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Y Preface

For this set of notes, I shall follow the format of which the course

is presented, by breaking contents into modules instead of lectures.

Also, I will be relying on the standard textbook for this topic, namely

Klugman et al. 2012.

	 Warning

My notes have stopped halfway through the intended course, because I

decided to drop the course. It was clear that the professor wanted students

to know almost from the get-go on how to use these concepts on a level

much more advanced than what is expected of a learner, and it was not

beneficial continuing the course for me.





Part I

Pre-requisite Review





1 Y Introduction and Review of Prob-

ability

We shall first take an overview of what this course is about, and we

will review on some of the relevant notions from earlier courses.

1.1 Introduction to Credibility Theory

Credibility Theory is a form of statistical inference that

• uses newly observed past events; to

• more accurately re-forecasts uncertain future events.

From Klugman et al. 2012,

It is a set of quantitative tools that allows an insurer to perform

prospective experience rating (adjust future premiums based on

past experience) on a risk or group of risks. If the experience of a pol-

icyholder is consistently better than that assumed in the underlying

manual rate (also called a pure premium), then the policyholder

may demand a rate reduction.

That’s all fancy mumbo-jumbo so let’s go through an example that

will hopefully enlighten us.

Example 1.1.1 (Enlightening Example to Credibility Theory)

Suppose automobile insurance policies are classified according to the

following factors:

• number of drivers;
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• gender of each driver;

• number of vehicles; and

• brand, model, production year, and approximate mileage driver

per year.

Policies with identical characteristics are assumed to belong to the

same rating class, which represents a group of individuals with

similar risks.

Suppose there are 2 policies in the same rating class. Both policies

are charged with a so-called manual premium of $1, 500 per year.

This is the premium specified in the insurance manual for a policy

with similar characteristics.

Let’s say that after 3 years, we obtain the following data: We want

Policy 1 Policy 2

Year 1 0 500
Year 2 200 4000
Year 3 0 2500

Table 1.1: Newly acquired past history
for finding ‘credibility’

to find out what’s a good premium to charge to each policy for Year

4. ¥

Remark 1.1.1

The shall leave the following as remarks.

• How is the policyholder’s own experience account for? This is a key

question that will be addressed in this course.

• Risks in a given rating class are not perfectly identical (i.e., no rating

system is perfect)

• One may refine the rating system by incorporating more factors but it is

time-consuming (and no system is perfect). a

Thus, credibility theory is designed such that it

• accounts for heterogeneity within a given rating lass; and

• provides a theoretical justification to charge a premium that re-

flects to the policyholder’s own experience.
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1.2 Review of Probability

You are expected to be familiar with the following concepts: Some examples or more detailed review
will be added for each topic if I come to
work through them in detail.• Joint and Marginal Distribution

• Conditional Distribution

• Mixture Distributions (see also ACTSC431)

– n-point Mixture

• Conditional Expectation

https://tex.japorized.ink/ACTSC431/classnotes.pdf




2 YReview of Statistics

In this chapter, we will review the following notions:

• Unbiased estimation

• Maximum likelihood estimation

• Bayesian estimation �

2.1 Unbiased Estimation

Suppose we are given a parametric model 1 of X, i.e. the distribution 1 See ACTSC431.

of X | Θ = θ is known but θ is unknown. Furthermore, we have

a random sample of X, i.e. we have {Xi}n
i=1 is an independent and

identically distributed (iid) sequence of random variables (rv) such

that Xi ∼ X.

# Definition 1 (Estimate)

An estimate is a specific value that is obtained when applying an esti-

mation procedure to a set of numbers, and in our case, rvs. We usually

denote an estimate by a hat .̂

# Definition 2 (Estimator)

An estimator is a rule or formula that produces an estimate. We usu-

ally denote an estimator by .̃

https://tex.japorized.ink/ACTSC431/classnotes.pdf#defn.24
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Ã Note 2.1.1

An estimate is a number or a function, while an estimator is an rv or a

random function.

Remark 2.1.1

In this course, we will not make a difference between the estimator and the

estimate, and will use only .̂ a

# Definition 3 (Biased and Unbiased Estimator)

We say that an estimator, θ̂, is unbiased if

E[θ̂ | θ] = θ

for all θ. We say that an estimator is biased if it is not unbiased, and we

define the bias as

biasθ̂(θ) = E[θ̂ | θ]− θ.

Let’s have ourselves a silly example.

Example 2.1.1

Let (X1, . . . , Xn) be a random sample of Exp(β). The sample mean

X =
1
n

n

∑
i=1

Xi,

is an unbiased estimator for the mean β; observe that by the linearity

of the expectation, we have

E[X] = E

[
1
n

n

∑
i=1

Xi

]
=

1
n

n

∑
i=1

E[Xi] =
1
n
(nβ) = β. ¥

Example 2.1.2

Let {Xi}n
i=1 be a random sample of X ∼ Unif(0, θ). Let us construct

two unbiased estimators for θ using
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1. the sample mean X; and

2. order statistics X(n) := max1≤i≤n{Xi}. ¥

´ Solution

1. Observe that

E[X] = E

[
1
n

n

∑
i=1

Xi

]
=

1
n

n

∑
i=1

E[Xi] =
1
n
· n
(

θ

2

)
=

θ

2
.

This tells us that if we picked θ̂ = 2X, then we would end up with

E[2X] = θ.

Thus 2X is an unbiased estimator of θ.

2. Using the Darth Vader rule 2, since the Xi’s form a random sam- 2 The Darth Vader rule is given as: if X
is a non-negative rv, then

E[X] =
∫ ∞

0
FX(x) dx,

where FX is the survival function of X.

ple of X, and the bounds for each Xi is 0 and θ, we have that

E[X(n)] =
∫ ∞

0
FX(n)

(x) dx

=
∫ ∞

0
(1− P(max{X1, X2, . . . , Xn}) ≤ x) dx

=
∫ ∞

0
(1− P(X1 ≤ x)P(X2 ≤ x) . . . P(Xn ≤ x)) dx

=
∫ θ

0

(
1− (

x
θ
)n
)

dx

= θ − 1
n + 1

(
xn+1

θn

) ∣∣∣x=θ

x=0
=

n
n + 1

θ,

where we note that we can change the bounds as such since X ∼
Unif(0, θ) implies that

P(X ≤ θ) =


x
θ 0 ≤ x ≤ θ

1 x > θ
.

Thus, to get an unbiased estimator for θ, we simply need to con-

sider

θ̂ =
n + 1

n
X(n),

which then

E
[

n + 1
n

X(n)

]
= θ. ◎
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7 Proposition 1 (Sample Mean as the Unbiased Estimator of the

Mean)

Let {Xi}n
i=1 be a random sample of X which has mean µ. Then X is an

unbiased estimator of µ.

´ Proof

We have that

E[X] =
1
n

n

∑
i=1

E[Xi] =
1
n
(nµ) = µ. �

# Definition 4 (Sample Variance)

Let {Xi}n
i=1 be a random sample of X which has mean µ and variance σ2.

We define the sample variance as

σ̂2 :=
1

n− 1

n

∑
i=1

(Xi − X)2.

7 Proposition 2 (Sample Variance as the Unbiased Estimator of

the Variance)

Let {Xi}n
i=1 be a random sample of X which has mean µ and variance σ2.

Then the sample variance σ̂2 is an unbiased estimator of σ2.

´ Proof

First, note that

Var(X) = Var

(
1
n

n

∑
i=1

Xi

)

=
1
n2 n Var(Xi)

=
1
n

σ2.
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Thus

E

[
n

∑
i=1

(Xi − X)2

]
= E

[
n

∑
i=1

(Xi − µ + µ− X)2

]

=
n

∑
i=1

E
[
(Xi − µ)2

]
+

n

∑
i=1

E
[
(µ− X)2

]
+ 2E

[
n

∑
i=1

(Xi − µ)(µ− X)

]
= nσ2 + n Var(X) 3 + 2nE[(X− µ)(µ− X)] 4

= nσ2 − n Var(X)

= nσ2 − n
(

1
n

σ2
)

= (n− 1)σ2.

4 This relies on the fact that X is
the unbiased estimator for µ (cf.
7 Proposition 1). We then use the

definition of the variance to achieve
this.
4 We used the fact that

n

∑
i=1

(Xi − µ) =
n

∑
i=1

Xi − nµ = nX− nµ.

Also, note that

Var(X) = E[(X− µ)2].

It follows that

E

[
1

n− 1

n

∑
i=1

(Xi − X)2

]
= σ2. �

Remark 2.1.2

In general, unbiasedness is not preserved under parameter transformations.

E.g., 1
X

is generally not unbiased for µ, where µ is the mean of X. a

Some unbiased estimators can also be unreasonable.

Example 2.1.3

Consider X ∼ Poi(λ), where λ > 0. Note that

E[(−1)X ] = eλ(−1−1) = e−2λ

by the probability generating function method, and we see that

(−1)X is an unbiased estimator of e−2λ. However, we see that (−1)x

only takes on values ±1, which is nowhere close to e−2λ.

Intuitively, e−2X would be a “better” estimator despite the fact that

it is biased. ¥
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Despite shortcomings like the above, unbiasedness is generally a

good property for an estimator to have.

2.2 Mean Squared Error

# Definition 5 (Mean Squared Error)

Suppose θ̂ is an estimator for the parameter θ. The mean squared error

(MSE) of θ̂ is defined as

MSEθ̂(θ) := E
[
(θ̂ − θ)2

]
= Var(θ̂) + biasθ̂(θ)

2.

´ Proof

It is not immediately clear how the two expressions are the same.

We shall prove it here. First, note that biasθ̂(θ) = E[θ̂]− θ is a real

value. Using a similar idea as in 7 Proposition 2, we see that

E
[(

θ̂ − θ
)2
]
= E

[(
θ̂ − E[θ̂] + E[θ̂]− θ

)2
]

= E
[
(θ̂ − E[θ̂])2

]
+ E

[(
E[θ̂]− θ

)2
]

+ 2E[(θ̂ − E[θ̂])(E[θ̂]− θ)]

= Var(θ̂) + biasθ̂(θ)
2

+ 2 biasθ̂(θ)��
���

�:0
E[θ̂ − E[θ̂]]

= Var(θ̂) + biasθ̂(θ)
2. �

Ã Note 2.2.1

The MSE is a measure to evaluate the quality of estimators. The

smaller the MSE, the better the estimator.
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2.3 Maximum Likelihood Estimation

# Definition 6 (Likelihood Function)

Let {Xi}n
i=1 be a random sample of X with density f (x; θ), where θ is

possibly a vector of parameters. The likelihood function for θ is defined

as

L(θ) =
n

∏
i=1

f (Xi; θ).

# Definition 7 (Maximum Likelihood Estimation)

The maximum likelihood estimation (MLE) of θ̂ of θ is an approach

that maximizes L(θ̂).

Ã Note 2.3.1

Heuristically, under the MLE, θ̂ is the most likely parameter for the

sample (X1, . . . , Xn) to be realized.

Sometimes, the likelihood function is difficult to work with. For-

tunately, since ln x is a increasing bijective function that preserves

monotonicity, we can make us of this property to ensure maximality.

# Definition 8 (Log-likelihood Function)

The log-likelihood function is defined as

l(θ) =
n

∑
i=1

ln( f (Xi; θ)).

Example 2.3.1

Let {Xi}n
i=1 be a random sample for N(µ, v). Find the MLE for

µ, v. ¥
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´ Solution

First, we shall work on getting an MLE for µ. The likelihood function

here is

L(µ) =
n

∏
i=1

f (Xi; µ)

=
n

∏
i=1

1√
2πσ2

e−
(Xi−µ)2

2σ2

∝ exp

{
− 1

2σ2

n

∑
i=1

(Xi − µ)2

}
.

Evaluating the derivative and equating it to 0 would be fruitless,

since this is an exponentiation. Thus we appeal to the log-likelihood,

which is

l(µ) ∝
n

∑
i=1

(Xi − µ)2.

The derivative log-likelihood is thus

dl
dµ

∝ −2
n

∑
i=1

(Xi − µ).

Equating the above to 0, we get

µ̂ = X.

Now for an MLE of σ2. For sanity, let us denote τ = σ2. Then the

likelihood function, focusing on τ, is

L(τ) =
n

∏
i=1

1√
2πτ

e−
(Xi−µ)2

2τ

∝ τ−
n
2 e−

1
2τ ∑n

i=1(Xi−µ)2
.

