mapping

$$\Theta: R \to S$$

is a ring homomorphism if $\forall a, b \in R$, we have

$$1.\Theta(a+b) = \Theta(a) + \Theta(b)$$
$$2.\Theta(ab) = \Theta(a)\Theta(b)$$
$$3.\Theta(1_R) = 1_S$$

Ring Isomorphism A mapping of rings $\Theta : R \to S$ is a ring isomorphism if Θ is a bijective ring homomorphism. In this case, we say that R and S are isomorphic and denote that by $R \cong S$.

Kernel and Image Let $\Theta : R \to S$ be a ring homomorphism. The kernel of Θ is defined by

$$\ker \Theta = \{r \in R : \Theta(r) = 0_S\}$$

and the image of Θ is defined by

 $\operatorname{im} \Theta := \Theta(R) = \{\Theta(r) : r \in R\}.$

Units Let R be a ring. We say that $u \in R$ is a unit if u has a multiplicative inverse in R, and denote it by u^{-1} . We have

$$uu^{-1} = 1 = u^{-1}u$$

Division Ring and Field A nontrivial ring R is a division ring if

$$R^* = R \setminus \{0\}.$$

A commutative division ring is a field.

Zero Divisor Let R be a non-trivial ring. If $0 \neq a \in R$, then a is called a zero divisor if $\exists 0 \neq b \in R$ such that ab = 0.

PMATH352W18 Cheatsheet by Johnson Ng, page 2 of 1

Integral Domain A commutative ring $R \neq \{0\}$ (i.e. non-trivial ring) is called an integral domain if it has no zero divisor, i.e. if $ab = 0 \in R$ then a = 0 or b = 0.

Prime Ideals Let R be a commutative ring. An ideal $P \neq R$ is a prime ideal of R if $r, s \in R$ satisfy: $rs \in P \implies$ $r \in P$ or $s \in P$.

Maximal Ideals Let R be a (commutative) ring. An ideal $M \neq R$ or R is a maximal ideal if $\forall A$ that is an ideal of R, we have that

 $M \subseteq A \subseteq R \implies A = M \text{ or } A + R.$

Fraction Let R be an integral domain, $D = R \setminus \{0\}$, and $X = R \times D$. The fraction, $\frac{r}{s}$ to be the equivalent class [(r,s)] of the pair $(r,s) \in X$.

Polynomials Let R be a ring and x a variable. Let

 $R[x] = \left\{ f(x) = \sum_{i=0}^{m} a_i x^i : m \in \mathbb{N} \cup \{0\}, a_i \in R, 0 \le i \le m \right\}.$ Each element in R[x] is called a polynomial in x over R. If $a_m \neq 0$, we say that f(x) has degree m, denoted by deg f = m, and we say that a_m is the leading coefficient of f(x).

If deg f = 0, then $f(x) = a_0 \in R$. In this case, we call f(x) a constant polynomial. Note if

 $f(x) = 0 \iff a_0 = a_1 = \dots = a_m = 0,$

we define $\deg 0 = -\infty$, and f(x) is called a zero polynomial.

Division of Polynomials Let R be a commutative ring and $f(x), g(x) \in R[x]$. We say that f(x) divides g(x), denoted as f(x) | g(x) if $\exists q(x) \in R[x]$ such that

q(x) = q(x)f(x)

Monic Polynomial Let R be a commutative ring and $f(x) \in R[x]$. f(x) is monic if its leading coefficient is 1.

Irreducible Polynomials Let F be a field. A non-zero polynomial $l(x) \in F[x]$ is irreducible if $\deg l \ge 1$ and if

 $l(x) = l_1(x)l_2(x)$

for $l_1(x)$, $l_2(x) \in F[x]$, then deg $l_1 = 0$ or deg $l_2 = 0$ Note that polynomials of degree 0 are the units of F[x].. Polynomials that are not irreducible are called reducible polynomials.

Division Let R be an integral domain and $a, b \in R$. We say that $a \mid b$ if b = cafor some $c \in R$.

Association Let R be an integral domain. $\forall a, b \in R$, we say that a is associated to b, denoted by $a \sim b$, if $a \mid b$ and $b \mid a$.

Irreducible Let R be an integral domain. We say $p \in R$ is irreducible if $p \neq 0$ is not a unit, and $p = ab \in R$, then either a or b is a unit. An element that is not irreducible is reducible.

Prime Let R be an integral domain and $p \in R$. We say p is prime in Rif $p \neq 0$ is not a unit, and if $p \mid ab \in$ $R \implies p \mid a \lor p \mid b$.

Ascending Chain Condition on Principal Ideals (ACCP) An integral domain R is said to satisfy the ascending chain condition on principal ideals (ACCP) if for any ascending chain

$$\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \dots$$

of principal ideals in R, $\exists n \in \mathbb{N}$ such that

$$\langle a_n \rangle = \langle a_{n+1} \rangle = \dots$$

Unique Factorization Domain (UFD) An integral domain R is called a unique factorization domain (UFD) if it satisfies the following conditions:

1. If $0 \neq a \in R$ is a non-unit, then a is a product of irreducible elements in R.

2. If $p_1p_2 \dots p_r \sim q_1q_2 \dots q_s$ where p_i and q_i are irreducibles, then r = s and (possibly after relabelling) $p_i \sim q_i$ for each $1 \le i \le$ r = s.

Greatest Common Divisor Let R be an integral domain, and $a, b \in R$. We say $d \in R$ is the greatest common divisor of a, b, denoted as gcd(a, b) = d, if it satisfies the following conditions:

 $1.d \mid a \text{ and } d \mid b;$

 $2.e \in R \ e \ | \ a \ \land \ e \ | \ b \implies e \ | \ d.$

Principal Ideal Domain (PID) An integral domain R is a principal ideal domain (PID) if every ideal is principal.

Content If R is a UFD and if $0 \neq f(x) \in R[x]$, the greatest common divisor of the non-zero coefficients of f(x) is called the content of f(x), and denoted by c(f).

Primitive Polynomials If R is a UFD and if $0 \neq f(x) \in R[x]$, then if $c(f) \sim 1$, we say that f(x) is a primitive polynomial, or simply say that f(x) is primitive.