Again, the likelihood involves an exponentiation, so we appeal to the

log-likelihood, which is

l(τ) ∝ −n
2

ln τ − 1
2τ

n

∑
i=1

(Xi − µ)2.
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The derivative of the log-likelihood is

dl
dτ

= − n
2τ

+
1

2τ2

n

∑
i=1

(Xi − µ)2.

Equating the above to 0, we get

n =
1
τ̂

n

∑
i=1

(Xi − µ̂)2,

and so

σ̂2 = τ̂ =
1
n

n

∑
i=1

(Xi − X)2 ◎

2.4 Bayesian Estimation

From Klugman et al. 2012,

The Bayesian approach assumes that only the data actually observed

are relevant and it is the population distribution that is variable.

# Definition 9 (Prior Distribution)

The prior distribution is a probability distribution over the space of

possible parameter values. It is denoted π(θ) and represents our opinion

concerning the relative chances that various values of θ are the true value

of the parameter.

Ã Note 2.4.1

• The parameter θ may be scalar or vector valued.

• Determining the prior distribution has always been one of the barriers

to the widespread acceptance of the Bayesian methods, since it is almost

certainly the case that your experience has provided you with some

insight about possible parameter values before the first data point has

been observed.
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We shall use the following concepts from multivariate statistics to

obtain the following definitions.

# Definition 10 (Joint Distribution)

Let {Xi}n
i=1 be a random sample of the rv X, and Θ another rv that is

independent of the Xi’s 5, with pdf π. Let ~X = (X1, X2, . . . , Xn). Then 5 Note that Θ does not necessarily have
a similar distribution to X.

the joint distribution of ~X and Θ is defined as

f~X,Θ(~x, θ) = f~X|Θ(~x | θ)π(θ).

# Definition 11 (Marginal Distribution)

Let {Xi}n
i=1 be a random sample of the rv X, and Θ another rv that is

independent of the Xi’s 6, with pdf π. Let ~X = (X1, X2, . . . , Xn). Then 6 Note that Θ does not necessarily have
a similar distribution to X.

the marginal distribution of ~X is defined as

f~X(~x) =
∫

f~X|Θ(~x | θ)π(θ) dθ.

Once we have obtained data, we can look back at our prior distri-

bution and “update” it to...

# Definition 12 (Posterior Distribution)

Let {Xi}n
i=1 be a random sample of the rv X, and Θ another rv that

is independent of the Xi’s 7, with pdf π. The posterior distribution, 7 Note that Θ does not necessarily have
a similar distribution to X.

denoted by πΘ|~X(θ | ~x), is the conditional probability distribution of the

parameters given the observed data.

It is easy to find out what the general formula of the posterior

distribution is. One simply needs to make use of # Definition 10

and # Definition 11. The proof of the following proposition is left as

an easy brain exercise for the reader.

Exercise 2.4.1
Prove 7 Proposition 3.
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7 Proposition 3 (Formula for the Posterior Distribution)

With the assumptions in # Definition 12, we have that the posterior

distribution can be computed as

πΘ|~X(θ | ~x) =
f~X,Θ(~x, θ)

f~X(~x)

=

(
∏n

i=1 fXi |Θ(xi | θ)
)

π(θ)∫
∀θ

(
∏n

i=1 fXi |Θ(xi | θ)
)

π(θ) dθ
.

# Definition 13 (Posterior Mean)

The posterior mean is defined as the expected value of the posterior

distribution.

# Definition 14 (Bayes Estimator)

The Bayes estimator of Θ is the posterior mean of Θ, defined as

θ̂B := E[Θ | ~X = ~x] =
∫
∀θ

θ · πΘ|~X(θ | ~x).

Ã Note 2.4.2

It can be shown that θ̂B minimizes the mean square error

min
θ̂

E
[(

θ̂ −Θ
)2 | ~X = ~x

]
.

2.4.1 Conjugate Prior Distributions and the Linear Exponential Family

# Definition 15 (Conjugate Prior Distribution)
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A prior distribution is said to be a conjugate prior distribution for a

given model if the resulting posterior distribution is from the same family

as the prior, although possibly with different parameters.

8 8 More examples should be added here.

Example 2.4.1

The following are some important/prominent examples of conjugate

prior distributions: ¥

π(θ) f (x | θ) π(θ | ~x)
Gamma Poisson Gamma
Normal Normal Normal

Beta Binomial Beta
Beta Geometric Beta

Table 2.1: Important/Prominent Conju-
gate Prior Distributions

# Definition 16 (Linear Exponential Family)

An rv X is said to belong to the linear exponential family if its pdf is of

the form

f (x, θ) =
p(x)exr(θ)

q(θ)
,

where p(x) is some function of x, and r(θ), q(θ) are some functions of θ,

and the support of f does not depend on θ.

Ã Note 2.4.3
Basically, functions the belong to a
linear exponential family is a linear-like
function with an exponent.

Example 2.4.2

Some members of the linear exponential family include

• Exp(θ) : f (x, θ) = 1
θ e−

x
θ , where p(x) = 1, r(θ) = − 1

θ and q(θ) = θ.

• Gam(α, θ) : f (x, α, θ) = 1
Γ(α)θα xα−1e−

x
θ .

• Poi(θ) : f (x, θ) = θxe−θ

x! =
1
x! ex ln θ

eθ

• N(θ, v) : f (x, θ, v) = 1√
2πv

e−
(x−θ)2

2v = (2πv)−
1
2 e−

x2
2v ex θ

v

eθ2/2v
¥
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¯Theorem 4 (Conjugate Prior Distributions of Linear Exponen-

tial Distributions)

Suppose that given Θ = θ the rvs ~X are iid with pf

fXj |Θ(xj | θ) =
p(xj)e

r(θ)xj

q(θ)
,

where Θ has the pdf

π(θ) =
[q(θ)]−keµkr(θ)r′(θ)

c(µ, k)
,

where µ and k are parameters of the distribution and c(µ, k) is the nor-

malizing constant 9. Then the posterior pf πΘ|~X(θ | ~x) is of the same 9 The normalizing constant is used to
reduce any probability function to a
probability density function with a total
probability of 1. (Source: Wikipedia)

form as π(θ), i.e. π(θ) is a conjugate prior distribution function.

´ Proof

Notice that the posterior distribution is

π(θ | ~x) =

(
∏n

i=1 fXi |Θ(xi | θ)
)

π(θ)∫
∀θ

(
∏n

i=1 fXi |Θ(xi | θ)
)

π(θ) dθ

∝

(
n

∏
i=1

fXi |Θ(xi | θ)π(θ)

)

=

(
n

∏
i=1

p(xj)e
r(θ)xj

q(θ)

)(
[q(θ)]−keµkr(θ)r′(θ)

c(µ, k)

)
∝ q(θ)−(n+k)eµk+nxr(θ)r′(θ)

= q(θ)−k∗ eµ∗k∗r(θ)r′(θ),

where

k∗ = k + n, and µ∗ =
µk + ∑ xj

k + n
=

k
k + n

µ +
n

k + n
x,

and we see that the posterior distribution has the same form as

π(θ). �

Example 2.4.3

https://en.wikipedia.org/wiki/Normalizing_constant
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One non-example is mentioned in Example 2.4.1: the distribution of

Xi is not from the linear exponential family, but we still obtain that

the posterior distribution has a similar distribution to the posterior

distribution. ¥



Part II

Credibility Theory





3 Y Limited Fluctuation Credibility The-

ory

The Limited Fluctuation Credibility Theory provides a mechanism

for assigning full or partial credibility to a policyholder’s experi-

ence. The difficulty with this approach is its lack of a sound under-

lying mathematical theory that justifies the use of these methods.

Despite that fact, it is still widely used today, especially in the United

States.

3.1 Limited Fluctuation Credibility

From Klugman et al. 2012,

This branch of credibility theory represents the first attempt to quan-

tify the credibility problem.

This approach is also known as the “American credibility”. It was

first proposed by Mowbray in 1914
1. 1 Mowbray, A. H. (1914). How extensive

a payroll exposure is necessary to give a
dependable pure premium? Proceedings
of the Casualty Actuarial Society, I:24–30

The problem can be formulated as follows. Suppose that {Xi}n
i=1

represents a policyholder’s claim amounts in the past n years. Fur-

thermore, we assume that the Xi’s have

• the same expected value, i.e. E[Xi] = µ for some µ; and

• variance, i.e. Var(Xi) = σ2 for some σ.

From our revision in the last section, we know that X is an unbiased

estimator for µ, and if the Xi’s are independent, then Var(X) = σ2

n .

The goal here is to figure our how much to charge for the next
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premium, i.e. determining E[Xn+1]. We have at least the following 3

possibilities:

• ignore past data (no credibility) and charge M, a value, called the

manual premium 2, obtained from experience on other similar but 2 This name is obtained from the fact
that it usually comes from a book
(manual) of premiums.non-identical policyholders;

• ignore M and charge X (full credibility); and a third possibility is

to

• choose some combination of M and X (partial credibility).

From the POV of an insurer, it seems sensible to favor X if the

experience is “stable”, i.e. there is little fluctuation, represented by a

small σ2. Stable values imply that X is more reliable as a predictor.

Conversely, if X is volatile, then M would be a safer choice.

3.2 Full Credibility

In full credibility theory, there are only 2 outcomes: either we

• assign full credibility, that is to charge X; or

• no credibility, where we charge M.

One method to ‘quantify the stability’ of X 3 is to infer that X is 3 This has become the standard method
for ‘quantifying stability’ for X.

stable if the difference between X and µ is small relative to µ with

high probability, i.e.

P(
∣∣X− µ

∣∣ ≤ εµ) ≥ p (3.1)

for some ε > 0 and 0 < p < 1. We may rewrite Equation (3.1) as

P

(∣∣X− µ
∣∣

σ/
√

n
≤ εµ

σ/
√

n

)
≥ p.

Now let yp be defined as by

yp = VaRp

(∣∣X− µ
∣∣

σ/
√

n

)
= inf

{
y ∈ R : P

(∣∣X− µ
∣∣

σ/
√

n
≤ y

)
≥ p

}
.

If X is continuous, then the ≥ sign above can be replaced with an

“=” sign 4, and yp satisfies 4 See ACTSC431.

https://tex.japorized.ink/ACTSC431/classnotes.pdf
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P

(∣∣X− µ
∣∣

σ/
√

n
≤ yp

)
= p. (3.2)

Then the condition for full credibility is

yp ≤
εµ

σ/
√

n
.

Making n the subject, we have that the number of exposure required

Ò (Condition for Full Credibility)
1. Use the central limit theorem argument

for yp.

2. Calculate RHS of Equation (3.3).

for full credibility is thus

n ≥
(yp

ε

)2 σ2

µ2 = λ0
σ2

µ2 , (3.3)

where we let λ0 =
(

yp
ε

)2
for notational succinctness since it is a

constant that depends only p and ε.

It is often difficult to identify a distribution for X, of which yp

depends on. Recall the normal approximation, which is applicable if

n is large 5: 5 Is this not circular!?

X− µ

σ/
√

n
≈ Z0,1 ∼ N(0, 1)

Then Equation (3.2) becomes

p = P(|Z| ≤ yp) = Φ(yp)−Φ(−yp)

= Φ(yp)− 1 + Φ(yp) = 2Φ(yp)− 1.

Thus

yp ≈ Φ−1
(

1 + p
2

)
.

Example 3.2.1

Suppose that one has data {Xi}10
i=1 on the claim amounts in the last

10 periods, where

Xi = 0 for i = 1, . . . , 6,

and

X7 = 253, X8 = 398, X9 = 439, X10 = 756.

Determine the condition for full credibility with ε = 0.05 and p =

0.9. ¥

´ Solution
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We need to first determine the sample mean and sample variance,

and we shall use the unbiased estimators of µ and σ2 respectively:

they are

X =
1
10

10

∑
i=1

Xi =
0 + 253 + 398 + 439 + 756

10
= 184.6,

and

σ̂2 =
1

10− 1

10

∑
i=1

(Xi − X)2 = 267.892.

We also need

yp = Φ−1
(

1 + p
2

)
= Φ−1(.95) = 1.645.

Then we require that

n ≥
(

1.645
0.05

)2 (267.892

184.62

)
= 2279.5.

We see that the 10 observations definitely do not deserve full credibil-

ity. ◎

Full credibility is sometimes given on a number of claims basis

(instead of on the claims amount).

Example 3.2.2

Suppose that one has iid data {Ni}n
i=1 on the number of claims in the

past n periods, with Ni ∼ Poi(λ). Determine the condition for full

credibility in terms of the expected total number of claims given that

p = 0.9 and ε = 0.05. ¥

´ Solution

Since Ni ∼ Poi(λ), we have E[Ni] = λ = Var(Ni). Furthermore,

yp = Φ−1 (0.95) = 1.645.

Now since the condition is

n ≥ λ0
σ2

µ2 =
λ0

λ
,

and we want the expected total number of claims, we focus on look-
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ing at

nµ = nλ ≥ λ0.

Observe that

λ0 =

(
1.645
0.05

)2
= 1082.41,

we have that the required expected total number of claims should

fulfill

nλ ≥ 1082.41. ◎

Example 3.2.3 (Compound Poisson for Full Credibility)

Let {Xi}n
i=1 be a sequence of iid compound Poisson rvs, given by

Xi =
Ni

∑
j=1

Yi,j =

∑Ni
j=1 Yi,j, Ni ≥ 0

0 Ni = 0
,

where

• {Ni}n
i=1 are iid with Ni ∼ Poi(λ) for each i; and

• {Yi,j} are also iid with mean µY and variance σ2
Y.

Determine the condition for full credibility. ¥

´ Solution

We require the unconditional sample mean and sample variance of

Xi; they are

E[Xi] = E[E[Xi | Ni]] = E[Ni]E[Yi,j] = λµY,

and

Var(Xi) = Var(E[Xi | Ni]) + E[Var(Xi | Ni)]

= Var(NiµY) + E[Niσ
2
Y]

= µ2
Yλ + σ2

Yλ

= λ(µ2
Y + σ2

Y).
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Thus, the condition for full credibility is

n ≥ λ0
λ(µ2

Y + σ2
Y)

λ2µ2
Y

=
λ0

λ

(
1 +

σ2
Y

µ2
Y

)
. ◎

To further illustrate that we can use the concept of full credibility

for different things, the following example is provided.

Example 3.2.4

Suppose that the average claim size for a group of insureds is 1500

with a standard deviation of 7500. Furthermore, assume that claim

counts have a Poisson distribution. For ε = 0.06 and p = 0.9, deter-

mine the standard for full credibility based on the

1. total claim amount; and

2. total number of claims,

in terms of the expected total number of claims. ¥

´ Solution

1. Using the last example and letting

E[Xi] = µ and Var(Xi) = Var(Xi) = σ2,

the standard for full credibility is

n ≥ λ0

λ

(
1 +

σ2
Y

µ2
Y

)
.

We are given that

µY = 1500 and σ2
Y = 75002.

Thus

n ≥ 1.6452

0.062λ

(
1 +

75002

15002

)
=

19543.51
λ

.

In terms of the expected total number of claims, we have

nλ ≥ 19543.51.

Thus the observed total number of claims of past claims must be at
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least 19544 to assign full credibility.

2. Using Example 3.2.2, we have

n ≥ λ0

λ
=

751.67
λ

.

Thus, in terms of the expected total number of claims, we have

nλ ≥ 751.67.

Therefore, the observed total number of past claims must be at

least 752 to assign full credibility. ◎

3.3 Partial Credibility

If full credibility is inappropriate, then we may want to assign partial

credibility to the past experience X in the net premium. Without

much mathematical support, it was suggested that we let the net

premium be defined as a weighted average of X and the manual

premium M, i.e.

P = ZX + (1− Z)M,

where Z ∈ [0, 1] is known as the credibility factor 6 7, which is a 6 It is important to note there that Z
is not an rv. It is simply a pretentious
choice of notation for what is to come.
7 It is interesting to remark that Mow-
bray 1914 considered full but not partial
credibility.

value that needs to be chosen.

In the actuarial literature 8, there are various suggestions for deter-
8 Klugman, S. A., Panjer, H. H., and
Willmot, G. E. (2012). Loss Models: From
Data to Decisions. John Wiley & Sons
Inc., Hoboken, New Jersey, 4th edition

mining Z. However, they are usually justified on intuition rather than

theoretically sound grounds. We shall discuss one of the choices here,

which is flawed, but is at least simple.

Recall that the goal of the full-credibility standard is to ensure

that the difference between X and µ is small with high probability

(cf. beginning of Section 3.2). Since X is unbiased, to achieve this

standard is basically 9 equivalent to controlling the variance of X. 9 This is exactly the case if X is normal.

Note that full credibility fails when

n < λ0

(
σ2

µ2

)
, (3.4)
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and since the sample variance (which is unbiased for the variance) is

Var(X) =
σ2

n
,

rearranging Equation (3.4), we have that

Var(X) =
σ2

n
>

µ2

λ0
.

Thus, we choose Z such that it controls the variance of the credibility

premium as such:

µ2

λ0
= Var(P) = Var(ZX + (1− Z)M)

= Z2 Var(X) = Z2 · σ2

n
.

Thus, since we want Z as a weighted average, we let

Z = min
{

µ

σ

√
n
λ0

, 1
}

.

10 Note that 10 Note that this choice of Z has some
consistency with full credibility, since
Z = 1 iff n ≥ λ0

σ2

µ2 .
µ

σ

√
n
λ0

=

√
n

λ0(
σ2

µ2 )
,

which is the square root of the actual number of exposures divided

by the number of exposures needed for full credibility. This is also

referred to as the Square-root rule for partial credibility.

Example 3.3.1

Suppose that past observations of the number of claims {Ni}n
i=1 are

iid and Ni ∼ Poi(λ). Determine the credibility factor Z based on the

number of claims. ¥

´ Solution

Note that

µ = E[Ni] = λ and σ2 = Var(Ni) = λ.

We have that

Z = min
{

µ

σ

√
n
λ0

, 1
}

= min

{√
nλ

λ0
, 1

}
. ◎
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Example 3.3.2

Consider the setup in Example 3.2.3. Determine the credibility factor

Z based on the amount of claims. ¥

´ Solution

We have that

µ = E[Xi] = λµY and σ2 = Var(Xi) = λ(µ2
Y + σ2

Y).

Then since
µ

σ

√
n
λ0

=

√
nλ

λ0
·

µ2
Y

µ2
Y + σ2

Y
,

we have that

Z = min

{√
nλ

λ0
·

µ2
Y

µ2
Y + σ2

Y
, 1

}
◎

Different credibility factors may arise depending on the

basis of which the credibility is founded upon.

Example 3.3.3

Consider the setup in Example 3.2.4. Further suppose that

• in thelast year, this group of insureds had 600 claims and a total

loss of 15600 ; and

• the prior estimate of the total loss was 16500 (this is M).

Estimate the credibility premium for the group based on the

1. total claim amount; and

2. total number of claims. ¥

´ Solution

1. We are given that µY = 1500, σY = 7500 and nλ = 600. Thus

Z = min

{√
nλ

λ0
·

µ2
Y

µ2
Y + σ2

Y
, 1

}
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= min


√√√√ 600(

1.645
0.06

)2 ·
15002

15002 + 75002 , 1


= 0.17522

Thus the credibility premium for the group is

P = 0.17522X + (1− 0.17522)M

= 0.17522(15600) + (1− 0.17522)(16500)

= 16342.302

11 11 It is important to note here that
X = 15600 in this case, since this is
the total loss over ‘1’ period of time, in
particular it is the total amount up to
the latest time.

2. Based on the total number of claims, the credibility factor is

Z = min

{√
nλ

λ0
, 1

}
= min


√√√√ 600(

1.645
0.06

)2 , 1

 = 0.89343.

Thus the credibility premium for the group is

P = 0.89343X + (1− 0.89343)M = 15696. ◎

3.4 Problems with Limited Fluctuation Credibility

• There is no theoretical model for the distribution of Xi’s, and so

there is no reason why

P = ZX + (1− Z)M

is a reasonable and more preferable to M.

• The choice of Z is rather arbitrary.

• There is no guidance to the choices of ε and p.

• The limited fluctuation approach does not examine the difference

between µ and M. Furthermore, it is usually the case that M is

also an estimate, and hence unreliable in itself.
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The Greatest Accuary Credibility approach is a model-based ap-

proach to the solution of the credibility problem, which is an out-

growth of Bühlmann’s classic paper in 1967
1. The greater accuracy 1 Bühmann, H. (1967). Experience

rating and credibility. ASTIN Bulletin,
4:199–207

credibility is also called the European credibility.

In greatest accuracy credibility, we assume that all risk units in a

given rating class have an unknown risk parameter θ that is asso-

ciated with their risk level. Since different insureds have different θ

values, risk units within a rating class are not completely homoge-

neous. This assumption allows us to quantify the differences between

policyholders wrt to the risk characteristics.

Ã Note 4.0.1 (Assumptions)

We shall also always assume that θ exists, but we shall assume that it is

not observable, and that we can never know its true value.

Since θ varies by policyholder, there is a probability distribution Θ

across the rating class. We denote

• πΘ(θ) as the probability distribution of Θ; and

• ΠΘ(θ) as the cdf of Θ.

If θ is a scalar parameter 2, then we may interpret 2 Refer to STAT330.

Π(θ) = P(Θ ≤ θ)

as the percentage of policyholders in the rating class with risk parameter

Θ less than or equal to θ.

https://tex.japorized.ink/STAT330S18/classnotes.pdf#defn.20
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Furthermore, if we let {Xi}n
i=1 be the past exposure units 3, we will 3 which is not necessarily iid

suppose that

{Xi | Θ = θ}n
i=1

are iid, with common density function fX|Θ(x | θ).

We want to use these assumptions to derive a rate to cover for

Xn+1.

4.1 The Bayesian Methodology

# Definition 17 (Predictive Distribution)

The predictive distribution is the conditional probability distribution of

a new observation y given the data ~x. It is denoted as fY|~X(y | ~x).

7 Proposition 5 (Formula for Predictive Distribution)

Given exposure units {Xi}n
i=1, the predictive distribution of a new obser-

vation, Y, can be computed as

fY|~X(y | ~x) =
∫
∀θ

fY|Θ(y | θ)πΘ|~X(θ | ~x).

´ Proof

By the formula for the posterior distribution, we have that

πΘ|~X(θ | ~x) =
fΘ,~X(θ,~x)

f~X(~x)

=
f~X|Θ(~x | θ)π(θ)∫

∀θ f~X|Θ(~x | θ)π(θ) dθ
.

Also, observe that

fY,~X(y,~x) =
∫
∀θ

f(Y,~X)|Θ(y,~x | θ)π(θ) dθ
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=
∫
∀θ

fY|Θ(y | θ) f~X|Θ(~x | θ)π(θ) dθ,

where the second equality follows from our assumption that the

conditional observations are independent. Then

fY|~X(y | ~x) =
fY,~X(y,~x)

f~X(~x)

=

∫
∀θ fY|Θ(y | θ) f~X|Θ(~x | θ)π(θ) dθ∫

∀θ f~X|Θ(~x | θ)π(θ) dθ

=
∫
∀θ

fY|Θ(y | θ)πΘ|~X(θ | ~x). �

# Definition 18 (Individual Premium)

Given the Xn+1 exposure unit and risk Θ, we define the individual

premium (or hypothetical mean) of Xn+1 as

µn+1(θ) = E[Xn+1 | Θ = θ].

# Definition 19 (Pure Premium)

We define the pure premium (or collective premium) of Xn+1 as

µn+1 = E[Xn+1].

Ò (Finding the Bayesian Premium)
1. Identify Xi | Θ = θ.

2. Identify the prior distribution Θ.

3. Identify the posterior distribution
Θ | ~X.

4. Calculate

P =
∫
∀θ

E[Xn+1 | Θ = θ]πΘ|~X(θ | ~x) dθ.

# Definition 20 (Bayesian Premium)

The Bayesian premium of Xn+1 is defined as

E[Xn+1 | ~X] =
∫
∀θ

µn+1(θ)πΘ|~X(θ | ~x) dθ.

Example 4.1.1

The number of claims for a policyholder in year i is Xi for i = 1, 2.
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Suppose that X1 | Θ = θ and X2 | Θ = θ are iid with pmf

P(X = 1 | Θ = θ) = 1− θ,

and

P(X = 2 | Θ = θ) = θ.

The prior distribution is given as Θ ∼ Beta(2, 3). Determine the

Bayesian premium E[X2 | X1 = 2]. ¥

´ Solution

Method 1: Using predictive distribution Observe that

P(X2 = 2 | X1 = 2) =
∫
∀θ

P(X2 = 2 | Θ = θ)πΘ|X1
(θ | x1) dθ

=
∫
∀θ

θ ·
fX1|Θ(2 | θ)π(θ)∫

∀θ fX1|Θ(x1 | θ)π(θ) dθ
dθ

=
∫
∀θ

θ2π(θ)

E[Θ]
dθ

=
E[Θ2]

E[Θ]
=

1
5
2
5
=

1
2

.

Thus

P(X2 = 1 | X1 = 2) = 1− 1
2
=

1
2

.

Hence

E[X2 | X1 = 2] = 1 · 1
2
+ 2 · 1

2
=

3
2

.

Method 2: Using Bayesian premium formula We have that

E[X2 | X1 = 2] =
∫
∀θ

E[X2 | Θ = θ]πΘ|X1
(θ | 2) dθ

=
∫
∀θ
[1(1− θ) + 2θ] · P(X1 = 2 | Θ = θ)π(θ)∫

∀θ P(X1 = 2 | Θ = θ)π(θ) dθ
dθ

=
∫
∀θ

(1 + θ)θπ(θ)

E[Θ]
dθ

=
E[Θ] + E[Θ2]

E[Θ]

=
2
5 + 1

5
2
5

=
3
2

. ◎
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4.2 The Credibility Premium

The Bayesian premium strongly depends on the assumed distribution

of Xi | Θ = θ and Θ. Furthermore, the Bayesian premium may be

difficult to evaluate.

Another method to estimate Xn+1 which we shall study is to make

use of linear combinations of past observations, in particular

α0 +
n

∑
i=1

αiXi.

The estimates α̂0, . . . α̂n are chosen to minimize the mean square error

Q(α0, . . . , αn) = E

(Xn+1 −
[

α0 +
n

∑
i=1

αiXi

])2
 .

Let us now develop the general model in calculating the credibility

premium. A hidden requirement to use credibility
premium is that we require

E[Xj], Var(Xj), Cov(Xi , Xj) < ∞.

¯Theorem 6 (General Model for Credibility Premium)

Let {Xi}n
i=1 be a sequence of past observations (rvs), and Xn+1 the pre-

dictive rv. Then, the solution (α̂0, . . . , α̂n) to the system of linear equa-

tions, called the normal equations,

E[Xn+1] = α̂0 +
n

∑
i=1

α̂iE[Xi]

Cov(Xj, Xn+1) =
n

∑
i=1

α̂i Cov(Xi, Xj), ∀j ∈ {1, . . . , n},

minimizes the mean square error

Q(α0, . . . , αn) = E

(Xn+1 −
[

α0 +
n

∑
i=1

αiXi

])2
 .

´ Proof

First, we take partial derivative wrt α0, and set the derivative to 0,
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i.e.
∂Q
∂α0

= E

[
−2

(
Xn+1 − α̂0 −

n

∑
i=1

α̂iXi

)]
= 0.

This gives us

E[Xn+1] = α̂0 +
n

∑
i=1

α̂iE[Xi]. (4.1)

Now, we take partial derivatives wrt each αj, j ∈ {1, . . . , n}, and

equate the derivatives to 0, i.e.

∂Q
∂αj

= E

[
−2Xj

(
Xn+1 − α̂0 −

n

∑
i=1

α̂iXi

)]
= 0.

Then we have

E[XjXn+1] = α̂0E[Xj] +
n

∑
i=1

α̂iE[XiXj]. (4.2)

Multiplying Equation (4.1) by E[Xj], for each j ∈ {1, . . . , n}, we

get that

E[Xn+1]E[Xj] = α̂0E[Xj] +
n

∑
i=1

α̂iE[Xi]E[Xj].

Subtracting the above from Equation (4.2), we get

Cov(Xi, Xn+1) = α̂0E[Xj] +
n

∑
i=1

α̂i Cov(Xi, Xj),

for j ∈ {1, . . . , n}.

It is then clear that α̂0, . . . , α̂n satisfies the normal equations

E[Xn+1] = α̂0 +
n

∑
i=1

α̂iE[Xi]

Cov(Xj, Xn+1) =
n

∑
i=1

α̂i Cov(Xi, Xj), ∀j ∈ {1, . . . , n}. �

Ã Note 4.2.1

The equation

E[Xn+1] = α̂0 +
n

∑
i=1

α̂iE[Xi]

is also called the unbiased equation because it requires that the estimate
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α̂0 + ∑n
i=1 α̂jXj be unbiased for E[Xn+1].

# Definition 21 (Estimator for the Credibility Premium)

We define the estimator for the credibility premium as

P̂ := α̂0 +
n

∑
i=1

α̂iXi.

�Corollary 7 (P̂ as Best Linear Estimator)

The αj’s, for j ∈ {0, . . . , n}, also minimizes

1.

Q1(α0, . . . , αn) = E

(E[Xn+1 | ~X]−
[

α0 +
n

∑
i=1

αiXi

])2
 ;

and

2.

Q2(α0, . . . , αn) = E

(E[Xn+1 | Θ]−
[

α0 +
n

∑
i=1

αiXi

])2
 .

We say that P̂ is the Best Linear Estimator for

• Xn+1;

• the Bayesian premium E[Xn+1 | ~X]; and

• the hypothetical mean E[Xn+1 | Θ] = µn+1(Θ).

Exercise 4.2.1

Prove �Corollary 7 by showing that the derivative of the above equations

wrt α0, α1, ..., αn still satisfy the normal equations.
The name for ¯Theorem 8 is unfortu-
nate, but I can’t think of a good name
for it, and it is what is used in lectures.
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¯Theorem 8 (Theorem 1)

Suppose {Xi}n
i=1 is a sequence of past observations, Xn+1 is the predic-

tive RV, with

• E[Xi] = µ ;

• Var(Xi) = σ2 ; and

• Cov(Xi, Xj) = ρσ2,

for i 6= j, i, j ∈ {1, . . . , n + 1}, and ρ ∈ (−1, 1). Then the credibility

premium for Xn+1 is

P = ZX + (1− Z)µ,

where

Z =
nρ

1− ρ + nρ
,

and

X =
1
n

n

∑
i=1

Xi.

´ Proof

By ¯Theorem 6, we have that

P = α̂0 +
n

∑
i=1

α̂iXi.

We shall use the normal equations to attain this, and we know that

we can do quite a number of things with the given assumptions.

First,

µ = E[Xn+1] = α̂0 +
n

∑
i=1

α̂iE[Xi] = α̂0 +
n

∑
i=1

α̂iµ

= α̂0 + µ
n

∑
i=1

α̂i.

Making ∑n
i=1 α̂i the subject, we get

n

∑
i=1

α̂i = 1− α̂0

µ
. (4.3)

Next, for each j ∈ {1, . . . , n}, the equations with covariances
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become

ρσ2 = Cov(Xj, Xn+1) =
n

∑
i=1

α̂i Cov(Xi, Xj)

=
n

∑
i=1
i 6=j

α̂iρσ2 + α̂jσ
2,

and so dividing both sides by σ2 and then trying to patch that

summation, we get

ρ =
n

∑
i=1

α̂iρ + α̂j(1− ρ).

Substituting in Equation (4.3), we get

ρ =

(
1− α̂0

µ

)
ρ + α̂j(1− ρ),

and making α̂j the subject,

α̂j =
α̂0ρ

µ(1− ρ)
.

We want to have a more explicit formula for α̂0 and α̂j. Looking

at Equation (4.3), we first take the sum of the α̂i’s (save when i =

0):
n

∑
i=1

α̂i =
nα̂0ρ

µ(1− ρ)
.

So

1− α̂0

µ
=

nα̂0ρ

µ(1− ρ)
,

and after rearrangement, we get

α̂0 =
(1− ρ)µ

nρ + 1− ρ
.

Going for α̂j, we get

α̂j =
α̂0ρ

µ(1− ρ)
=

ρ

nρ + 1− ρ
.

Thus

P =
(1− ρ)µ

nρ + 1− ρ
+

n

∑
i=1

ρXi
nρ + 1− ρ
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=
nρ

nρ + 1− ρ
· 1

n

n

∑
i=1

Xi +
1− ρ

nρ + 1− ρ
µ,

where we note that

1− nρ

nρ + 1− ρ
=

1− ρ

nρ + 1− ρ
.

Thus if we let

Z =
nρ

nρ + 1− ρ
and X =

1
n

n

∑
i=1

Xi,

we have that

P = ZX + (1− Z)µ,

as desired. �

4.3 The Bühlmann Model

An example of ¯Theorem 8 is the Bühlmann model, which is one of

the (if not the) simplest credibility model.

# Definition 22 (The Bühlmann Model)

Under the Bühlmann model, conditional on Θ (the risk distribution),

for each policyholder, past losses X1, . . . , Xn have the same mean and

variance, and are iid conditional on Θ. In particular, in this model, we

define the hypothetical mean as

µ(θ) := E[Xi | Θ = θ],

and the process variance as

v(θ) = Var(Xj | Θ = θ).

Furthermore, we also define the structural parameters: the expected

hypothetical mean

µ = E[µ(Θ)],
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the mean of the process variance

v = E[v(Θ)],

and the variance of the hypothetical mean

a = Var(µ(Θ)).

Ã Note 4.3.1

µ is the estimate to use if we have no information about θ (thus no info

about µ(θ)). In this case, we call µ the collective premium.

It is not difficult to obtain the mean, variance, and covariance of

Xj’s for each j. We see that the mean of Xj is

E[Xj] = E[E[Xj | Θ]] = E[µ(Θ)] = µ.

The variance of Xj is

Var(Xj) = Var(E[Xj | Θ]) + E[Var(Xj | Θ)]

= Var(µ(Θ)) + E[v(Θ)]

= a + v.

The covariance of Xj with Xi is

Cov(Xi, Xj) = E[XiXj]− E[Xi]E[Xj]

= E[E[XiXj | Θ]]− µ2

= E[E[Xi | Θ]E[Xj | Θ]]− µ2

= E[µ(Θ)2]− [µ(Θ)]2

= Var(µ(Θ)) = a.

This is exactly what the Bühlmann model assumes. In fact, if we

apply ¯Theorem 8, noting that

Var(Xi) = σ2 and Cov(Xi, Xj) = ρσ2 =⇒ ρ =
Cov(Xi, Xj)

Var(Xi)
,



52 Greatest Accuracy Credibility The Bühlmann Model

we observe that

µ = µ, σ2 = v + a, ρ =
a

v + a
,

and so

Z =
n a

v+a
n a

v+a + 1− a
v+a

=
na

na + v
=

n
n + v

a
.

The following result follows exactly from our discussion above.

Ò (Finding Bühlmann Credibility
Premium)
1. Find hypothetical mean µ(θ) and

process variance v(θ).

2. Find structural parameters µ, v, a.

3. Calculate the Bühlmann credibility
factor Z (and mean loss X if necessary).

4. Calculate the Bühlmann credibility
premium P = ZX + (1− Z)µ.

¯Theorem 9 (Bühlmann Credibility Premium)

The Bühlmann credibility premium is

P = ZX + (1− Z)µ

where

Z =
n

n + v
a

is called the Bühlmann credibility factor.

Ã Note 4.3.2

• The Bühlmann credibility premium is a weighted average of the sample

mean X and the collective premium µ.

• As n increases, Z → 1, giving more credit to X, which is reasonable by

intuition since our past data is more robust with more exposure.

• If the population is fairly homogeneous wrt the risk parameter Θ, then

(relatively speaking) the hypothetical means µ(Θ) to not vary greatly

with Θ, which then gives small variability. In other words, a is small

relative to v, and thus Z is nudged closer to 0. This agrees with our

intuition, since for a homogeneous population, the overall mean µ

is more of value in helping the prediction of next year’s claims for a

particular policyholder.

• If the population is heterogeneous, µ(Θ) is more variable, so a is large,

and in turn Z is closer to 1. This agrees with intuition, since ex-

perience of other policyholders is of less value in predicting future

experience of a particular policyholder as compared to past experience.
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Example 4.3.1 (A Poisson-Gamma Example for Bühlmann Credibil-

ity)

Let {Xi | Θ = θ}n
i=1 with Xi | Θ = θ ∼ Poi(θ) for i ∈ {1, . . . , n},

and the prior distribution Θ ∼ Gam(α, β). Find both the Bühlmann

credibility premium and the Bayesian premium. ¥

´ Solution

Bühlmann Credibility Premium We observe that

µ(θ) = E[Xi | Θ = θ] = θ,

and

v(θ) = Var(Xi | Θ = θ) = θ.

The structural parameters are

µ = E[µ(Θ)] = E[Θ] = αβ, v = E(v(Θ)) = E(Θ) = αβ,

and

a = Var(µ(Θ)) = Var(Θ) = αβ2.

Thus the Bühlmann credibility factor is

Z =
n

n + v
a
=

n
n + β−1 .

Hence the Bühlmann credibility premium is

P = ZX + (1− Z)µ

=
n

n + β−1 X +
β−1

n + β−1 αβ

=
α + nX
n + β−1 .

Bayesian Premium We are given that Xi | Θ = θ ∼ Poi(θ) and

Θ ∼ Gam(α, β). The posterior distribution Θ | ~X is

πθ|~X(θ | ~x) ∝

(
n

∏
i=1

fXi |Θ(xi | θ)

)
π(θ)
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∝ θα−1e−
θ
β

n

∏
i=1

e−θθxi

= e−(n+
1
θ )θθnx+α−1.

It follows that Θ | ~X = ~x ∼ Gam
(

nx + α, 1
n+ 1

β

)
. Thus the Bayesian

premium is

E[Xn+1 | ~X = ~x]

=
∫
∀θ

E[Xn+1 | Θ = θ]πΘ|~X(θ | ~x) dθ

=
∫
∀θ
�θ

1

�θΓ(nx + α)

 θ
1

n+ 1
β


nx+α

e

− θ
1

n+ 1
β dθ

= (nx + α)
1

n + 1
β

∫
∀θ

1
θΓ(nx + α + 1)

 θ
1

n+ 1
β


nx+α+1

e

− θ
1

n+ 1
β dθ

= (nx + α)
1

n + 1
β

=
n

n + β−1 x +
β−1

n + β−1 αβ

=
α + nx

n + β−1 . ◎

Ã Note 4.3.3

We notice that the Bühlmann credibility premium and the Bayesian pre-

mium coincides. This is no accidental coincidence, and we shall see why

this is the case later on in exact credibility.

Example 4.3.2 (Disagreement of Bühlmann Credibility Premium

and Bayesian Premium)

Consider 2 urns with different proportions of balls marked with 0 or

1.

• Urn 1 has 60% of its balls marked as 0 and 40% marked as 1.

• Urn 2 has 80% of its balls marked as 0 and 20% marked as 1.
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An urn is randomly picked with equal probability and a total of 2

balls out of 3 is marked 1 (with replacement).

Calculate the Bühlmann credibility premium and the Bayesian

premium for the number on the next ball drawn from the urn. ¥

´ Solution

In any of the cases, we need to find out what Θ and Xi | Θ are. Let Xi

be the number drawn on the ith ball, and Θ the number of the chosen

urn. Then the prior distribution is

Θ =

θ1 urn 1 is selected wp 1
2

θ2 urn 2 is selected wp 1
2

.

The conditional probabilities are

P(Xi = x | Θ = θ1) =

0.6 x = 0

0.4 x = 1

and

P(Xi = x | Θ = θ2) =

0.8 x = 0

0.2 x = 1
.

Bühlmann credibility premium The hypothetical means are

µ(θ1) = E[Xi | Θ = θ1] = 0(0.6) + 1(0.4) = 0.4

and

µ(θ2) = E[Xi | Θ = θ2] = 0(0.8) + 1(0.2) = 0.2.

The process variances are

v(θ1) = Var(Xi | Θ = θ1) = 0.4− 0.42 = 0.24

and

v(θ2) = Var(Xi | Θ = θ2) = 0.2− 0.22 = 0.16.

It follows that the structural parameters are

µ = E[µ(Θ)] =
1
2
(0.4) +

1
2
(0.2) = 0.3,
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v = E[v(Θ)] =
1
2
(0.24) +

1
2
(0.16) = 0.2,

and

a = Var(µ(Θ)) = (0.4− 0.3)2 1
2
+ (0.2− 0.3)2 1

2
= 0.01

Thus the Bühlmann credibility factor is

Z =
n

n + v
a
=

n
n + 0.2

0.01
=

n
n + 20

.

Hence the Bühlmann credibility premium is

P =
n

n + 20
2
3
+

20
n + 20

0.3 = 0.34783.

Bayesian premium Let ~X = X1 + X2 + X3. Our observation is that

X1 + X2 + X3 = 2. Thus

πΘ|~X(θ1 | 2)

=
P(X1 + X2 + X3 = 2 | Θ = θ1)π(θ1)

P(X1 + X2 + X3 = 2 | Θ = θ1)π(θ1) + P(X1 + X2 + X3 | Θ = θ2)π(θ2)

=
(3

2)(0.4)2(0.6) 1
2

((3
2)(0.4)2(0.6) 1

2 + (3
2)(0.2)2(0.8) 1

2 )

= 0.75,

and so

πΘ|~X(θ2 | 2) = 0.25.

Hence, to the Bayesian premium is

E[X4 | X1 + X2 + X3 = 2] = E[X4 | Θ = θ1]0.75 + E[X4 | Θ = θ2]0.25

= 0.4(0.75) + 0.2(0.25)

= 0.3 + 0.05 = 0.35. ◎

The Bühlmann model is the simplest of the credibility mod-

els that we’ve seen; past claims are assumed to be iid. A practical

difficulty with this model is that it does not allow for variations in

exposure or size of the observed data. That is, it is required that the

Xi’s have the same exposure.
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4.4 Bühlmann-Straub Model

$ Textbook Mapping
Klugman et al. 2012 Section 18.6 (pg 392).

To handle the variations where the Bühlmann model could not, we

consider a generalization, called the Bühlmann-Straub Model. In

fact, this generalization goes up further beyond ¯Theorem 8.

Figure 4.1: Hierarchy of Credibility
Models thus far

Suppose that a total of n groups of past observation, with mj being

the total number of members of group j, 4 for j ∈ {1, . . . , n}. Let 4 In Klugman et al. 2012, mj is called a
known constant measuring exposure,
and it may represent

• the number of months the policy
was in force in past year j;

• number of individuals in the group
in past year j; or

• the amount of premium income for
the policy in past year j.

Yjk denote the claim amount for the k-th member of group j, for

k ∈ {1, . . . , mj}. For this generalization, let us assume that Yjk | Θ are

iid for each j and k, with

µ(θ) = E[Yjk | Θ = θ] and v(θ) = Var(Yjk | Θ = θ).

Let the structural parameters of this model be denoted by

µ = E[µ(θ)], v = E[v(θ)], and a = Var[µ(θ)].

Let Xj be the average claim amount per member in year j, 5 i.e. 5 This is a rather specific construction
of the Bülhmann-Straub model. The
textbook has a slightly more general
construction, and proves for the most
general version of the model.

Xj =
1

mj

mj

∑
k=1

Yjk.

For practical purposes, 6 suppose we can observe the average claim 6 This is the usual practice in actuarial
firms, where individual records are
not tracked (expensive and time-
consuming), but group records are
quite easily tracked.

amount Xj (from the total amount mjXj and the number of members
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mj), but the individual claims {Yjk}
mj
k=1 are not observable.

¯Theorem 10 (Bühlmann-Straub Model)

With the above assumptions, the Bühlmann-Straub Model has

E[Xj | Θ] = µ(Θ), Var(Xj | Θ) =
v(θ)
mj

,

E[Xj] = µ, Var(Xj) =
v

mj
+ a, and

Cov(Xi, Xj) = a for i 6= j.

´ Proof

By assumption, {Yjk | Θ} is an iid sequence of rvs, with

µ(θ) = E[Yjk | Θ = θ] and v(θ) = Var(Yjk | Θ = θ).

Then since Xj =
1

mj
∑

mj
k=1 Yjk, we have

E[Xj | Θ = θ] = E

[
1

mj

mj

∑
k=1

Yjk | Θ = θ

]

=
1

mj

mj

∑
k=1

E[Yjk | Θ = θ] ∵ linearity of E

=
1

mj

mj

∑
k=1

µ(θ) =
1

mj
mjµ(θ)

= µ(θ),

and

Var(Xj | Θ = θ) = Var

(
1

mj

mj

∑
k=1

Yjk | Θ = θ

)

=
1

m2
j

mj

∑
k=1

Var(Yjk | Θ = θ) ∵
linearity of Var &

independence of Yjk

=
1

m2
j

mjv(θ) =
v(θ)
mj

.
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Furthermore,

E[Xj] = E[E[Xj | Θ]]

= E[µ(θ)] = µ

Var(Xj) = Var(E[Xj | Θ]) + E[Var(Xj | Θ)]

= Var(µ(θ)) + E

[
v(θ)
mj

]
= a +

v
mj

,

and for i 6= j, noticing that Xi | Θ ä Xj | Θ due to the independence

of the (Yjk | Θ)’s, we have

Cov(Xi, Xj) = E[XiXj]− E[Xi]E[Xj]

= E[E[XiXj | Θ]]− µ2

= E[E[Xi | Θ]E[Xj | Θ]]− µ2

= E[µ(θ)2]− µ2

= Var(µ(θ)) + E[µ(θ)]2 − µ2

= a + 0 = a. �

¯Theorem 11 (Bühlmann-Straub Credibility Premium)

The Bühlmann-Straub Credibility Premium is

P = ZX + (1− Z)µ,

where

Z =
m

m + v
a

, X =
n

∑
i=1

mi
m

Xi, and m =
n

∑
i=1

mi.

´ Proof

With ¯Theorem 10, we have that the credibility premium is given

by

P = α̂0 +
n

∑
j=1

α̂jXj,
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by # Definition 21, where the α̂i’s are chosen to minimize the

mean square error

Q(α0, . . . , αn) = E

(Xn+1 −
[

α0 +
n

∑
j=1

αjXj

])2


as seen in the general model. We need to figure out what the α̂i’s

are. In particular, (α̂0, . . . α̂n) solves the normal equationsE[Xn+1] = α̂0 + ∑n
j=1 α̂jE[Xi]

Cov(Xj, Xn+1) = ∑n
i=1 α̂i Cov(Xi, Xj) for j ∈ {1, . . . , n}.

Under our assumptions, the equations become

µ = α̂0 +
n

∑
j=1

α̂jµ (†)

a =
n

∑
i=1
i 6=j

α̂ia + α̂j

(
v

mj
+ a

)
for j ∈ {1, . . . , n}. (∗)

Dividing both sides by a, we have that (∗) becomes

1 =
n

∑
i=1

α̂i + α̂j
v

amj

which implies
n

∑
i=1

α̂i = 1− α̂j
v

amj
. (4.4)

Putting this into (†), we get

µ = α̂0 + µ

(
1− α̂j

v
amj

)
,

and so

α̂0 = α̂j
vµ

amj
=⇒ α̂j =

amj

vµ
α̂0. (4.5)

Going back to Equation (4.4), we have

am
vµ

α̂0 =
a

vµ
α̂0

n

∑
i=1

mj = 1− 1
µ

α̂0 =⇒ α̂0

(
am
vµ

+
1
µ

)
= 1

which thus

α̂0 =
1

am+v
vµ

=
v

ma + v
µ =

v
a

m + v
a

µ.
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Consequently, going back to Equation (4.5) gives

α̂j =
amj

vµ
· vµ

ma + v
=

mj

m + v
a

for all j ∈ {1, . . . , n}.

Thus the Bühlmann-Straub credibility premium is

P = α̂0 +
n

∑
i=1

α̂iXi

=
v
a

m + v
a

µ +
n

∑
i=1

mj

m + v
a

Xi

=
m

m + v
a

n

∑
i=1

mi
m

Xi +
v
a

m + v
a

µ

= ZX + (1− Z)µ,

where

Z =
m

m + v
a

, X =
n

∑
i=1

mi
m

Xi, and m =
n

∑
i=1

mi,

as desired. �

Ò (Finding the Bülmann Straub Credibility Premium)

¯Theorem 10 and ¯Theorem 11 shows us how to calculate the credibility

premium.

1. Define an appropriate Xj.

2. Find µ(θ) = E[Xj | Θ] and v(θ)
mj

= Var(Xj | Θ).

3. Find the structural parameters

µ = E[µ(Θ)]v = E[v(Θ)] and a = Var(µ(Θ)).

4. Calculate Z, X and m.

5. Put everything into

P = ZX + (1− Z)µ.

Step 1 is the main boss of the challenge. If one can figure out what the prob-

lem needs us to set Xj as, then half the battle is done.
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Example 4.4.1

In year j, for j ∈ {1, . . . , n}, there are mj members and let Nj be the

number of claims, where

• Nj | Θ = θ ∼ Poi(mjθ) are independent; and

• Θ ∼ Gam(α, β).

Determine the Bühlmann-Straub Credibility Premium for the average

number of claims in year n + 1 per member. ¥

´ Solution

We want to find the credibility premium for

Xn+1 =
Nn+1

mn+1
.

Thus, for j ∈ {1, . . . , n}, let

Xj =
Nj

mj
.

Then

µ(θ) = E[Xj | Θ = θ] = E

[
Nj

mj
| Θ = θ

]

=
1

mj
E[Nj | Θ = θ]

=
1

mj
mjθ = θ,

and

v(θ)
mj

= Var(Xj | Θ = θ) =
1

m2
j

Var(Nj | Θ = θ)

=
1

m2
j

mjθ =
θ

mj
.

Moving along,

µ = E[Xj] = E[E[Xj | Θ]] = E[µ(Θ)] = E[Θ] = αβ

v = E[v(Θ)] = E[Θ] = αβ

a = Var(µ(Θ)) = Var(Θ) = αβ2.
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Thus

Z =
m

m + v
a
=

m
m + β−1 ,

and so

P =
m

m + β−1 X +
β−1

m + β−1 αβ. ◎

Ã Note 4.4.1

1. It is not surprise to see that if we fix mj = 1 for all j ∈ {1, . . . , n},
then we get back into the Bühlmann Model.
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4.5 Exact Credibility

$ Textbook Mapping
Klugman et al. 2012 Section 18.7 (pg 397)

Recall that in Example 4.3.1, we saw that the Bühlmann credibility

premium agreed with the Bayesian premium. However, in Exam-

ple 4.3.2, we saw that they disagreed. One cannot help but wonder

when exactly does the agreement happen, and when does it not.

Recall that in ¯Theorem 6, the credibility premium is designed

to be the best linear approximation to the Bayesian premium.

# Definition 23 (Exact Credibility)

When the credibility premium from ¯Theorem 6 and the Bayesian

premium coincide, we describe this situation as exact credibility.

Ã Note 4.5.1

In particular, when exact credibility occurs, we have that

Q(α0, . . . , αn) = 0.

The following is a result that illustrates the occurrence of exact

probability.

7 Proposition 12 (Exact Credibility when Observations Belong

to the Linear Exponential Family)

Suppose {Xi}n
i=1 is an iid sequence that belongs to the linear exponential

family, that is

fXi |Θ(xi | θ) =
p(xi)er(θ)xi

q(θ)
,

where p is a function of xi, and r, q are functions of θ. Furthermore,

suppose that Θ is a conjugate prior distribution with density

π(θ) =
q(θ)−keµkr(θ)r′(θ)

c(µ, k)
,
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where c(µ, k) is a constant determined by µ and k. Also, suppose that

θ0 ≤ Θ ≤ θ1, and that

π(θ0 | x1, . . . , xn)

r′(θ0)
=

π(θ1 | x1, . . . , xn)

r′(θ1)
.

Then the Bayesian premium is the credibility premium, i.e.

E[Xn+1 | X1, . . . , Xn] = α0 +
n

∑
i=1

αiXi,

where (α0, ..., αn) is as in ¯Theorem 6.

The proof of the above theorem will not be included here, but one

can read the textbook on page 398. 7 7 Klugman, S. A., Panjer, H. H., and
Willmot, G. E. (2012). Loss Models: From
Data to Decisions. John Wiley & Sons
Inc., Hoboken, New Jersey, 4th edition





5 Y Empirical Bayes Parameter Estima-

tion

5.1 Introduction

In Chapter 4, we used the Bayesian or credibility premium to in-

corporate past data into our prospective premium. One flaw of this

approach is that it strongly depends on assumed distributions, in

particular for fXj |Θ and π. More realistically, it is not necessary easy

to know, for instance, values for α and β if Θ ∼ Gam(α, β).

In general, these unknown parameters are associated with the

structure density π(θ), hence the name structural parameters for the

values

µ = E[µ(Θ)], v = E[v(Θ)] and a = Var(µ(Θ)).

We may need to use the data at hand to estimate the structural pa-

rameters. This approach is known as the empirical Bayes estimation.
1 1 It is important to note that this is

different from looking for the posterior
distribution.

Furthermore, in standard Bayesian
methods, the prior distribution is
strictly assumed to be fixed before any
data is observed.

There are a total of 3 cases of which we shall look into:

• Non-parametric estimation – where both fXi |Θ and π are unspeci-

fied;

• Semi-parametric estimation – where fXi |Θ is assumed to be of a

parametric form but π is unspecified; and

• Parametric estimation – where both fXi |Θ and π are both assumed

to be of parametric form.
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Ã Note 5.1.1

• The decision as to whether to select a parametric model or not depends

partially on the situation at hand and partially on the judgement and

knowledge of the person performing the analysis.

• Non-parametric models have the advantage of being appropriate for a

wide variety of situations, a fact that actually makes it the easiest of the

3 to work with.

Let us first set up the most general model for tackling these prob-

lems.

# Definition 24 (General Model Setting for Empirical Bayes

Parameter Estimation)

Consider r groups of policies. For i ∈ {1, . . . , r}, let

ni be the number of years of observations for group i,

mij be the number of members/exposure units

for group i in year j, for j ∈ {1, . . . , ni}
~mi vector for the number of exposure units for group i,

i.e. ~mi = (mi1, . . . , mini ),

mi be the total number of exposure for group i, i.e.

mi =
nj

∑
j=1

mij,

m total number of exposure units for all groups, i.e.

m =
r
∑

i=1
mi =

r
∑

i=1

ni
∑

j=1
mij,

Xij average claim experience (amount/number) of claims

for group i in year j, for j ∈ {1, . . . , ni},
~Xi vector for the average (amount/number) of claims

for group i, i.e. ~Xi = (Xi1, . . . , Xini ),

Xi past average claim experience for group i, i.e.

Xi =
1

mi

ni
∑

j=1
mijXij

X average claim experience for all groups, i.e.

X = 1
m

r
∑

i=1
miXi =

1
m

r
∑

i=1

ni
∑

j=1
mijXij.
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Furthermore, in this chapter, we shall

• denote the unknown risk parameter for group i as Θi,

• and assume that {Θi}r
i=1 is an iid sequence with common density πΘi ;

• assume the experience is different groups are independent (across

groups), i.e. ~Xi ä ~Xj for i 6= j ∈ {1, . . . , r};

• assume {Xij | Θi}r
i=1 are independent (across periods), with density

fXij |Θ, where

E[Xij | Θi]µ(Θi) Var(Xij | Θi) =
v(Θi)

mij
.

Ã Note 5.1.2

In the last of our assumptions above, notice that E[Xij | Θi] = µ(Θi)

does not depend on the period.

5.2 Non-Parametric Estimation

Let us now try to use this approach to estimate the structural param-

eters. But before that, a lemma.

� Lemma 13 (Weaker Version of Sample Mean and Variance)

Let

Y =
1
n

n

∑
i=1

Yi

and

Y | Θ =

[(
1
n

n

∑
i=1

Yi

)
| Θ

]
=

1
n

n

∑
i=1

(Yi | Θ).

Then

1. If {Yi}n
i=1 are independent and have common mean E[Yi] = µ and
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common variance Var(Yi) = v, then

E[Y] = µ, E

[
1

n− 1

n

∑
i=1

(Yi −Y)2

]
= v.

2. If {Yi | Θ}n
i=1 are independent and have common conditional

mean E[Yi | Θ] = µ(Θ), common conditional variance Var(Yi |
Θ) = v(Θ), then

E[Y | Θ] = µ(Θ)

E

[
1

n− 1

n

∑
i=1

(Yi −Y)2 | Θ

]
= v(Θ).

Exercise 5.2.1

Prove Lemma 13.

In the Bühlmann model, we have that

• ni = n for all i ∈ {1, . . . , r}, i.e. we have the same number of years

of experience for all groups;

• mij = 1 for all i ∈ {1, . . . , r}, j ∈ {1, . . . , n}, i.e. only 1 member in

each group in each year; and

• that {Xij | Θi}n
j=1 are iid.

Under # Definition 24, we have

• mi = ∑n
j=1 mij = n ;

• m = ∑r
i=1 mi = nr ;

• Xi =
1

mi
∑n

j=1 mijXij =
1
n ∑n

j=1 Xij; and

• X = 1
m ∑r

i=1 ∑n
j=1 mijXij =

1
nr ∑r

i=1 ∑n
j=1 Xij.

7 Proposition 14 (Non-Parametric Estimation for Bühlmann

Model)

For a Bühlmann model, we have that

1. an unbiased estimator for µ is µ̂ = X ;
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2. an unbiased estimator for v is

v̂ =
1
r

r

∑
i=1

v̂i,

where

v̂i =
1

n− 1

n

∑
j=1

(Xij − Xi)
2,

which is also an unbiased estimator for v.

3. an unbiased estimator for a is

â =
1

r− 1

r

∑
i=1

(Xi − X)2 − v̂
n

.

Exercise 5.2.2

Use Lemma 13 to prove 7 Proposition 14. This should be an easy and

straightforward exercise.

Ã Note 5.2.1

• We use Ẑ to denote the estimated credibility factor.

• It is important to note that Ẑ is usually not an unbiased estimator for

Z.

• If â ≤ 0, we set â = Ẑ = 0.

• We let the Estimated Bühlmann premium for group i be

ẐXi + (1− Ẑ)µ̂.

Ò (Finding an Estimated Bühlmann Premium)

1. Use 7 Proposition 14 to estimate the structural parameters µ̂, v̂, and â.

2. Use ¯Theorem 9 with the structural parameters to estimate the Bühlmann

premium.

Example 5.2.1
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In the Bühlmann model, suppose that:

• there are 2 groups with 3 years of experience each; and

• losses are ~X1 = (3, 5, 7) and ~X2 = (6, 12, 9).

Estimate the Bühlmann credibility premium for each group in year

4. ¥

´ Solution

We are given that r = 2 and n = 3. Then since

X1 =
3 + 5 + 7

3
= 5 and X2 =

6 + 12 + 9
3

= 9,

we have

µ̂ =
5 + 9

2
= 7.

Furthermore,

v̂1 =
1

3− 1
[(3− 5)2 + (5− 5)2 + (7− 5)2] = 4

v̂2 =
1

3− 1
[(6− 9)2 + (12− 9)2 + (9− 9)2] = 9,

and so

v̂ =
1
2
(4 + 9) =

13
2

.

Lastly,

â =
1

2− 1
[(5− 7)2 + (9− 7)2]−

13
2
3

=
35
6

.

Thus the estimated Bühlmann credibility factor is

Ẑ =
n

n + v̂
â
=

3

3 +
13
2
35
6

=
35
48

.

It follows that the estimated Búhlmann credibility premium for

group 1 and 2 are

ẐX1 + (1− Ẑ)7 =
133
24

ẐX2 + (1− Ẑ)7 =
203

4
,

respectively. ◎
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In the Bühlmann-Straub model, the notation mostly follows what

is in # Definition 24.

7 Proposition 15 (Non-Parametric Estimation for Bühlmann-

Straub Model)

For a Bühlmann-Straub model, we have that

1. an unbiased estimator for µ is µ̂ = X ;

2. an unbiased estimator for v is

v̂ =
1

∑r
i=1(ni − 1)

r

∑
i=1

(ni − 1)v̂i,

where

v̂i =
1

ni − 1

ni

∑
j=1

mij(Xij − Xi)
2,

which is also an unbiased estimator for v; and

3. an unbiased estimator for a is

â =
m

m2 −∑r
i=1 m2

i

(
r

∑
i=1

mi(Xi − X)2 − (r− 1)v̂

)

The proof of 7 Proposition 15 is also
a follow your nose proof, but I shall
include it here.´ Proof

To be added. �

Ã Note 5.2.2 (Estimated Bühlmann-Straub Premium)

• With the Bühlmann-Straub model, we can actually even estimate the

premium for each member group i, which is given by

ẐiXi + (1− Ẑi)µ̂,

where the Estimated Bühlmann-Straub Credibility Factor for

group i is

Ẑi =
mi

mi +
v̂
â

.
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• The estimated Bühlmann-Straub premium for the whole group i in

year ni + 1 is

mi(ni+1)
(
ẐiXi + (1− Ẑ)µ̂

)
.

• Again, when â ≤ 0, we set â = Ẑ = 0.

Ò (Finding an Estimated Bühlmann-Straub Premium)

1. Use 7 Proposition 15 to find the estimated structural parameters µ̂, v̂,

and â.

2. Use Note 5.2.2 to calculate the appropriate premiums for the appropriate

setting.

Another estimator for µ There is another estimator of which we can

estimate µ.

# Definition 25 (Total Loss of All Groups)

The total loss (TL) of all groups in the past is defined as

TL =
r

∑
i=1

miXi.

# Definition 26 (Total Premium of All Groups)

If we charged credibility premium in the past, then we define the

total premium (TP) of all groups as

TP =
r

∑
i=1

mi
(
ẐiXi + (1− Ẑi)µ

)
.

7 Proposition 16 (Credibility Weighted Average)

If TL = TP, then

µ̂ =
1

∑r
i=1 Ẑi

r

∑
i=1

ẐiXi ,
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called a credibility weighted average, is an unbiased estimator for µ.

Exercise 5.2.3

Prove 7 Proposition 16. Again, this is an easy exercise.

Example 5.2.2 (Example for Estimated Bühlmann-Straub Premium)

Past claim data of 2 groups is given as follows.

Year 1 2 3 4

Total claims in group 1 750 600

Number of members in group 1 3 2 4

Total claims in group 2 975 1200 900

Number of members in group 2 5 6 4 5

Table 5.1: Past claim data for Exam-
ple for Estimated Bühlmann-Straub
Premium

1. Calculate the unbiased estimates for µ, v and a in the Bühlmann-

Straub model.

2. Determine the Bühlmann-Straub premium for each group in year

4.

3. Redo part (2) if µ is estimated by the credibility weighted average.

¥

´ Solution

1. Note

r = 2, n1 = 2, n2 = 3.

Furthermore, we are given that

m11X11 = 750 m12X12 = 600

m21X21 = 975 m22X22 = 1200 m23X23 = 900.

Now

X1 =
750 + 600

3 + 2
= 270

X2 =
975 + 1200 + 900

5 + 6 + 4
= 205.

Thus

µ̂ = X =
5(270) + 15(205)

5 + 15
= 221.25.
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Further,

v̂1 =
1

2− 1

[
3
(

750
3
− 270

)2
+ 2

(
600

2
− 270

)2
]
= 3000

v̂2 =
1

3− 1

[
5
(

975
5
− 205

)2
+ 6

(
1200

6
− 205

)2

+4
(

900
4
− 205

)2
]
= 1125,

and so

v̂ =
1

(2− 1) + (3− 1)
[(2− 1)3000 + (3− 1)1125] = 1750.

Finally,

a =
20

202 − 52 − 152

[
5 (270− 221.25)2 + 15(205− 221.25)2

−(2− 1)1750] = 1879.17.

2. It follows that

Ẑ1 =
5

5 + v̂
â
= 0.843 and Ẑ2 =

15
15 + v̂

â
= 0.9415.

Thus the estimated Bühlmann-Straub premium for group 1 and 2

are

4[Ẑ1X1 + (1− Ẑ1)µ̂] = 1049.38

5[Ẑ2X2 + (1− Ẑ2)µ̂] = 1029.75,

respectively.

3. If we estimate µ by the credibility weighted average, then

µ̂ =
Ẑ1X1 + Ẑ2X2

Ẑ1 + Ẑ2
= 235.7061.

Thus the estimated Bühlmann-Straub premium for group 1 and 2,

using the credibility weighted average estimator of µ, are

4[Ẑ1X1 + (1− Ẑ1)µ̂] = 1058.44

5[Ẑ2X2 + (1− Ẑ2)µ̂] = 1033.98,
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respectively. ◎

5.3 Semi-Parametric Estimation

$ Textbook Mapping
Klugman et al. 2012 Section 19.3 (pg 428)

Recall that the semi-parametric approach is when we assume that

fXij |Θ is known.

In semi-parametric estimation, some relationship between µ, v

and a is established which makes estimation simpler.

Ò (Relationship between Structural Parameters in Semi-Parameteric

Estimation)

1. Find µ(Θ) and v(Θ).

2. Find µ, v, a and see if there is some relationship between these structural

parameters.

Example 5.3.1 (Poisson Frequency Model for Semi-Parametric Esti-

mation)

Suppose mijXij | Θi ∼ Poi(mijΘi). Find a relationship between the

structural parameters, if any. ¥

´ Solution

First, we have

µ(θi) = E[Xij | Θi = θi] =
1

mij
E[mijXij | Θi = θi] =

1
mij

mijθi = θi

v(θi) = mij Var(Xij | Θi = θi) =
mij

m2
ij

Var(mijXij | Θi = θi)

=
1

mij
mijθi = θi.

It’s rather clear at this point that v(θi) = µ(θi) and so µ = v. ◎

Example 5.3.2 (Binomial Frequency Model for Semi-Parametric

Estimation)

Suppose mijXij | Θi ∼ Bin(mij, Θi). Find a relationship between the

structural parameters, if any. ¥

´ Solution
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First, we have

µ(θi) = E[Xij | Θi = θi] =
1

mij
mijθi = θi

v(θi) = mij Var(Xij | Θi = θi) =
1

mij
mijθi(1− θi) = θi(1− θi).

Thus

µ = E[µ(Θi)] = E[Θi]

v = E[v(Θi)] = E[Θi −Θ2
i ] = µ−Var(Θi)− µ2

a = Var(µ(Θi)) = E[Θ2
i ]− µ2. ◎

Example 5.3.3 (Exponential Severity Model for Semi-Parametric

Estimation)

Suppose mij = 1 for all i, j and Xij | Θi ∼ Exp(Θi). Find a relation-

ship between the structural parameters, if any. ¥

´ Solution

First, we have

µ(θi) = E[Xij | Θi = θi] = θi

v(θi) = Var(Xij | Θi = θi) = θ2
i .

So

µ = E[µ(Θi)] = E[Θi]

v = E[v(Θi)] = E[Θ2
i ] = Var(Θi) + µ2

a = Var(µ(Θi)) = Var(Θi) = v− µ2.

Thus, in particular,

â = v̂− µ̂2. ◎

Example 5.3.4 (Using Semi-Parametric Approach for Estimation)

In the past year, the distribution of automobile insurance policyhold-

ers by number of claims is given by Table 5.2. Assume a (conditional)

Poisson distribution for the number claims for each policy.
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Number of claims Number of policyholders
0 1563

1 271

2 32

3 7

4 2

Total 1875

Table 5.2: Distribution of Automobile
Insurance Policy Holders by Number of
Claims

For each policyholder, obtain a credibility estimate for the number

of claims next year based on the past year’s experience. ¥

´ Solution

Note that we have that each of the policyholders has a well-defined

risk parameter in this case, and so

r = 1875 mij = 1.

Also, since this data is from the previous year, ni = 1. 2 2 Ayy! We’re in the Bühlmann model!

We are given that Xij | Θi ∼ Poi(Θi). So

µ(θi) = E[Xij | Θi = θi] = θi

v(θi) = Var(Xij | Θi = θi) = θi.

Thus

µ = E[Θi] = v and a = Var(Θi).

This means that we can estimate v using µ̂ = X. Now

v̂ = µ̂ = X =
271(1) + 32(2) + 7(3) + 2(4)

1875
= 0.194.

Further, using the unbiased estimator of a from 7 Proposition 14,

â =
1

1875− 1
[(0− 0.194)2 + (1− 0.194)2

+ (2− 0.194)2 + (3− 0.194)2 + (4− 0.194)2]− 0.194
1

= 0.032

The estimated Bühlmann credibility factor is thus

Ẑ =
1

1 + 0.194
0.032

= 0.14.
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It follows that the estimated credibility premium for a policyholder

for next year is

0.14Xi + 0.86(0.194),

where Xi is the amount that was claimed by the policyholder i in the

past year. ◎

5.4 Parametric Estimation

In this section, as discussed before, we shall assume that both Xij | Θi

and Θi are parametric models.

In this case, we shall rely on maximum likelihood estimation

(MLE) to estimate the structural parameters. As in semi-parametric

estimation, the structural parameters may have some relationship,

which should be used for estimation.

Ò (Parametric Estimation of Structural Parameters)

Note that our assumptions state that if {~Xi}n
i=1, then we shall assume

~Xi ä ~Xj, and that Xij ä Xik.

1. Construct the following likelihood function L

L =
r

∏
i=1

f~Xi
(~xi)

=
r

∏
i=1

∫
∀θi

f~Xi |Θi
(~xi | θi)πΘi (θi) dθi

=
r

∏
i=1

∫
∀θi

(
ni

∏
j=1

fXij |Θi
(xij | θi)

)
πΘi (θi) dθi

2. Maximize likelihood function (or log-likelihood function) by differentia-

tion.

3. Make use of the invariance property of MLE to estimate θ.

Ã Note 5.4.1 (Invariance Property of the MLE)

For us, the invariance property of the MLE states that if γ̂ is an MLE
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of the parameter γ, then if g is injective, then if τ = g(γ), we have that

τ̂ = g(γ̂) is the MLE of τ.

Example 5.4.1 (First Parametric Estimation Example)

Consider the Bühlmann model with all ni = n and mij = 1. Assume

that Xij | Θi ∼ Poi(Θi) and Θi ∼ Exp(γ).

1. Find µ̂, v̂, and â, the MLE of µ, v, and a, respectively.

2. Use µ̂, v̂, and â to estimate next year’s premium for each group.

¥

´ Solution

1. The likelihood function is

L(γ) =
r

∏
i=1

∫ ∞

0

(
n

∏
j=1

θ
xij
i e−θi

xij!

)
1
γ

e−
θi
γ dθi

∝
1
γr

r

∏
i=1

∫ ∞

0
θ

∑r
i=1 xij

i e−
(

n− 1
γ

)
θi dθi

=
1
γr

r

∏
i=1

∫ ∞

0
θ

αi−1
i e−

θi
β dθi,

where

αi =
n

∑
j=1

xij + 1, β =
1

n + 1
γ

.

Continuing,

L(γ) ∝
1
γr

r

∏
i=1

Γ(αi)βαi

���
���

���
���:

1∫ ∞

0

1
Γ(αi)βαi

θ
αi−1
i e−

θi
γ dθi

=
1
γr

r

∏
i=1

Γ(αi)βαi

∝
1
γr

r

∏
i=1

(
1

n + γ−1

)αi

=
1
γr

(
1

n + γ−1

)∑r
i=1 αi

=
1
γr

(
1

n + γ−1

)α
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where we let

α =
r

∑
i=1

αi =
r

∑
i=1

(
n

∑
j=1

xij + 1

)
= r +

r

∑
i=1

n

∑
j=1

xij.

The log-likelihood function is

`(γ) = −r ln γ− α ln(n + γ−1) + ln C.

Derivative of ` is

`′(γ) = − r
γ
+

αγ−2

n + γ−1 =
α− r− nrγ

nγ2 + γ
.

Letting the above to 0, we get

γ̂ =
α− r

nr
=

1
nr

r

∑
i=1

n

∑
j=1

Xij = X.

Now to estimate µ, v, and a, notice that

µ(Θi) = E[Xij | Θi] = Θi

v(Θi) = Var(Xij | Θi) = Θi,

and so

µ = E[µ(Θi)] = E[Θi] = γ

v = E[v(Θi)] = E[Θi] = γ = µ

a = Var(µ(Θi)) = Var(Θi) = γ2 = µ2.

Thus, we may conclude that

µ̂ = X = v̂,

and by the invariance property of the MLE, we have

â = γ̂2 = γ̂2 = X2.

2. To estimate next year’s premium, we calculate the credibility fac-

tor:

Ẑ =
n

n + v̂
â
=

n

n + X−1 .
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Thus next year’s premium is

P = ẐXi + (1− Ẑ)µ̂ =
nXi + 1

n + X−1 . ◎





Part III

Parametric Statistical Methods





6 Y Parameter Estimation for Loss Mod-

els – Frequency Models

	 Warning (Chapter requires
revision)
Things seem very badly introduced and
it’s hard to find where things come from
and why something follows, why is the
likelihood function a definition instead of
a derivation, etc.

We depart from credibility theory and look into filling some of the

overflowed contents from ACTSC431.

6.1 Review of Policy Adjustments for Severity Models

We are interested in frequency models of the following form. Let NL

be the number of losses and NP be the number of payments, i.e.

NP =
NL

∑
i=1

Ii,

where

Ii =

1 i-th loss results in a non-zero payment,

0 i-th loss results in a zero payment,

and if NL = 0, then NP = 0.

Realistically, it is much easier for an insurer to collect information

from payments that are actually made instead of cases where a loss

occurring. Thus, with the above NP as an rv, we often want to try

estimate the parameters of NL. We shall do this with 2 methods:

• MLE; and

• moment estimation.
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We assume that {Ii}∞
i=1 are iid, independent of NL, and

P(Ii = 1) = q,

where q is a value of which we shall estimate.

There is also a result from ACTSC431 of which we shall be using

here. We shall also quickly prove the statement as a warm up exer-

cise.

7 Proposition 17 (PGF of Number of Payments)

If NP is the rv for the number of payments and NL is the rv for the num-

ber of losses, then

GNp(t) = GNL(1− q + qt),

where GX is the probability generating function (pgf) of the rv X.

´ Proof

Note that

GI(t) = E[tI ] = qt1 + (1− q)t0 = 1− q + qt.

Observe that since {Ii}∞
i=1 is assumed to be iid, we have

GNP(t) = E
[
tNP
]
= E

[
NL

∑
i=1

Ii

]
= E

[
E

[
NL

∑
i=1

Ii | NL

]]

= E

[
NL

∏
i=1

E
[
tIi | NL

]]
= E

[
NL

∏
i=1

E
[
tIi
]]

= E
[

GI(t)NL
]
= GNL(GI(t))

= GNL(1− q + qt). �

� Notation
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We shall denote the pmf of NP as

pk = P(NP = k).

6.2 MLE for Parameters of Frequency Distribution

We now want to find a way to construct a likelihood so that we may

use the MLE method.

Ò (MLE for Frequency Distribution
Parameters)
1. Find the distribution of NP.

2. Find the likelihood function using the
appropriate likelihood formula, and
simply follow the procedure for finding
MLE.

For this section, we shall assume that the insurer has complete but

grouped data for the number of payments made by policyholders.

More specifically, let nk be the number of policies with k payments.

Since there is complete data, the likelihood function is given by

L =
∞

∏
k=0

(pk)
nk .

If the number of policies with, say, greater than m claims are grouped,

then the likelihood function is given by

L =
m

∏
k=0

(pk)
nk

(
1−

m

∑
k=0

pk

)nm+1+nm+2+...

.

Example 6.2.1

Suppose NL ∼ Poi(λ), and the probability that a non-zero payment is

known to be q. Let nk be the number of policies with k payments, for

k = 0, 1, 2, . . ..

1. Identify the distribution of the number of payments NP.

2. Find the MLE of λ. ¥

´ Solution

1. We see that

GNP(t) = GNL(1− q + qt) = eλ(1−q+qt−1)

= e−λq(t−1),
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which is the pgf of Poi(λq). Thus NP ∼ Poi(λq).

2. Note that the pmf of NP ∼ Poi(λq) is

pk =
(λq)ke−λq

k!
.

Thus the likelihood function is

L(λ) =
∞

∏
k=0

(
(λq)ke−λq

k!

)nk

,

so the log-likelihood function is

`(λ) =
∞

∑
k=0

nk ln
(λq)ke−λq

k!

=
∞

∑
k=0

nk (k ln(λq)− λq− ln k!) .

Equating its derivative (which is taken wrt λ) to 0, we have

0 = `(λ̂) =
∞

∑
k=0

(
nkkq
λ̂q
− nkq

)
,

which thus

λ̂ =
∑∞

k=0 knk

q ∑∞
k=0 nk

.

It is interesting to note that λ̂ is a somewhat sensible estimation.

In particular, it is looking at the total number of payments over the

expected total number of payments. ◎

Example 6.2.2

The number of accidents per driver in one year is given in Table 6.1.

Number of accidents Number of drivers
0 20592

1 2651

2 297

3 41

4 7

5 0

6 1

≥ 7 0

Total 23589

Table 6.1: Number of Accidents per
driver in one year



ACTSC432 — Loss Models II 91

Assume that the number of accidents per driver in one year is as

follows and estimate the given parameters.

1. Poi(λ). Find MLE for λ.

2. NB(β, r). Find MLE for β and r. ¥

´ Solution

Since it is not stated, we shall assume that q = 1, and so NP = NL.

1. Using what we did in the last example, we have

λ̂ =
20592(0) + 2651(1) + 297(2) + 41(3) + 7(4) + 0(5) + 1(6) + 0(7)

23589

≈ 0.1442.

2. We are given that NP = NL ∼ NB(β, r). In particular,

pk =
(r + k− 1)!
k!(r− 1)!

(
1

1 + β

)r ( β

1 + β

)k
.

Note that

(r + k− 1)!
(r− 1)!

= (r + k− 1)(r + k− 2) . . . (r) =
k−1

∏
m=0

(r−m).

Since there are 0 drivers in the ≥ 7 case, we can use the regular

formula of the likelihood function. In particular, the log-likelihood

is

`(β, r) = ln

{
∞

∏
k=1

(pk)
nk

}

=
∞

∑
k=0

nk ln pk

=
∞

∑
k=0

nk ln

{
k−1

∑
m=1

ln(r−m)− ln k!− (r + k) ln(1 + β) + k ln β

}

Letting d`
dβ = 0, we get

0 =
∞

∑
k=0

nk

{
−(r + k)

1 + β̂
+

k
β̂

}

=
∞

∑
k=0

nk

{
−β̂(r + k) + k(1 + β̂)

(1 + β̂)β̂

}
.
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Thus

β̂ =
∑∞

k=0 knk

nr̂
,

where n = ∑∞
k=0 nk. Letting d`

dr = 0, we get

0 =
∞

∑
k=0

nk

{
k−1

∑
m=0

1
r̂ + m

− ln(1 + β̂)

}

=
∞

∑
k=0

nk

{
k−1

∑
m=0

1
r̂ + m

− ln

(
1 +

1
nr̂

∞

∑
k=0

knk

)}

We may numerically solve for r̂ above, and obtain

r̂ ≈ 1.1179 and β̂ ≈ 0.12901. ◎

6.3 Moment Estimation for Parameters of Frequency Distribution

Let

µk := E[Xk], k ∈ {1, 2, 3, . . .}.

The sample mean of Xk is given by

µ̂k =
1
n

n

∑
i=1

Xk
i ,

where {X1, . . . , Xn} is a sample from an underlying distribution X.

Ò (Moment Estimation)

Since µk is a function of the parameters of the distribution of X, we can do

the following:

1. Consider the first m moments to obtain a system of m equations of pa-

rameters of the distribution of X.

2. Solve the system of equations to obtain estimators for these parameters.

Here, m is number of parameters that require estimation.

Example 6.3.1

Assume that the number of claims in a policy follows NB(β, r). Sup-

pose that we have Table 6.2. Estimate β and r using moment estima-

tion. ¥
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Number of claims Number of policies
0 9048

1 905

2 45

3 2

≥ 4 0

Total 10000

Table 6.2: Number of Claims vs Num-
ber of Policies for example for Moment
Estimation

´ Solution

Since there are 2 parameters of which we wish to estimate, we shall

go up to the second moment. Let

µ̂1 =
1
n

n

∑
i=1

Xi =
905(1) + 45(2) + 2(3)

10000
≈ 0.1001

µ̂2 =
1
n

n

∑
i=1

X2
i =

905(12) + 45(22) + 2(32)

10000
≈ 0.1103.

Thus, we have the following system of equations

0.1001 = E[X] = r̂β̂

0.1103 = E[X2] = r̂β̂(1− β̂) + r2 β̂2.

Solving the system of equations, we get

β̂ ≈ 0.001798 and r̂ ≈ 55.67. ◎

6.3.1 Moment Estimation for (a, b, 0) Class

Recall that the members of (a, b, 0) class is a class of counting rvs

with pmf satisfying

pk =

(
a +

b
k

)
pk−1, k ∈ {1, 2, 3, . . .},

where p0 is determined by

∞

∑
k=0

pk = 1.

Only the Poisson, Binomial, and Negative Binomial distributions are

members of this class.
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7 Proposition 18 (First and Second Moments of (a, b, 0) Class)

Suppose N is a member of the (a, b, 0) class. Then

E[N] =
a + b
1− a

,

and

E[N2] =
(a + b)(a + b + 1)

(1− a)2 .

´ Proof

To be added. �

As we learned in ACTSC431, the (a, b, 0) class is rather restrictive,

since there are only 3 distributions in the class. However, the nice

relationship between each probability is hard to give up on.

In ACTSC431, this motivated us to look at zero-modified distribu-

tions.

# Definition 27 (Zero-Modified Distribution)

A zero-modified distribution is a counting distribution with pmf

{pM
k }

∞
k=0, where

• α := pM
0 is chosen arbitrarily; and

• for k ∈ {1, 2, . . . , }, we have that 1 1 This is something that can be derived.
See ACTSCT431.

pM
k =

1− α

1− p0
pk,

where {pk}∞
k=0 is the pmf of an (a, b, 0) class distribution.

Ã Note 6.3.1

https://tex.japorized.ink/ACTSC431/classnotes.pdf#page.103
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1. By construction, a zero-modified distribution still satisfies

pM
k =

(
a +

b
k

)
pM

k−1

but only for k ∈ {2, 3, . . .}.

2. In general, since there are now 3 parameters, we may require the third

moment, of which we do not necessarily want to find.

7 Proposition 19 (An Estimation for pM
0 in a Zero-Modified

Distribution)

Suppose α = pM
0 in a zero-modified distribution, and {nk}∞

k=0 is the

observations with k payments. Then

α̂ =
n0

∑∞
k=0 nk

.

Furthermore, we can find estimators for a and b using the function

∞

∑
k=1

nk[ln pk − ln(1− p0)].

´ Proof

The log-likelihood for these observations is

`(α, a, b) = ln

(
∞

∏
k=0

(pM
k )nk

)
= ln

(
(α)n0

∞

∏
k=1

(
1− α

1− p0
pk

)nk
)

= n0 ln α +
∞

∑
k=1

nk ln(1− α)︸ ︷︷ ︸
`0(α)

+
∞

∑
k=1

nk[ln pk − ln(1− p0)]︸ ︷︷ ︸
`1(a,b)

.

It is clear from here that we can use `1(a, b) to find estimators for a

and b.

Now, letting d`0
dα = 0, we get

n0

α̂
−

∞

∑
k=1

nk
1− α

= 0.



96 Parameter Estimation for Loss Models – Frequency Models Moment Estimation for Parameters of Frequency
Distribution

Rearranging, we get

α̂ =
n0

∑∞
k=0 nk

,

as desired. �

Example 6.3.2

Consider the zero-modified geometric distribution with parameter β

and pM
0 = α. Suppose that there are nk observations with k payments,

with k = 0, 1, 2, . . ..

Find the MLE for α and β. ¥

´ Solution

It is important to note that a geometric distribution is just a negative

binomial distribution with r = 1.

Now, by 7 Proposition 19, we have that

α̂ =
n0

∑∞
k=0 nk

.

To find an estimate for β, first, note that

pk =
βk

(1 + β)k+1 and p0 =
1

1 + β
.

Then

`1(β) =
∞

∑
k=1

nk

[
ln

βk

(1 + β)k+1 − ln
(

1− 1
1 + β

)]

=
∞

∑
k=1

nk[k ln β− (k + 1) ln(1 + β)− ln β ln(1 + β)]

=
∞

∑
k=1

nk[(k− 1) ln β− k ln(1 + β)].

Setting d`1
dβ = 0, we get

β̂ =
∑∞

k=1 knk

∑∞
k=1 nk

− 1. ◎
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